Update README.md
Browse files
README.md
CHANGED
@@ -35,410 +35,3 @@ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [k
|
|
35 |
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
36 |
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
37 |
|
38 |
-
### Full Model Architecture
|
39 |
-
|
40 |
-
```
|
41 |
-
SentenceTransformer(
|
42 |
-
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: RobertaModel
|
43 |
-
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
44 |
-
)
|
45 |
-
```
|
46 |
-
|
47 |
-
## Usage
|
48 |
-
|
49 |
-
### Direct Usage (Sentence Transformers)
|
50 |
-
|
51 |
-
First install the Sentence Transformers library:
|
52 |
-
|
53 |
-
```bash
|
54 |
-
pip install -U sentence-transformers
|
55 |
-
```
|
56 |
-
|
57 |
-
Then you can load this model and run inference.
|
58 |
-
```python
|
59 |
-
from sentence_transformers import SentenceTransformer
|
60 |
-
|
61 |
-
# Download from the 🤗 Hub
|
62 |
-
model = SentenceTransformer("sentence_transformers_model_id")
|
63 |
-
# Run inference
|
64 |
-
sentences = [
|
65 |
-
'Ustanovenie tohto odseku platí aj v prípade zmeny majiteľa zmenky alebo postúpenia práva zo\u2028zmenky.',
|
66 |
-
|
67 |
-
]
|
68 |
-
embeddings = model.encode(sentences)
|
69 |
-
print(embeddings.shape)
|
70 |
-
# [, 768]
|
71 |
-
|
72 |
-
# Get the similarity scores for the embeddings
|
73 |
-
similarities = model.similarity(embeddings, embeddings)
|
74 |
-
print(similarities.shape)
|
75 |
-
# [3, 3]
|
76 |
-
```
|
77 |
-
|
78 |
-
<!--
|
79 |
-
### Direct Usage (Transformers)
|
80 |
-
|
81 |
-
<details><summary>Click to see the direct usage in Transformers</summary>
|
82 |
-
|
83 |
-
</details>
|
84 |
-
-->
|
85 |
-
|
86 |
-
<!--
|
87 |
-
### Downstream Usage (Sentence Transformers)
|
88 |
-
|
89 |
-
You can finetune this model on your own dataset.
|
90 |
-
|
91 |
-
<details><summary>Click to expand</summary>
|
92 |
-
|
93 |
-
</details>
|
94 |
-
-->
|
95 |
-
|
96 |
-
<!--
|
97 |
-
### Out-of-Scope Use
|
98 |
-
|
99 |
-
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
100 |
-
-->
|
101 |
-
|
102 |
-
<!--
|
103 |
-
## Bias, Risks and Limitations
|
104 |
-
|
105 |
-
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
106 |
-
-->
|
107 |
-
|
108 |
-
<!--
|
109 |
-
### Recommendations
|
110 |
-
|
111 |
-
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
112 |
-
-->
|
113 |
-
|
114 |
-
## Training Details
|
115 |
-
|
116 |
-
### Training Dataset
|
117 |
-
|
118 |
-
#### Unnamed Dataset
|
119 |
-
|
120 |
-
* Size: 500,000 training samples
|
121 |
-
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
122 |
-
* Approximate statistics based on the first 1000 samples:
|
123 |
-
| | sentence_0 | sentence_1 | label |
|
124 |
-
|:--------|:-----------------------------------------------------------------------------------|:-----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
125 |
-
| type | string | string | float |
|
126 |
-
| details | <ul><li>min: 4 tokens</li><li>mean: 31.75 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 4 tokens</li><li>mean: 31.75 tokens</li><li>max: 256 tokens</li></ul> | <ul><li>min: 1.0</li><li>mean: 1.0</li><li>max: 1.0</li></ul> |
|
127 |
-
* Samples:
|
128 |
-
| sentence_0 | sentence_1 | label |
|
129 |
-
|:--------------------------------------------------------------------------------------------------------------------------------------------------|:--------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------|
|
130 |
-
| <code>
Súd: Okresný súd Námestovo
Spisová značka: 5C/265/2015
Identifikačné číslo súdneho spisu: 5815205480
Dátum vydania rozhodnutia: 02.</code> | <code>
Súd: Okresný súd Námestovo
Spisová značka: 5C/265/2015
Identifikačné číslo súdneho spisu: 5815205480
Dátum vydania rozhodnutia: 02.</code> | <code>1.0</code> |
|
131 |
-
| <code>06.</code> | <code>06.</code> | <code>1.0</code> |
|
132 |
-
| <code>2016
Meno a priezvisko sudcu, VSÚ: JUDr.</code> | <code>2016
Meno a priezvisko sudcu, VSÚ: JUDr.</code> | <code>1.0</code> |
|
133 |
-
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
134 |
-
```json
|
135 |
-
{
|
136 |
-
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
137 |
-
}
|
138 |
-
```
|
139 |
-
|
140 |
-
### Training Hyperparameters
|
141 |
-
#### Non-Default Hyperparameters
|
142 |
-
|
143 |
-
- `per_device_train_batch_size`: 4
|
144 |
-
- `per_device_eval_batch_size`: 4
|
145 |
-
- `num_train_epochs`: 1
|
146 |
-
- `fp16`: True
|
147 |
-
- `multi_dataset_batch_sampler`: round_robin
|
148 |
-
|
149 |
-
#### All Hyperparameters
|
150 |
-
<details><summary>Click to expand</summary>
|
151 |
-
|
152 |
-
- `overwrite_output_dir`: False
|
153 |
-
- `do_predict`: False
|
154 |
-
- `eval_strategy`: no
|
155 |
-
- `prediction_loss_only`: True
|
156 |
-
- `per_device_train_batch_size`: 4
|
157 |
-
- `per_device_eval_batch_size`: 4
|
158 |
-
- `per_gpu_train_batch_size`: None
|
159 |
-
- `per_gpu_eval_batch_size`: None
|
160 |
-
- `gradient_accumulation_steps`: 1
|
161 |
-
- `eval_accumulation_steps`: None
|
162 |
-
- `torch_empty_cache_steps`: None
|
163 |
-
- `learning_rate`: 5e-05
|
164 |
-
- `weight_decay`: 0.0
|
165 |
-
- `adam_beta1`: 0.9
|
166 |
-
- `adam_beta2`: 0.999
|
167 |
-
- `adam_epsilon`: 1e-08
|
168 |
-
- `max_grad_norm`: 1
|
169 |
-
- `num_train_epochs`: 1
|
170 |
-
- `max_steps`: -1
|
171 |
-
- `lr_scheduler_type`: linear
|
172 |
-
- `lr_scheduler_kwargs`: {}
|
173 |
-
- `warmup_ratio`: 0.0
|
174 |
-
- `warmup_steps`: 0
|
175 |
-
- `log_level`: passive
|
176 |
-
- `log_level_replica`: warning
|
177 |
-
- `log_on_each_node`: True
|
178 |
-
- `logging_nan_inf_filter`: True
|
179 |
-
- `save_safetensors`: True
|
180 |
-
- `save_on_each_node`: False
|
181 |
-
- `save_only_model`: False
|
182 |
-
- `restore_callback_states_from_checkpoint`: False
|
183 |
-
- `no_cuda`: False
|
184 |
-
- `use_cpu`: False
|
185 |
-
- `use_mps_device`: False
|
186 |
-
- `seed`: 42
|
187 |
-
- `data_seed`: None
|
188 |
-
- `jit_mode_eval`: False
|
189 |
-
- `use_ipex`: False
|
190 |
-
- `bf16`: False
|
191 |
-
- `fp16`: True
|
192 |
-
- `fp16_opt_level`: O1
|
193 |
-
- `half_precision_backend`: auto
|
194 |
-
- `bf16_full_eval`: False
|
195 |
-
- `fp16_full_eval`: False
|
196 |
-
- `tf32`: None
|
197 |
-
- `local_rank`: 0
|
198 |
-
- `ddp_backend`: None
|
199 |
-
- `tpu_num_cores`: None
|
200 |
-
- `tpu_metrics_debug`: False
|
201 |
-
- `debug`: []
|
202 |
-
- `dataloader_drop_last`: False
|
203 |
-
- `dataloader_num_workers`: 0
|
204 |
-
- `dataloader_prefetch_factor`: None
|
205 |
-
- `past_index`: -1
|
206 |
-
- `disable_tqdm`: False
|
207 |
-
- `remove_unused_columns`: True
|
208 |
-
- `label_names`: None
|
209 |
-
- `load_best_model_at_end`: False
|
210 |
-
- `ignore_data_skip`: False
|
211 |
-
- `fsdp`: []
|
212 |
-
- `fsdp_min_num_params`: 0
|
213 |
-
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
214 |
-
- `tp_size`: 0
|
215 |
-
- `fsdp_transformer_layer_cls_to_wrap`: None
|
216 |
-
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
217 |
-
- `deepspeed`: None
|
218 |
-
- `label_smoothing_factor`: 0.0
|
219 |
-
- `optim`: adamw_torch
|
220 |
-
- `optim_args`: None
|
221 |
-
- `adafactor`: False
|
222 |
-
- `group_by_length`: False
|
223 |
-
- `length_column_name`: length
|
224 |
-
- `ddp_find_unused_parameters`: None
|
225 |
-
- `ddp_bucket_cap_mb`: None
|
226 |
-
- `ddp_broadcast_buffers`: False
|
227 |
-
- `dataloader_pin_memory`: True
|
228 |
-
- `dataloader_persistent_workers`: False
|
229 |
-
- `skip_memory_metrics`: True
|
230 |
-
- `use_legacy_prediction_loop`: False
|
231 |
-
- `push_to_hub`: False
|
232 |
-
- `resume_from_checkpoint`: None
|
233 |
-
- `hub_model_id`: None
|
234 |
-
- `hub_strategy`: every_save
|
235 |
-
- `hub_private_repo`: None
|
236 |
-
- `hub_always_push`: False
|
237 |
-
- `gradient_checkpointing`: False
|
238 |
-
- `gradient_checkpointing_kwargs`: None
|
239 |
-
- `include_inputs_for_metrics`: False
|
240 |
-
- `include_for_metrics`: []
|
241 |
-
- `eval_do_concat_batches`: True
|
242 |
-
- `fp16_backend`: auto
|
243 |
-
- `push_to_hub_model_id`: None
|
244 |
-
- `push_to_hub_organization`: None
|
245 |
-
- `mp_parameters`:
|
246 |
-
- `auto_find_batch_size`: False
|
247 |
-
- `full_determinism`: False
|
248 |
-
- `torchdynamo`: None
|
249 |
-
- `ray_scope`: last
|
250 |
-
- `ddp_timeout`: 1800
|
251 |
-
- `torch_compile`: False
|
252 |
-
- `torch_compile_backend`: None
|
253 |
-
- `torch_compile_mode`: None
|
254 |
-
- `include_tokens_per_second`: False
|
255 |
-
- `include_num_input_tokens_seen`: False
|
256 |
-
- `neftune_noise_alpha`: None
|
257 |
-
- `optim_target_modules`: None
|
258 |
-
- `batch_eval_metrics`: False
|
259 |
-
- `eval_on_start`: False
|
260 |
-
- `use_liger_kernel`: False
|
261 |
-
- `eval_use_gather_object`: False
|
262 |
-
- `average_tokens_across_devices`: False
|
263 |
-
- `prompts`: None
|
264 |
-
- `batch_sampler`: batch_sampler
|
265 |
-
- `multi_dataset_batch_sampler`: round_robin
|
266 |
-
|
267 |
-
</details>
|
268 |
-
|
269 |
-
### Training Logs
|
270 |
-
<details><summary>Click to expand</summary>
|
271 |
-
|
272 |
-
| Epoch | Step | Training Loss |
|
273 |
-
|:-----:|:-----:|:-------------:|
|
274 |
-
| 0.008 | 500 | 0.0089 |
|
275 |
-
| 0.016 | 1000 | 0.0001 |
|
276 |
-
| 0.024 | 1500 | 0.0 |
|
277 |
-
| 0.032 | 2000 | 0.0 |
|
278 |
-
| 0.04 | 2500 | 0.0 |
|
279 |
-
| 0.048 | 3000 | 0.0 |
|
280 |
-
| 0.056 | 3500 | 0.0 |
|
281 |
-
| 0.064 | 4000 | 0.0 |
|
282 |
-
| 0.072 | 4500 | 0.0 |
|
283 |
-
| 0.08 | 5000 | 0.0 |
|
284 |
-
| 0.088 | 5500 | 0.0 |
|
285 |
-
| 0.096 | 6000 | 0.0 |
|
286 |
-
| 0.104 | 6500 | 0.0 |
|
287 |
-
| 0.112 | 7000 | 0.0 |
|
288 |
-
| 0.12 | 7500 | 0.0 |
|
289 |
-
| 0.128 | 8000 | 0.0 |
|
290 |
-
| 0.136 | 8500 | 0.0 |
|
291 |
-
| 0.144 | 9000 | 0.0 |
|
292 |
-
| 0.152 | 9500 | 0.0 |
|
293 |
-
| 0.16 | 10000 | 0.0 |
|
294 |
-
| 0.168 | 10500 | 0.0 |
|
295 |
-
| 0.176 | 11000 | 0.0 |
|
296 |
-
| 0.184 | 11500 | 0.0 |
|
297 |
-
| 0.192 | 12000 | 0.0 |
|
298 |
-
| 0.2 | 12500 | 0.0 |
|
299 |
-
| 0.208 | 13000 | 0.0 |
|
300 |
-
| 0.216 | 13500 | 0.0 |
|
301 |
-
| 0.224 | 14000 | 0.0 |
|
302 |
-
| 0.232 | 14500 | 0.0 |
|
303 |
-
| 0.24 | 15000 | 0.0 |
|
304 |
-
| 0.248 | 15500 | 0.0 |
|
305 |
-
| 0.256 | 16000 | 0.0 |
|
306 |
-
| 0.264 | 16500 | 0.0 |
|
307 |
-
| 0.272 | 17000 | 0.0 |
|
308 |
-
| 0.28 | 17500 | 0.0 |
|
309 |
-
| 0.288 | 18000 | 0.0 |
|
310 |
-
| 0.296 | 18500 | 0.0 |
|
311 |
-
| 0.304 | 19000 | 0.0 |
|
312 |
-
| 0.312 | 19500 | 0.0 |
|
313 |
-
| 0.32 | 20000 | 0.0 |
|
314 |
-
| 0.328 | 20500 | 0.0 |
|
315 |
-
| 0.336 | 21000 | 0.0 |
|
316 |
-
| 0.344 | 21500 | 0.0 |
|
317 |
-
| 0.352 | 22000 | 0.0 |
|
318 |
-
| 0.36 | 22500 | 0.0 |
|
319 |
-
| 0.368 | 23000 | 0.0 |
|
320 |
-
| 0.376 | 23500 | 0.0 |
|
321 |
-
| 0.384 | 24000 | 0.0 |
|
322 |
-
| 0.392 | 24500 | 0.0 |
|
323 |
-
| 0.4 | 25000 | 0.0 |
|
324 |
-
| 0.408 | 25500 | 0.0 |
|
325 |
-
| 0.416 | 26000 | 0.0 |
|
326 |
-
| 0.424 | 26500 | 0.0 |
|
327 |
-
| 0.432 | 27000 | 0.0 |
|
328 |
-
| 0.44 | 27500 | 0.0 |
|
329 |
-
| 0.448 | 28000 | 0.0 |
|
330 |
-
| 0.456 | 28500 | 0.0 |
|
331 |
-
| 0.464 | 29000 | 0.0 |
|
332 |
-
| 0.472 | 29500 | 0.0 |
|
333 |
-
| 0.48 | 30000 | 0.0 |
|
334 |
-
| 0.488 | 30500 | 0.0 |
|
335 |
-
| 0.496 | 31000 | 0.0 |
|
336 |
-
| 0.504 | 31500 | 0.0 |
|
337 |
-
| 0.512 | 32000 | 0.0 |
|
338 |
-
| 0.52 | 32500 | 0.0 |
|
339 |
-
| 0.528 | 33000 | 0.0 |
|
340 |
-
| 0.536 | 33500 | 0.0 |
|
341 |
-
| 0.544 | 34000 | 0.0 |
|
342 |
-
| 0.552 | 34500 | 0.0 |
|
343 |
-
| 0.56 | 35000 | 0.0 |
|
344 |
-
| 0.568 | 35500 | 0.0 |
|
345 |
-
| 0.576 | 36000 | 0.0 |
|
346 |
-
| 0.584 | 36500 | 0.0 |
|
347 |
-
| 0.592 | 37000 | 0.0 |
|
348 |
-
| 0.6 | 37500 | 0.0 |
|
349 |
-
| 0.608 | 38000 | 0.0 |
|
350 |
-
| 0.616 | 38500 | 0.0 |
|
351 |
-
| 0.624 | 39000 | 0.0 |
|
352 |
-
| 0.632 | 39500 | 0.0 |
|
353 |
-
| 0.64 | 40000 | 0.0 |
|
354 |
-
| 0.648 | 40500 | 0.0 |
|
355 |
-
| 0.656 | 41000 | 0.0 |
|
356 |
-
| 0.664 | 41500 | 0.0 |
|
357 |
-
| 0.672 | 42000 | 0.0 |
|
358 |
-
| 0.68 | 42500 | 0.0 |
|
359 |
-
| 0.688 | 43000 | 0.0 |
|
360 |
-
| 0.696 | 43500 | 0.0 |
|
361 |
-
| 0.704 | 44000 | 0.0 |
|
362 |
-
| 0.712 | 44500 | 0.0 |
|
363 |
-
| 0.72 | 45000 | 0.0 |
|
364 |
-
| 0.728 | 45500 | 0.0 |
|
365 |
-
| 0.736 | 46000 | 0.0 |
|
366 |
-
| 0.744 | 46500 | 0.0 |
|
367 |
-
| 0.752 | 47000 | 0.0 |
|
368 |
-
| 0.76 | 47500 | 0.0 |
|
369 |
-
| 0.768 | 48000 | 0.0 |
|
370 |
-
| 0.776 | 48500 | 0.0 |
|
371 |
-
| 0.784 | 49000 | 0.0 |
|
372 |
-
| 0.792 | 49500 | 0.0 |
|
373 |
-
| 0.8 | 50000 | 0.0 |
|
374 |
-
| 0.808 | 50500 | 0.0 |
|
375 |
-
| 0.816 | 51000 | 0.0 |
|
376 |
-
| 0.824 | 51500 | 0.0 |
|
377 |
-
| 0.832 | 52000 | 0.0 |
|
378 |
-
| 0.84 | 52500 | 0.0 |
|
379 |
-
| 0.848 | 53000 | 0.0 |
|
380 |
-
| 0.856 | 53500 | 0.0 |
|
381 |
-
| 0.864 | 54000 | 0.0 |
|
382 |
-
| 0.872 | 54500 | 0.0 |
|
383 |
-
| 0.88 | 55000 | 0.0 |
|
384 |
-
| 0.888 | 55500 | 0.0 |
|
385 |
-
| 0.896 | 56000 | 0.0 |
|
386 |
-
| 0.904 | 56500 | 0.0 |
|
387 |
-
| 0.912 | 57000 | 0.0 |
|
388 |
-
| 0.92 | 57500 | 0.0 |
|
389 |
-
| 0.928 | 58000 | 0.0 |
|
390 |
-
| 0.936 | 58500 | 0.0 |
|
391 |
-
| 0.944 | 59000 | 0.0 |
|
392 |
-
| 0.952 | 59500 | 0.0 |
|
393 |
-
| 0.96 | 60000 | 0.0 |
|
394 |
-
| 0.968 | 60500 | 0.0 |
|
395 |
-
| 0.976 | 61000 | 0.0 |
|
396 |
-
| 0.984 | 61500 | 0.0 |
|
397 |
-
| 0.992 | 62000 | 0.0 |
|
398 |
-
| 1.0 | 62500 | 0.0 |
|
399 |
-
|
400 |
-
</details>
|
401 |
-
|
402 |
-
### Framework Versions
|
403 |
-
- Python: 3.9.13
|
404 |
-
- Sentence Transformers: 4.1.0
|
405 |
-
- Transformers: 4.51.3
|
406 |
-
- PyTorch: 2.6.0+cu124
|
407 |
-
- Accelerate: 1.6.0
|
408 |
-
- Datasets: 3.5.0
|
409 |
-
- Tokenizers: 0.21.1
|
410 |
-
|
411 |
-
## Citation
|
412 |
-
|
413 |
-
### BibTeX
|
414 |
-
|
415 |
-
#### Sentence Transformers
|
416 |
-
```bibtex
|
417 |
-
@inproceedings{reimers-2019-sentence-bert,
|
418 |
-
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
419 |
-
author = "Reimers, Nils and Gurevych, Iryna",
|
420 |
-
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
421 |
-
month = "11",
|
422 |
-
year = "2019",
|
423 |
-
publisher = "Association for Computational Linguistics",
|
424 |
-
url = "https://arxiv.org/abs/1908.10084",
|
425 |
-
}
|
426 |
-
```
|
427 |
-
|
428 |
-
<!--
|
429 |
-
## Glossary
|
430 |
-
|
431 |
-
*Clearly define terms in order to be accessible across audiences.*
|
432 |
-
-->
|
433 |
-
|
434 |
-
<!--
|
435 |
-
## Model Card Authors
|
436 |
-
|
437 |
-
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
438 |
-
-->
|
439 |
-
|
440 |
-
<!--
|
441 |
-
## Model Card Contact
|
442 |
-
|
443 |
-
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
444 |
-
-->
|
|
|
35 |
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
36 |
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|