--- library_name: transformers license: mit base_model: seara/rubert-tiny2-russian-sentiment tags: - generated_from_trainer metrics: - accuracy - f1 model-index: - name: rubert-tiny2-sentiment-tuned results: [] --- # rubert-tiny2-sentiment-tuned This model is a fine-tuned version of [seara/rubert-tiny2-russian-sentiment](https://huggingface.co/seara/rubert-tiny2-russian-sentiment) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.2380 - Accuracy: 0.9248 - F1: 0.9274 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 3e-07 - train_batch_size: 32 - eval_batch_size: 32 - seed: 42 - optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments - lr_scheduler_type: linear - num_epochs: 1 ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | |:-------------:|:------:|:----:|:---------------:|:--------:|:------:| | 0.4865 | 0.1926 | 500 | 0.3455 | 0.8853 | 0.9123 | | 0.3198 | 0.3852 | 1000 | 0.2753 | 0.9127 | 0.9218 | | 0.2655 | 0.5778 | 1500 | 0.2513 | 0.9217 | 0.9260 | | 0.2506 | 0.7704 | 2000 | 0.2415 | 0.9240 | 0.9270 | | 0.2511 | 0.9630 | 2500 | 0.2380 | 0.9248 | 0.9274 | ### Framework versions - Transformers 4.48.3 - Pytorch 2.5.1+cu124 - Datasets 3.3.1 - Tokenizers 0.21.0