--- library_name: transformers license: mit base_model: seara/rubert-tiny2-russian-sentiment tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: rubert-tiny2-sentiment-tuned2 results: [] --- # rubert-tiny2-sentiment-tuned2 This model is a fine-tuned version of [seara/rubert-tiny2-russian-sentiment](https://huggingface.co/seara/rubert-tiny2-russian-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2691 - Accuracy: 0.9151 - F1: 0.9227 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 2e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.535 | 0.1926 | 500 | 0.4057 | 0.8544 | 0.8991 | | 0.3757 | 0.3852 | 1000 | 0.3217 | 0.8964 | 0.9164 | | 0.3092 | 0.5778 | 1500 | 0.2882 | 0.9093 | 0.9209 | | 0.287 | 0.7704 | 2000 | 0.2742 | 0.9132 | 0.9220 | | 0.2854 | 0.9630 | 2500 | 0.2691 | 0.9151 | 0.9227 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0