|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | import inspect | 
					
						
						|  | import json | 
					
						
						|  | import os | 
					
						
						|  | import tempfile | 
					
						
						|  | import unittest | 
					
						
						|  | import uuid | 
					
						
						|  | from typing import Dict, List, Tuple | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from huggingface_hub import delete_repo | 
					
						
						|  |  | 
					
						
						|  | import diffusers | 
					
						
						|  | from diffusers import ( | 
					
						
						|  | CMStochasticIterativeScheduler, | 
					
						
						|  | DDIMScheduler, | 
					
						
						|  | DEISMultistepScheduler, | 
					
						
						|  | DiffusionPipeline, | 
					
						
						|  | EDMEulerScheduler, | 
					
						
						|  | EulerAncestralDiscreteScheduler, | 
					
						
						|  | EulerDiscreteScheduler, | 
					
						
						|  | IPNDMScheduler, | 
					
						
						|  | LMSDiscreteScheduler, | 
					
						
						|  | UniPCMultistepScheduler, | 
					
						
						|  | VQDiffusionScheduler, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.configuration_utils import ConfigMixin, register_to_config | 
					
						
						|  | from diffusers.schedulers.scheduling_utils import SchedulerMixin | 
					
						
						|  | from diffusers.utils import logging | 
					
						
						|  | from diffusers.utils.testing_utils import CaptureLogger, torch_device | 
					
						
						|  |  | 
					
						
						|  | from ..others.test_utils import TOKEN, USER, is_staging_test | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | torch.backends.cuda.matmul.allow_tf32 = False | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SchedulerObject(SchedulerMixin, ConfigMixin): | 
					
						
						|  | config_name = "config.json" | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | a=2, | 
					
						
						|  | b=5, | 
					
						
						|  | c=(2, 5), | 
					
						
						|  | d="for diffusion", | 
					
						
						|  | e=[1, 3], | 
					
						
						|  | ): | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SchedulerObject2(SchedulerMixin, ConfigMixin): | 
					
						
						|  | config_name = "config.json" | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | a=2, | 
					
						
						|  | b=5, | 
					
						
						|  | c=(2, 5), | 
					
						
						|  | d="for diffusion", | 
					
						
						|  | f=[1, 3], | 
					
						
						|  | ): | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SchedulerObject3(SchedulerMixin, ConfigMixin): | 
					
						
						|  | config_name = "config.json" | 
					
						
						|  |  | 
					
						
						|  | @register_to_config | 
					
						
						|  | def __init__( | 
					
						
						|  | self, | 
					
						
						|  | a=2, | 
					
						
						|  | b=5, | 
					
						
						|  | c=(2, 5), | 
					
						
						|  | d="for diffusion", | 
					
						
						|  | e=[1, 3], | 
					
						
						|  | f=[1, 3], | 
					
						
						|  | ): | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SchedulerBaseTests(unittest.TestCase): | 
					
						
						|  | def test_save_load_from_different_config(self): | 
					
						
						|  | obj = SchedulerObject() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | setattr(diffusers, "SchedulerObject", SchedulerObject) | 
					
						
						|  | logger = logging.get_logger("diffusers.configuration_utils") | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | obj.save_config(tmpdirname) | 
					
						
						|  | with CaptureLogger(logger) as cap_logger_1: | 
					
						
						|  | config = SchedulerObject2.load_config(tmpdirname) | 
					
						
						|  | new_obj_1 = SchedulerObject2.from_config(config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: | 
					
						
						|  | data = json.load(f) | 
					
						
						|  | data["unexpected"] = True | 
					
						
						|  |  | 
					
						
						|  | with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: | 
					
						
						|  | json.dump(data, f) | 
					
						
						|  |  | 
					
						
						|  | with CaptureLogger(logger) as cap_logger_2: | 
					
						
						|  | config = SchedulerObject.load_config(tmpdirname) | 
					
						
						|  | new_obj_2 = SchedulerObject.from_config(config) | 
					
						
						|  |  | 
					
						
						|  | with CaptureLogger(logger) as cap_logger_3: | 
					
						
						|  | config = SchedulerObject2.load_config(tmpdirname) | 
					
						
						|  | new_obj_3 = SchedulerObject2.from_config(config) | 
					
						
						|  |  | 
					
						
						|  | assert new_obj_1.__class__ == SchedulerObject2 | 
					
						
						|  | assert new_obj_2.__class__ == SchedulerObject | 
					
						
						|  | assert new_obj_3.__class__ == SchedulerObject2 | 
					
						
						|  |  | 
					
						
						|  | assert cap_logger_1.out == "" | 
					
						
						|  | assert ( | 
					
						
						|  | cap_logger_2.out | 
					
						
						|  | == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" | 
					
						
						|  | " will" | 
					
						
						|  | " be ignored. Please verify your config.json configuration file.\n" | 
					
						
						|  | ) | 
					
						
						|  | assert cap_logger_2.out.replace("SchedulerObject", "SchedulerObject2") == cap_logger_3.out | 
					
						
						|  |  | 
					
						
						|  | def test_save_load_compatible_schedulers(self): | 
					
						
						|  | SchedulerObject2._compatibles = ["SchedulerObject"] | 
					
						
						|  | SchedulerObject._compatibles = ["SchedulerObject2"] | 
					
						
						|  |  | 
					
						
						|  | obj = SchedulerObject() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | setattr(diffusers, "SchedulerObject", SchedulerObject) | 
					
						
						|  | setattr(diffusers, "SchedulerObject2", SchedulerObject2) | 
					
						
						|  | logger = logging.get_logger("diffusers.configuration_utils") | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | obj.save_config(tmpdirname) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with open(os.path.join(tmpdirname, SchedulerObject.config_name), "r") as f: | 
					
						
						|  | data = json.load(f) | 
					
						
						|  | data["f"] = [0, 0] | 
					
						
						|  | data["unexpected"] = True | 
					
						
						|  |  | 
					
						
						|  | with open(os.path.join(tmpdirname, SchedulerObject.config_name), "w") as f: | 
					
						
						|  | json.dump(data, f) | 
					
						
						|  |  | 
					
						
						|  | with CaptureLogger(logger) as cap_logger: | 
					
						
						|  | config = SchedulerObject.load_config(tmpdirname) | 
					
						
						|  | new_obj = SchedulerObject.from_config(config) | 
					
						
						|  |  | 
					
						
						|  | assert new_obj.__class__ == SchedulerObject | 
					
						
						|  |  | 
					
						
						|  | assert ( | 
					
						
						|  | cap_logger.out | 
					
						
						|  | == "The config attributes {'unexpected': True} were passed to SchedulerObject, but are not expected and" | 
					
						
						|  | " will" | 
					
						
						|  | " be ignored. Please verify your config.json configuration file.\n" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def test_save_load_from_different_config_comp_schedulers(self): | 
					
						
						|  | SchedulerObject3._compatibles = ["SchedulerObject", "SchedulerObject2"] | 
					
						
						|  | SchedulerObject2._compatibles = ["SchedulerObject", "SchedulerObject3"] | 
					
						
						|  | SchedulerObject._compatibles = ["SchedulerObject2", "SchedulerObject3"] | 
					
						
						|  |  | 
					
						
						|  | obj = SchedulerObject() | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | setattr(diffusers, "SchedulerObject", SchedulerObject) | 
					
						
						|  | setattr(diffusers, "SchedulerObject2", SchedulerObject2) | 
					
						
						|  | setattr(diffusers, "SchedulerObject3", SchedulerObject3) | 
					
						
						|  | logger = logging.get_logger("diffusers.configuration_utils") | 
					
						
						|  | logger.setLevel(diffusers.logging.INFO) | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | obj.save_config(tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | with CaptureLogger(logger) as cap_logger_1: | 
					
						
						|  | config = SchedulerObject.load_config(tmpdirname) | 
					
						
						|  | new_obj_1 = SchedulerObject.from_config(config) | 
					
						
						|  |  | 
					
						
						|  | with CaptureLogger(logger) as cap_logger_2: | 
					
						
						|  | config = SchedulerObject2.load_config(tmpdirname) | 
					
						
						|  | new_obj_2 = SchedulerObject2.from_config(config) | 
					
						
						|  |  | 
					
						
						|  | with CaptureLogger(logger) as cap_logger_3: | 
					
						
						|  | config = SchedulerObject3.load_config(tmpdirname) | 
					
						
						|  | new_obj_3 = SchedulerObject3.from_config(config) | 
					
						
						|  |  | 
					
						
						|  | assert new_obj_1.__class__ == SchedulerObject | 
					
						
						|  | assert new_obj_2.__class__ == SchedulerObject2 | 
					
						
						|  | assert new_obj_3.__class__ == SchedulerObject3 | 
					
						
						|  |  | 
					
						
						|  | assert cap_logger_1.out == "" | 
					
						
						|  | assert cap_logger_2.out == "{'f'} was not found in config. Values will be initialized to default values.\n" | 
					
						
						|  | assert cap_logger_3.out == "{'f'} was not found in config. Values will be initialized to default values.\n" | 
					
						
						|  |  | 
					
						
						|  | def test_default_arguments_not_in_config(self): | 
					
						
						|  | pipe = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 | 
					
						
						|  | ) | 
					
						
						|  | assert pipe.scheduler.__class__ == DDIMScheduler | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert pipe.scheduler.config.timestep_spacing == "leading" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | 
					
						
						|  | assert pipe.scheduler.config.timestep_spacing == "linspace" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config, timestep_spacing="trailing") | 
					
						
						|  | assert pipe.scheduler.config.timestep_spacing == "trailing" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | 
					
						
						|  | assert pipe.scheduler.config.timestep_spacing == "trailing" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) | 
					
						
						|  | assert pipe.scheduler.config.timestep_spacing == "trailing" | 
					
						
						|  |  | 
					
						
						|  | def test_default_solver_type_after_switch(self): | 
					
						
						|  | pipe = DiffusionPipeline.from_pretrained( | 
					
						
						|  | "hf-internal-testing/tiny-stable-diffusion-pipe", torch_dtype=torch.float16 | 
					
						
						|  | ) | 
					
						
						|  | assert pipe.scheduler.__class__ == DDIMScheduler | 
					
						
						|  |  | 
					
						
						|  | pipe.scheduler = DEISMultistepScheduler.from_config(pipe.scheduler.config) | 
					
						
						|  | assert pipe.scheduler.config.solver_type == "logrho" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | 
					
						
						|  | assert pipe.scheduler.config.solver_type == "bh2" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class SchedulerCommonTest(unittest.TestCase): | 
					
						
						|  | scheduler_classes = () | 
					
						
						|  | forward_default_kwargs = () | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def default_num_inference_steps(self): | 
					
						
						|  | return 50 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def default_timestep(self): | 
					
						
						|  | kwargs = dict(self.forward_default_kwargs) | 
					
						
						|  | num_inference_steps = kwargs.get("num_inference_steps", self.default_num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = self.scheduler_classes[0](**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | timestep = scheduler.timesteps[0] | 
					
						
						|  | except NotImplementedError: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method." | 
					
						
						|  | f" `default_timestep` will be set to the default value of 1." | 
					
						
						|  | ) | 
					
						
						|  | timestep = 1 | 
					
						
						|  |  | 
					
						
						|  | return timestep | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def default_timestep_2(self): | 
					
						
						|  | kwargs = dict(self.forward_default_kwargs) | 
					
						
						|  | num_inference_steps = kwargs.get("num_inference_steps", self.default_num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | try: | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = self.scheduler_classes[0](**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | if len(scheduler.timesteps) >= 2: | 
					
						
						|  | timestep_2 = scheduler.timesteps[1] | 
					
						
						|  | else: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"Using num_inference_steps from the scheduler testing class's default config leads to a timestep" | 
					
						
						|  | f" scheduler of length {len(scheduler.timesteps)} < 2. The default `default_timestep_2` value of 0" | 
					
						
						|  | f" will be used." | 
					
						
						|  | ) | 
					
						
						|  | timestep_2 = 0 | 
					
						
						|  | except NotImplementedError: | 
					
						
						|  | logger.warning( | 
					
						
						|  | f"The scheduler {self.__class__.__name__} does not implement a `get_scheduler_config` method." | 
					
						
						|  | f" `default_timestep_2` will be set to the default value of 0." | 
					
						
						|  | ) | 
					
						
						|  | timestep_2 = 0 | 
					
						
						|  |  | 
					
						
						|  | return timestep_2 | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dummy_sample(self): | 
					
						
						|  | batch_size = 4 | 
					
						
						|  | num_channels = 3 | 
					
						
						|  | height = 8 | 
					
						
						|  | width = 8 | 
					
						
						|  |  | 
					
						
						|  | sample = torch.rand((batch_size, num_channels, height, width)) | 
					
						
						|  |  | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dummy_noise_deter(self): | 
					
						
						|  | batch_size = 4 | 
					
						
						|  | num_channels = 3 | 
					
						
						|  | height = 8 | 
					
						
						|  | width = 8 | 
					
						
						|  |  | 
					
						
						|  | num_elems = batch_size * num_channels * height * width | 
					
						
						|  | sample = torch.arange(num_elems).flip(-1) | 
					
						
						|  | sample = sample.reshape(num_channels, height, width, batch_size) | 
					
						
						|  | sample = sample / num_elems | 
					
						
						|  | sample = sample.permute(3, 0, 1, 2) | 
					
						
						|  |  | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | @property | 
					
						
						|  | def dummy_sample_deter(self): | 
					
						
						|  | batch_size = 4 | 
					
						
						|  | num_channels = 3 | 
					
						
						|  | height = 8 | 
					
						
						|  | width = 8 | 
					
						
						|  |  | 
					
						
						|  | num_elems = batch_size * num_channels * height * width | 
					
						
						|  | sample = torch.arange(num_elems) | 
					
						
						|  | sample = sample.reshape(num_channels, height, width, batch_size) | 
					
						
						|  | sample = sample / num_elems | 
					
						
						|  | sample = sample.permute(3, 0, 1, 2) | 
					
						
						|  |  | 
					
						
						|  | return sample | 
					
						
						|  |  | 
					
						
						|  | def get_scheduler_config(self): | 
					
						
						|  | raise NotImplementedError | 
					
						
						|  |  | 
					
						
						|  | def dummy_model(self): | 
					
						
						|  | def model(sample, t, *args): | 
					
						
						|  |  | 
					
						
						|  | if isinstance(t, torch.Tensor): | 
					
						
						|  | num_dims = len(sample.shape) | 
					
						
						|  |  | 
					
						
						|  | t = t.reshape(-1, *(1,) * (num_dims - 1)).to(sample.device).to(sample.dtype) | 
					
						
						|  |  | 
					
						
						|  | return sample * t / (t + 1) | 
					
						
						|  |  | 
					
						
						|  | return model | 
					
						
						|  |  | 
					
						
						|  | def check_over_configs(self, time_step=0, **config): | 
					
						
						|  | kwargs = dict(self.forward_default_kwargs) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = kwargs.pop("num_inference_steps", None) | 
					
						
						|  | time_step = time_step if time_step is not None else self.default_timestep | 
					
						
						|  |  | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | 
					
						
						|  | time_step = float(time_step) | 
					
						
						|  |  | 
					
						
						|  | scheduler_config = self.get_scheduler_config(**config) | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == CMStochasticIterativeScheduler: | 
					
						
						|  |  | 
					
						
						|  | scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | 
					
						
						|  | time_step = scaled_sigma_max | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == EDMEulerScheduler: | 
					
						
						|  | time_step = scheduler.timesteps[-1] | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == VQDiffusionScheduler: | 
					
						
						|  | num_vec_classes = scheduler_config["num_vec_classes"] | 
					
						
						|  | sample = self.dummy_sample(num_vec_classes) | 
					
						
						|  | model = self.dummy_model(num_vec_classes) | 
					
						
						|  | residual = model(sample, time_step) | 
					
						
						|  | else: | 
					
						
						|  | sample = self.dummy_sample | 
					
						
						|  | residual = 0.1 * sample | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | scheduler.save_config(tmpdirname) | 
					
						
						|  | new_scheduler = scheduler_class.from_pretrained(tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | new_scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | kwargs["num_inference_steps"] = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == CMStochasticIterativeScheduler: | 
					
						
						|  |  | 
					
						
						|  | _ = scheduler.scale_model_input(sample, scaled_sigma_max) | 
					
						
						|  | _ = new_scheduler.scale_model_input(sample, scaled_sigma_max) | 
					
						
						|  | elif scheduler_class != VQDiffusionScheduler: | 
					
						
						|  | _ = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | 
					
						
						|  | _ = new_scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | 
					
						
						|  | kwargs["generator"] = torch.manual_seed(0) | 
					
						
						|  | output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  | if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | 
					
						
						|  | kwargs["generator"] = torch.manual_seed(0) | 
					
						
						|  | new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  | assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | 
					
						
						|  |  | 
					
						
						|  | def check_over_forward(self, time_step=0, **forward_kwargs): | 
					
						
						|  | kwargs = dict(self.forward_default_kwargs) | 
					
						
						|  | kwargs.update(forward_kwargs) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = kwargs.pop("num_inference_steps", None) | 
					
						
						|  | time_step = time_step if time_step is not None else self.default_timestep | 
					
						
						|  |  | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | 
					
						
						|  | time_step = float(time_step) | 
					
						
						|  |  | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == VQDiffusionScheduler: | 
					
						
						|  | num_vec_classes = scheduler_config["num_vec_classes"] | 
					
						
						|  | sample = self.dummy_sample(num_vec_classes) | 
					
						
						|  | model = self.dummy_model(num_vec_classes) | 
					
						
						|  | residual = model(sample, time_step) | 
					
						
						|  | else: | 
					
						
						|  | sample = self.dummy_sample | 
					
						
						|  | residual = 0.1 * sample | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | scheduler.save_config(tmpdirname) | 
					
						
						|  | new_scheduler = scheduler_class.from_pretrained(tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | new_scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | kwargs["num_inference_steps"] = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  | if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | 
					
						
						|  | kwargs["generator"] = torch.manual_seed(0) | 
					
						
						|  | output = scheduler.step(residual, time_step, sample, **kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  | if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | 
					
						
						|  | kwargs["generator"] = torch.manual_seed(0) | 
					
						
						|  | new_output = new_scheduler.step(residual, time_step, sample, **kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  | assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | 
					
						
						|  |  | 
					
						
						|  | def test_from_save_pretrained(self): | 
					
						
						|  | kwargs = dict(self.forward_default_kwargs) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | timestep = self.default_timestep | 
					
						
						|  | if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | 
					
						
						|  | timestep = float(timestep) | 
					
						
						|  |  | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == CMStochasticIterativeScheduler: | 
					
						
						|  |  | 
					
						
						|  | timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == VQDiffusionScheduler: | 
					
						
						|  | num_vec_classes = scheduler_config["num_vec_classes"] | 
					
						
						|  | sample = self.dummy_sample(num_vec_classes) | 
					
						
						|  | model = self.dummy_model(num_vec_classes) | 
					
						
						|  | residual = model(sample, timestep) | 
					
						
						|  | else: | 
					
						
						|  | sample = self.dummy_sample | 
					
						
						|  | residual = 0.1 * sample | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | scheduler.save_config(tmpdirname) | 
					
						
						|  | new_scheduler = scheduler_class.from_pretrained(tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | new_scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | kwargs["num_inference_steps"] = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  | if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | 
					
						
						|  | kwargs["generator"] = torch.manual_seed(0) | 
					
						
						|  | output = scheduler.step(residual, timestep, sample, **kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  | if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | 
					
						
						|  | kwargs["generator"] = torch.manual_seed(0) | 
					
						
						|  | new_output = new_scheduler.step(residual, timestep, sample, **kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  | assert torch.sum(torch.abs(output - new_output)) < 1e-5, "Scheduler outputs are not identical" | 
					
						
						|  |  | 
					
						
						|  | def test_compatibles(self): | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  |  | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | assert all(c is not None for c in scheduler.compatibles) | 
					
						
						|  |  | 
					
						
						|  | for comp_scheduler_cls in scheduler.compatibles: | 
					
						
						|  | comp_scheduler = comp_scheduler_cls.from_config(scheduler.config) | 
					
						
						|  | assert comp_scheduler is not None | 
					
						
						|  |  | 
					
						
						|  | new_scheduler = scheduler_class.from_config(comp_scheduler.config) | 
					
						
						|  |  | 
					
						
						|  | new_scheduler_config = {k: v for k, v in new_scheduler.config.items() if k in scheduler.config} | 
					
						
						|  | scheduler_diff = {k: v for k, v in new_scheduler.config.items() if k not in scheduler.config} | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert new_scheduler_config == dict(scheduler.config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | init_keys = inspect.signature(scheduler_class.__init__).parameters.keys() | 
					
						
						|  | assert set(scheduler_diff.keys()).intersection(set(init_keys)) == set() | 
					
						
						|  |  | 
					
						
						|  | def test_from_pretrained(self): | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  |  | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | scheduler.save_pretrained(tmpdirname) | 
					
						
						|  | new_scheduler = scheduler_class.from_pretrained(tmpdirname) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scheduler_config = dict(scheduler.config) | 
					
						
						|  | del scheduler_config["_use_default_values"] | 
					
						
						|  |  | 
					
						
						|  | assert scheduler_config == new_scheduler.config | 
					
						
						|  |  | 
					
						
						|  | def test_step_shape(self): | 
					
						
						|  | kwargs = dict(self.forward_default_kwargs) | 
					
						
						|  |  | 
					
						
						|  | num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | timestep_0 = self.default_timestep | 
					
						
						|  | timestep_1 = self.default_timestep_2 | 
					
						
						|  |  | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | 
					
						
						|  | timestep_0 = float(timestep_0) | 
					
						
						|  | timestep_1 = float(timestep_1) | 
					
						
						|  |  | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == VQDiffusionScheduler: | 
					
						
						|  | num_vec_classes = scheduler_config["num_vec_classes"] | 
					
						
						|  | sample = self.dummy_sample(num_vec_classes) | 
					
						
						|  | model = self.dummy_model(num_vec_classes) | 
					
						
						|  | residual = model(sample, timestep_0) | 
					
						
						|  | else: | 
					
						
						|  | sample = self.dummy_sample | 
					
						
						|  | residual = 0.1 * sample | 
					
						
						|  |  | 
					
						
						|  | if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | kwargs["num_inference_steps"] = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  | output_0 = scheduler.step(residual, timestep_0, sample, **kwargs).prev_sample | 
					
						
						|  | output_1 = scheduler.step(residual, timestep_1, sample, **kwargs).prev_sample | 
					
						
						|  |  | 
					
						
						|  | self.assertEqual(output_0.shape, sample.shape) | 
					
						
						|  | self.assertEqual(output_0.shape, output_1.shape) | 
					
						
						|  |  | 
					
						
						|  | def test_scheduler_outputs_equivalence(self): | 
					
						
						|  | def set_nan_tensor_to_zero(t): | 
					
						
						|  | t[t != t] = 0 | 
					
						
						|  | return t | 
					
						
						|  |  | 
					
						
						|  | def recursive_check(tuple_object, dict_object): | 
					
						
						|  | if isinstance(tuple_object, (List, Tuple)): | 
					
						
						|  | for tuple_iterable_value, dict_iterable_value in zip(tuple_object, dict_object.values()): | 
					
						
						|  | recursive_check(tuple_iterable_value, dict_iterable_value) | 
					
						
						|  | elif isinstance(tuple_object, Dict): | 
					
						
						|  | for tuple_iterable_value, dict_iterable_value in zip(tuple_object.values(), dict_object.values()): | 
					
						
						|  | recursive_check(tuple_iterable_value, dict_iterable_value) | 
					
						
						|  | elif tuple_object is None: | 
					
						
						|  | return | 
					
						
						|  | else: | 
					
						
						|  | self.assertTrue( | 
					
						
						|  | torch.allclose( | 
					
						
						|  | set_nan_tensor_to_zero(tuple_object), set_nan_tensor_to_zero(dict_object), atol=1e-5 | 
					
						
						|  | ), | 
					
						
						|  | msg=( | 
					
						
						|  | "Tuple and dict output are not equal. Difference:" | 
					
						
						|  | f" {torch.max(torch.abs(tuple_object - dict_object))}. Tuple has `nan`:" | 
					
						
						|  | f" {torch.isnan(tuple_object).any()} and `inf`: {torch.isinf(tuple_object)}. Dict has" | 
					
						
						|  | f" `nan`: {torch.isnan(dict_object).any()} and `inf`: {torch.isinf(dict_object)}." | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | kwargs = dict(self.forward_default_kwargs) | 
					
						
						|  | num_inference_steps = kwargs.pop("num_inference_steps", self.default_num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | timestep = self.default_timestep | 
					
						
						|  | if len(self.scheduler_classes) > 0 and self.scheduler_classes[0] == IPNDMScheduler: | 
					
						
						|  | timestep = 1 | 
					
						
						|  |  | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | if scheduler_class in (EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, LMSDiscreteScheduler): | 
					
						
						|  | timestep = float(timestep) | 
					
						
						|  |  | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == CMStochasticIterativeScheduler: | 
					
						
						|  |  | 
					
						
						|  | timestep = scheduler.sigma_to_t(scheduler.config.sigma_max) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class == VQDiffusionScheduler: | 
					
						
						|  | num_vec_classes = scheduler_config["num_vec_classes"] | 
					
						
						|  | sample = self.dummy_sample(num_vec_classes) | 
					
						
						|  | model = self.dummy_model(num_vec_classes) | 
					
						
						|  | residual = model(sample, timestep) | 
					
						
						|  | else: | 
					
						
						|  | sample = self.dummy_sample | 
					
						
						|  | residual = 0.1 * sample | 
					
						
						|  |  | 
					
						
						|  | if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | kwargs["num_inference_steps"] = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | 
					
						
						|  | kwargs["generator"] = torch.manual_seed(0) | 
					
						
						|  | outputs_dict = scheduler.step(residual, timestep, sample, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | if num_inference_steps is not None and hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | scheduler.set_timesteps(num_inference_steps) | 
					
						
						|  | elif num_inference_steps is not None and not hasattr(scheduler, "set_timesteps"): | 
					
						
						|  | kwargs["num_inference_steps"] = num_inference_steps | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | if "generator" in set(inspect.signature(scheduler.step).parameters.keys()): | 
					
						
						|  | kwargs["generator"] = torch.manual_seed(0) | 
					
						
						|  | outputs_tuple = scheduler.step(residual, timestep, sample, return_dict=False, **kwargs) | 
					
						
						|  |  | 
					
						
						|  | recursive_check(outputs_tuple, outputs_dict) | 
					
						
						|  |  | 
					
						
						|  | def test_scheduler_public_api(self): | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class != VQDiffusionScheduler: | 
					
						
						|  | self.assertTrue( | 
					
						
						|  | hasattr(scheduler, "init_noise_sigma"), | 
					
						
						|  | f"{scheduler_class} does not implement a required attribute `init_noise_sigma`", | 
					
						
						|  | ) | 
					
						
						|  | self.assertTrue( | 
					
						
						|  | hasattr(scheduler, "scale_model_input"), | 
					
						
						|  | ( | 
					
						
						|  | f"{scheduler_class} does not implement a required class method `scale_model_input(sample," | 
					
						
						|  | " timestep)`" | 
					
						
						|  | ), | 
					
						
						|  | ) | 
					
						
						|  | self.assertTrue( | 
					
						
						|  | hasattr(scheduler, "step"), | 
					
						
						|  | f"{scheduler_class} does not implement a required class method `step(...)`", | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if scheduler_class != VQDiffusionScheduler: | 
					
						
						|  | sample = self.dummy_sample | 
					
						
						|  | if scheduler_class == CMStochasticIterativeScheduler: | 
					
						
						|  |  | 
					
						
						|  | scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | 
					
						
						|  | scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) | 
					
						
						|  | elif scheduler_class == EDMEulerScheduler: | 
					
						
						|  | scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | 
					
						
						|  | else: | 
					
						
						|  | scaled_sample = scheduler.scale_model_input(sample, 0.0) | 
					
						
						|  | self.assertEqual(sample.shape, scaled_sample.shape) | 
					
						
						|  |  | 
					
						
						|  | def test_add_noise_device(self): | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | if scheduler_class == IPNDMScheduler: | 
					
						
						|  | continue | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  | scheduler.set_timesteps(self.default_num_inference_steps) | 
					
						
						|  |  | 
					
						
						|  | sample = self.dummy_sample.to(torch_device) | 
					
						
						|  | if scheduler_class == CMStochasticIterativeScheduler: | 
					
						
						|  |  | 
					
						
						|  | scaled_sigma_max = scheduler.sigma_to_t(scheduler.config.sigma_max) | 
					
						
						|  | scaled_sample = scheduler.scale_model_input(sample, scaled_sigma_max) | 
					
						
						|  | elif scheduler_class == EDMEulerScheduler: | 
					
						
						|  | scaled_sample = scheduler.scale_model_input(sample, scheduler.timesteps[-1]) | 
					
						
						|  | else: | 
					
						
						|  | scaled_sample = scheduler.scale_model_input(sample, 0.0) | 
					
						
						|  | self.assertEqual(sample.shape, scaled_sample.shape) | 
					
						
						|  |  | 
					
						
						|  | noise = torch.randn_like(scaled_sample).to(torch_device) | 
					
						
						|  | t = scheduler.timesteps[5][None] | 
					
						
						|  | noised = scheduler.add_noise(scaled_sample, noise, t) | 
					
						
						|  | self.assertEqual(noised.shape, scaled_sample.shape) | 
					
						
						|  |  | 
					
						
						|  | def test_deprecated_kwargs(self): | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | has_kwarg_in_model_class = "kwargs" in inspect.signature(scheduler_class.__init__).parameters | 
					
						
						|  | has_deprecated_kwarg = len(scheduler_class._deprecated_kwargs) > 0 | 
					
						
						|  |  | 
					
						
						|  | if has_kwarg_in_model_class and not has_deprecated_kwarg: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{scheduler_class} has `**kwargs` in its __init__ method but has not defined any deprecated" | 
					
						
						|  | " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either remove `**kwargs` if" | 
					
						
						|  | " there are no deprecated arguments or add the deprecated argument with `_deprecated_kwargs =" | 
					
						
						|  | " [<deprecated_argument>]`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | if not has_kwarg_in_model_class and has_deprecated_kwarg: | 
					
						
						|  | raise ValueError( | 
					
						
						|  | f"{scheduler_class} doesn't have `**kwargs` in its __init__ method but has defined deprecated" | 
					
						
						|  | " kwargs under the `_deprecated_kwargs` class attribute. Make sure to either add the `**kwargs`" | 
					
						
						|  | f" argument to {self.model_class}.__init__ if there are deprecated arguments or remove the" | 
					
						
						|  | " deprecated argument from `_deprecated_kwargs = [<deprecated_argument>]`" | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def test_trained_betas(self): | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | if scheduler_class in (VQDiffusionScheduler, CMStochasticIterativeScheduler): | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config, trained_betas=np.array([0.1, 0.3])) | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmpdirname: | 
					
						
						|  | scheduler.save_pretrained(tmpdirname) | 
					
						
						|  | new_scheduler = scheduler_class.from_pretrained(tmpdirname) | 
					
						
						|  |  | 
					
						
						|  | assert scheduler.betas.tolist() == new_scheduler.betas.tolist() | 
					
						
						|  |  | 
					
						
						|  | def test_getattr_is_correct(self): | 
					
						
						|  | for scheduler_class in self.scheduler_classes: | 
					
						
						|  | scheduler_config = self.get_scheduler_config() | 
					
						
						|  | scheduler = scheduler_class(**scheduler_config) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | scheduler.dummy_attribute = 5 | 
					
						
						|  | scheduler.register_to_config(test_attribute=5) | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger("diffusers.configuration_utils") | 
					
						
						|  |  | 
					
						
						|  | logger.setLevel(30) | 
					
						
						|  | with CaptureLogger(logger) as cap_logger: | 
					
						
						|  | assert hasattr(scheduler, "dummy_attribute") | 
					
						
						|  | assert getattr(scheduler, "dummy_attribute") == 5 | 
					
						
						|  | assert scheduler.dummy_attribute == 5 | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | assert cap_logger.out == "" | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger("diffusers.schedulers.scheduling_utils") | 
					
						
						|  |  | 
					
						
						|  | logger.setLevel(30) | 
					
						
						|  | with CaptureLogger(logger) as cap_logger: | 
					
						
						|  | assert hasattr(scheduler, "save_pretrained") | 
					
						
						|  | fn = scheduler.save_pretrained | 
					
						
						|  | fn_1 = getattr(scheduler, "save_pretrained") | 
					
						
						|  |  | 
					
						
						|  | assert fn == fn_1 | 
					
						
						|  |  | 
					
						
						|  | assert cap_logger.out == "" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with self.assertWarns(FutureWarning): | 
					
						
						|  | assert scheduler.test_attribute == 5 | 
					
						
						|  |  | 
					
						
						|  | with self.assertWarns(FutureWarning): | 
					
						
						|  | assert getattr(scheduler, "test_attribute") == 5 | 
					
						
						|  |  | 
					
						
						|  | with self.assertRaises(AttributeError) as error: | 
					
						
						|  | scheduler.does_not_exist | 
					
						
						|  |  | 
					
						
						|  | assert str(error.exception) == f"'{type(scheduler).__name__}' object has no attribute 'does_not_exist'" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @is_staging_test | 
					
						
						|  | class SchedulerPushToHubTester(unittest.TestCase): | 
					
						
						|  | identifier = uuid.uuid4() | 
					
						
						|  | repo_id = f"test-scheduler-{identifier}" | 
					
						
						|  | org_repo_id = f"valid_org/{repo_id}-org" | 
					
						
						|  |  | 
					
						
						|  | def test_push_to_hub(self): | 
					
						
						|  | scheduler = DDIMScheduler( | 
					
						
						|  | beta_start=0.00085, | 
					
						
						|  | beta_end=0.012, | 
					
						
						|  | beta_schedule="scaled_linear", | 
					
						
						|  | clip_sample=False, | 
					
						
						|  | set_alpha_to_one=False, | 
					
						
						|  | ) | 
					
						
						|  | scheduler.push_to_hub(self.repo_id, token=TOKEN) | 
					
						
						|  | scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}") | 
					
						
						|  |  | 
					
						
						|  | assert type(scheduler) == type(scheduler_loaded) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | delete_repo(token=TOKEN, repo_id=self.repo_id) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmp_dir: | 
					
						
						|  | scheduler.save_config(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN) | 
					
						
						|  |  | 
					
						
						|  | scheduler_loaded = DDIMScheduler.from_pretrained(f"{USER}/{self.repo_id}") | 
					
						
						|  |  | 
					
						
						|  | assert type(scheduler) == type(scheduler_loaded) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | delete_repo(token=TOKEN, repo_id=self.repo_id) | 
					
						
						|  |  | 
					
						
						|  | def test_push_to_hub_in_organization(self): | 
					
						
						|  | scheduler = DDIMScheduler( | 
					
						
						|  | beta_start=0.00085, | 
					
						
						|  | beta_end=0.012, | 
					
						
						|  | beta_schedule="scaled_linear", | 
					
						
						|  | clip_sample=False, | 
					
						
						|  | set_alpha_to_one=False, | 
					
						
						|  | ) | 
					
						
						|  | scheduler.push_to_hub(self.org_repo_id, token=TOKEN) | 
					
						
						|  | scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id) | 
					
						
						|  |  | 
					
						
						|  | assert type(scheduler) == type(scheduler_loaded) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | delete_repo(token=TOKEN, repo_id=self.org_repo_id) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | with tempfile.TemporaryDirectory() as tmp_dir: | 
					
						
						|  | scheduler.save_config(tmp_dir, repo_id=self.org_repo_id, push_to_hub=True, token=TOKEN) | 
					
						
						|  |  | 
					
						
						|  | scheduler_loaded = DDIMScheduler.from_pretrained(self.org_repo_id) | 
					
						
						|  |  | 
					
						
						|  | assert type(scheduler) == type(scheduler_loaded) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | delete_repo(token=TOKEN, repo_id=self.org_repo_id) | 
					
						
						|  |  |