diffusers-sdxl-controlnet
/
examples
/community
/pipeline_stable_diffusion_xl_controlnet_adapter_inpaint.py
| # Copyright 2024 Jake Babbidge, TencentARC and The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # ignore the entire file for precommit | |
| # type: ignore | |
| import inspect | |
| from collections.abc import Callable | |
| from typing import Any, Dict, List, Optional, Tuple, Union | |
| import numpy as np | |
| import PIL | |
| import torch | |
| import torch.nn.functional as F | |
| from transformers import ( | |
| CLIPTextModel, | |
| CLIPTextModelWithProjection, | |
| CLIPTokenizer, | |
| ) | |
| from diffusers import DiffusionPipeline | |
| from diffusers.image_processor import PipelineImageInput, VaeImageProcessor | |
| from diffusers.loaders import ( | |
| FromSingleFileMixin, | |
| LoraLoaderMixin, | |
| StableDiffusionXLLoraLoaderMixin, | |
| TextualInversionLoaderMixin, | |
| ) | |
| from diffusers.models import ( | |
| AutoencoderKL, | |
| ControlNetModel, | |
| MultiAdapter, | |
| T2IAdapter, | |
| UNet2DConditionModel, | |
| ) | |
| from diffusers.models.attention_processor import AttnProcessor2_0, XFormersAttnProcessor | |
| from diffusers.models.lora import adjust_lora_scale_text_encoder | |
| from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel | |
| from diffusers.pipelines.pipeline_utils import StableDiffusionMixin | |
| from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
| from diffusers.schedulers import KarrasDiffusionSchedulers | |
| from diffusers.utils import ( | |
| PIL_INTERPOLATION, | |
| USE_PEFT_BACKEND, | |
| logging, | |
| replace_example_docstring, | |
| scale_lora_layers, | |
| unscale_lora_layers, | |
| ) | |
| from diffusers.utils.torch_utils import is_compiled_module, randn_tensor | |
| logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
| EXAMPLE_DOC_STRING = """ | |
| Examples: | |
| ```py | |
| >>> import torch | |
| >>> from diffusers import DiffusionPipeline, T2IAdapter | |
| >>> from diffusers.utils import load_image | |
| >>> from PIL import Image | |
| >>> from controlnet_aux.midas import MidasDetector | |
| >>> adapter = T2IAdapter.from_pretrained( | |
| ... "TencentARC/t2i-adapter-sketch-sdxl-1.0", torch_dtype=torch.float16, variant="fp16" | |
| ... ).to("cuda") | |
| >>> controlnet = ControlNetModel.from_pretrained( | |
| ... "diffusers/controlnet-depth-sdxl-1.0", | |
| ... torch_dtype=torch.float16, | |
| ... variant="fp16", | |
| ... use_safetensors=True | |
| ... ).to("cuda") | |
| >>> pipe = DiffusionPipeline.from_pretrained( | |
| ... "diffusers/stable-diffusion-xl-1.0-inpainting-0.1", | |
| ... torch_dtype=torch.float16, | |
| ... variant="fp16", | |
| ... use_safetensors=True, | |
| ... custom_pipeline="stable_diffusion_xl_adapter_controlnet_inpaint", | |
| ... adapter=adapter, | |
| ... controlnet=controlnet, | |
| ... ).to("cuda") | |
| >>> prompt = "a tiger sitting on a park bench" | |
| >>> img_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo.png" | |
| >>> mask_url = "https://raw.githubusercontent.com/CompVis/latent-diffusion/main/data/inpainting_examples/overture-creations-5sI6fQgYIuo_mask.png" | |
| >>> image = load_image(img_url).resize((1024, 1024)) | |
| >>> mask_image = load_image(mask_url).resize((1024, 1024)) | |
| >>> midas_depth = MidasDetector.from_pretrained( | |
| ... "valhalla/t2iadapter-aux-models", filename="dpt_large_384.pt", model_type="dpt_large" | |
| ... ).to("cuda") | |
| >>> depth_image = midas_depth( | |
| ... image, detect_resolution=512, image_resolution=1024 | |
| ... ) | |
| >>> strength = 0.4 | |
| >>> generator = torch.manual_seed(42) | |
| >>> result_image = pipe( | |
| ... image=image, | |
| ... mask_image=mask, | |
| ... adapter_image=depth_image, | |
| ... control_image=depth_image, | |
| ... controlnet_conditioning_scale=strength, | |
| ... adapter_conditioning_scale=strength, | |
| ... strength=0.7, | |
| ... generator=generator, | |
| ... prompt=prompt, | |
| ... negative_prompt="extra digit, fewer digits, cropped, worst quality, low quality", | |
| ... num_inference_steps=50 | |
| ... ).images[0] | |
| ``` | |
| """ | |
| def _preprocess_adapter_image(image, height, width): | |
| if isinstance(image, torch.Tensor): | |
| return image | |
| elif isinstance(image, PIL.Image.Image): | |
| image = [image] | |
| if isinstance(image[0], PIL.Image.Image): | |
| image = [np.array(i.resize((width, height), resample=PIL_INTERPOLATION["lanczos"])) for i in image] | |
| image = [ | |
| i[None, ..., None] if i.ndim == 2 else i[None, ...] for i in image | |
| ] # expand [h, w] or [h, w, c] to [b, h, w, c] | |
| image = np.concatenate(image, axis=0) | |
| image = np.array(image).astype(np.float32) / 255.0 | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image) | |
| elif isinstance(image[0], torch.Tensor): | |
| if image[0].ndim == 3: | |
| image = torch.stack(image, dim=0) | |
| elif image[0].ndim == 4: | |
| image = torch.cat(image, dim=0) | |
| else: | |
| raise ValueError( | |
| f"Invalid image tensor! Expecting image tensor with 3 or 4 dimension, but recive: {image[0].ndim}" | |
| ) | |
| return image | |
| def mask_pil_to_torch(mask, height, width): | |
| # preprocess mask | |
| if isinstance(mask, Union[PIL.Image.Image, np.ndarray]): | |
| mask = [mask] | |
| if isinstance(mask, list) and isinstance(mask[0], PIL.Image.Image): | |
| mask = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in mask] | |
| mask = np.concatenate([np.array(m.convert("L"))[None, None, :] for m in mask], axis=0) | |
| mask = mask.astype(np.float32) / 255.0 | |
| elif isinstance(mask, list) and isinstance(mask[0], np.ndarray): | |
| mask = np.concatenate([m[None, None, :] for m in mask], axis=0) | |
| mask = torch.from_numpy(mask) | |
| return mask | |
| def prepare_mask_and_masked_image(image, mask, height, width, return_image: bool = False): | |
| """ | |
| Prepares a pair (image, mask) to be consumed by the Stable Diffusion pipeline. This means that those inputs will be | |
| converted to ``torch.Tensor`` with shapes ``batch x channels x height x width`` where ``channels`` is ``3`` for the | |
| ``image`` and ``1`` for the ``mask``. | |
| The ``image`` will be converted to ``torch.float32`` and normalized to be in ``[-1, 1]``. The ``mask`` will be | |
| binarized (``mask > 0.5``) and cast to ``torch.float32`` too. | |
| Args: | |
| image (Union[np.array, PIL.Image, torch.Tensor]): The image to inpaint. | |
| It can be a ``PIL.Image``, or a ``height x width x 3`` ``np.array`` or a ``channels x height x width`` | |
| ``torch.Tensor`` or a ``batch x channels x height x width`` ``torch.Tensor``. | |
| mask (_type_): The mask to apply to the image, i.e. regions to inpaint. | |
| It can be a ``PIL.Image``, or a ``height x width`` ``np.array`` or a ``1 x height x width`` | |
| ``torch.Tensor`` or a ``batch x 1 x height x width`` ``torch.Tensor``. | |
| Raises: | |
| ValueError: ``torch.Tensor`` images should be in the ``[-1, 1]`` range. ValueError: ``torch.Tensor`` mask | |
| should be in the ``[0, 1]`` range. ValueError: ``mask`` and ``image`` should have the same spatial dimensions. | |
| TypeError: ``mask`` is a ``torch.Tensor`` but ``image`` is not | |
| (ot the other way around). | |
| Returns: | |
| tuple[torch.Tensor]: The pair (mask, masked_image) as ``torch.Tensor`` with 4 | |
| dimensions: ``batch x channels x height x width``. | |
| """ | |
| # checkpoint. #TODO(Yiyi) - need to clean this up later | |
| if image is None: | |
| raise ValueError("`image` input cannot be undefined.") | |
| if mask is None: | |
| raise ValueError("`mask_image` input cannot be undefined.") | |
| if isinstance(image, torch.Tensor): | |
| if not isinstance(mask, torch.Tensor): | |
| mask = mask_pil_to_torch(mask, height, width) | |
| if image.ndim == 3: | |
| image = image.unsqueeze(0) | |
| # Batch and add channel dim for single mask | |
| if mask.ndim == 2: | |
| mask = mask.unsqueeze(0).unsqueeze(0) | |
| # Batch single mask or add channel dim | |
| if mask.ndim == 3: | |
| # Single batched mask, no channel dim or single mask not batched but channel dim | |
| if mask.shape[0] == 1: | |
| mask = mask.unsqueeze(0) | |
| # Batched masks no channel dim | |
| else: | |
| mask = mask.unsqueeze(1) | |
| assert image.ndim == 4 and mask.ndim == 4, "Image and Mask must have 4 dimensions" | |
| # assert image.shape[-2:] == mask.shape[-2:], "Image and Mask must have the same spatial dimensions" | |
| assert image.shape[0] == mask.shape[0], "Image and Mask must have the same batch size" | |
| # Check image is in [-1, 1] | |
| # if image.min() < -1 or image.max() > 1: | |
| # raise ValueError("Image should be in [-1, 1] range") | |
| # Check mask is in [0, 1] | |
| if mask.min() < 0 or mask.max() > 1: | |
| raise ValueError("Mask should be in [0, 1] range") | |
| # Binarize mask | |
| mask[mask < 0.5] = 0 | |
| mask[mask >= 0.5] = 1 | |
| # Image as float32 | |
| image = image.to(dtype=torch.float32) | |
| elif isinstance(mask, torch.Tensor): | |
| raise TypeError(f"`mask` is a torch.Tensor but `image` (type: {type(image)} is not") | |
| else: | |
| # preprocess image | |
| if isinstance(image, Union[PIL.Image.Image, np.ndarray]): | |
| image = [image] | |
| if isinstance(image, list) and isinstance(image[0], PIL.Image.Image): | |
| # resize all images w.r.t passed height an width | |
| image = [i.resize((width, height), resample=PIL.Image.LANCZOS) for i in image] | |
| image = [np.array(i.convert("RGB"))[None, :] for i in image] | |
| image = np.concatenate(image, axis=0) | |
| elif isinstance(image, list) and isinstance(image[0], np.ndarray): | |
| image = np.concatenate([i[None, :] for i in image], axis=0) | |
| image = image.transpose(0, 3, 1, 2) | |
| image = torch.from_numpy(image).to(dtype=torch.float32) / 127.5 - 1.0 | |
| mask = mask_pil_to_torch(mask, height, width) | |
| mask[mask < 0.5] = 0 | |
| mask[mask >= 0.5] = 1 | |
| if image.shape[1] == 4: | |
| # images are in latent space and thus can't | |
| # be masked set masked_image to None | |
| # we assume that the checkpoint is not an inpainting | |
| # checkpoint. #TODO(Yiyi) - need to clean this up later | |
| masked_image = None | |
| else: | |
| masked_image = image * (mask < 0.5) | |
| # n.b. ensure backwards compatibility as old function does not return image | |
| if return_image: | |
| return mask, masked_image, image | |
| return mask, masked_image | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
| def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
| """ | |
| Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
| Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). See Section 3.4 | |
| """ | |
| std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
| std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
| # rescale the results from guidance (fixes overexposure) | |
| noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
| # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
| noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
| return noise_cfg | |
| class StableDiffusionXLControlNetAdapterInpaintPipeline( | |
| DiffusionPipeline, StableDiffusionMixin, FromSingleFileMixin, LoraLoaderMixin | |
| ): | |
| r""" | |
| Pipeline for text-to-image generation using Stable Diffusion augmented with T2I-Adapter | |
| https://arxiv.org/abs/2302.08453 | |
| This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the | |
| library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.) | |
| Args: | |
| adapter ([`T2IAdapter`] or [`MultiAdapter`] or `List[T2IAdapter]`): | |
| Provides additional conditioning to the unet during the denoising process. If you set multiple Adapter as a | |
| list, the outputs from each Adapter are added together to create one combined additional conditioning. | |
| adapter_weights (`List[float]`, *optional*, defaults to None): | |
| List of floats representing the weight which will be multiply to each adapter's output before adding them | |
| together. | |
| vae ([`AutoencoderKL`]): | |
| Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations. | |
| text_encoder ([`CLIPTextModel`]): | |
| Frozen text-encoder. Stable Diffusion uses the text portion of | |
| [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically | |
| the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant. | |
| tokenizer (`CLIPTokenizer`): | |
| Tokenizer of class | |
| [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer). | |
| unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents. | |
| scheduler ([`SchedulerMixin`]): | |
| A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of | |
| [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`]. | |
| safety_checker ([`StableDiffusionSafetyChecker`]): | |
| Classification module that estimates whether generated images could be considered offensive or harmful. | |
| Please, refer to the [model card](https://huggingface.co/runwayml/stable-diffusion-v1-5) for details. | |
| feature_extractor ([`CLIPFeatureExtractor`]): | |
| Model that extracts features from generated images to be used as inputs for the `safety_checker`. | |
| requires_aesthetics_score (`bool`, *optional*, defaults to `"False"`): | |
| Whether the `unet` requires a aesthetic_score condition to be passed during inference. Also see the config | |
| of `stabilityai/stable-diffusion-xl-refiner-1-0`. | |
| force_zeros_for_empty_prompt (`bool`, *optional*, defaults to `"True"`): | |
| Whether the negative prompt embeddings shall be forced to always be set to 0. Also see the config of | |
| `stabilityai/stable-diffusion-xl-base-1-0`. | |
| """ | |
| def __init__( | |
| self, | |
| vae: AutoencoderKL, | |
| text_encoder: CLIPTextModel, | |
| text_encoder_2: CLIPTextModelWithProjection, | |
| tokenizer: CLIPTokenizer, | |
| tokenizer_2: CLIPTokenizer, | |
| unet: UNet2DConditionModel, | |
| adapter: Union[T2IAdapter, MultiAdapter], | |
| controlnet: Union[ControlNetModel, MultiControlNetModel], | |
| scheduler: KarrasDiffusionSchedulers, | |
| requires_aesthetics_score: bool = False, | |
| force_zeros_for_empty_prompt: bool = True, | |
| ): | |
| super().__init__() | |
| if isinstance(controlnet, (list, tuple)): | |
| controlnet = MultiControlNetModel(controlnet) | |
| self.register_modules( | |
| vae=vae, | |
| text_encoder=text_encoder, | |
| text_encoder_2=text_encoder_2, | |
| tokenizer=tokenizer, | |
| tokenizer_2=tokenizer_2, | |
| unet=unet, | |
| adapter=adapter, | |
| controlnet=controlnet, | |
| scheduler=scheduler, | |
| ) | |
| self.register_to_config(force_zeros_for_empty_prompt=force_zeros_for_empty_prompt) | |
| self.register_to_config(requires_aesthetics_score=requires_aesthetics_score) | |
| self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) | |
| self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor) | |
| self.control_image_processor = VaeImageProcessor( | |
| vae_scale_factor=self.vae_scale_factor, do_convert_rgb=True, do_normalize=False | |
| ) | |
| self.default_sample_size = self.unet.config.sample_size | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.encode_prompt | |
| def encode_prompt( | |
| self, | |
| prompt: str, | |
| prompt_2: Optional[str] = None, | |
| device: Optional[torch.device] = None, | |
| num_images_per_prompt: int = 1, | |
| do_classifier_free_guidance: bool = True, | |
| negative_prompt: Optional[str] = None, | |
| negative_prompt_2: Optional[str] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| lora_scale: Optional[float] = None, | |
| clip_skip: Optional[int] = None, | |
| ): | |
| r""" | |
| Encodes the prompt into text encoder hidden states. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| prompt to be encoded | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| device: (`torch.device`): | |
| torch device | |
| num_images_per_prompt (`int`): | |
| number of images that should be generated per prompt | |
| do_classifier_free_guidance (`bool`): | |
| whether to use classifier free guidance or not | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| lora_scale (`float`, *optional*): | |
| A lora scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded. | |
| clip_skip (`int`, *optional*): | |
| Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that | |
| the output of the pre-final layer will be used for computing the prompt embeddings. | |
| """ | |
| device = device or self._execution_device | |
| # set lora scale so that monkey patched LoRA | |
| # function of text encoder can correctly access it | |
| if lora_scale is not None and isinstance(self, StableDiffusionXLLoraLoaderMixin): | |
| self._lora_scale = lora_scale | |
| # dynamically adjust the LoRA scale | |
| if self.text_encoder is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if not USE_PEFT_BACKEND: | |
| adjust_lora_scale_text_encoder(self.text_encoder_2, lora_scale) | |
| else: | |
| scale_lora_layers(self.text_encoder_2, lora_scale) | |
| prompt = [prompt] if isinstance(prompt, str) else prompt | |
| if prompt is not None: | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| # Define tokenizers and text encoders | |
| tokenizers = [self.tokenizer, self.tokenizer_2] if self.tokenizer is not None else [self.tokenizer_2] | |
| text_encoders = ( | |
| [self.text_encoder, self.text_encoder_2] if self.text_encoder is not None else [self.text_encoder_2] | |
| ) | |
| if prompt_embeds is None: | |
| prompt_2 = prompt_2 or prompt | |
| prompt_2 = [prompt_2] if isinstance(prompt_2, str) else prompt_2 | |
| # textual inversion: process multi-vector tokens if necessary | |
| prompt_embeds_list = [] | |
| prompts = [prompt, prompt_2] | |
| for prompt, tokenizer, text_encoder in zip(prompts, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| prompt = self.maybe_convert_prompt(prompt, tokenizer) | |
| text_inputs = tokenizer( | |
| prompt, | |
| padding="max_length", | |
| max_length=tokenizer.model_max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| text_input_ids = text_inputs.input_ids | |
| untruncated_ids = tokenizer(prompt, padding="longest", return_tensors="pt").input_ids | |
| if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal( | |
| text_input_ids, untruncated_ids | |
| ): | |
| removed_text = tokenizer.batch_decode(untruncated_ids[:, tokenizer.model_max_length - 1 : -1]) | |
| logger.warning( | |
| "The following part of your input was truncated because CLIP can only handle sequences up to" | |
| f" {tokenizer.model_max_length} tokens: {removed_text}" | |
| ) | |
| prompt_embeds = text_encoder(text_input_ids.to(device), output_hidden_states=True) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| pooled_prompt_embeds = prompt_embeds[0] | |
| if clip_skip is None: | |
| prompt_embeds = prompt_embeds.hidden_states[-2] | |
| else: | |
| # "2" because SDXL always indexes from the penultimate layer. | |
| prompt_embeds = prompt_embeds.hidden_states[-(clip_skip + 2)] | |
| prompt_embeds_list.append(prompt_embeds) | |
| prompt_embeds = torch.concat(prompt_embeds_list, dim=-1) | |
| # get unconditional embeddings for classifier free guidance | |
| zero_out_negative_prompt = negative_prompt is None and self.config.force_zeros_for_empty_prompt | |
| if do_classifier_free_guidance and negative_prompt_embeds is None and zero_out_negative_prompt: | |
| negative_prompt_embeds = torch.zeros_like(prompt_embeds) | |
| negative_pooled_prompt_embeds = torch.zeros_like(pooled_prompt_embeds) | |
| elif do_classifier_free_guidance and negative_prompt_embeds is None: | |
| negative_prompt = negative_prompt or "" | |
| negative_prompt_2 = negative_prompt_2 or negative_prompt | |
| # normalize str to list | |
| negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt | |
| negative_prompt_2 = ( | |
| batch_size * [negative_prompt_2] if isinstance(negative_prompt_2, str) else negative_prompt_2 | |
| ) | |
| uncond_tokens: List[str] | |
| if prompt is not None and type(prompt) is not type(negative_prompt): | |
| raise TypeError( | |
| f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !=" | |
| f" {type(prompt)}." | |
| ) | |
| elif batch_size != len(negative_prompt): | |
| raise ValueError( | |
| f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:" | |
| f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches" | |
| " the batch size of `prompt`." | |
| ) | |
| else: | |
| uncond_tokens = [negative_prompt, negative_prompt_2] | |
| negative_prompt_embeds_list = [] | |
| for negative_prompt, tokenizer, text_encoder in zip(uncond_tokens, tokenizers, text_encoders): | |
| if isinstance(self, TextualInversionLoaderMixin): | |
| negative_prompt = self.maybe_convert_prompt(negative_prompt, tokenizer) | |
| max_length = prompt_embeds.shape[1] | |
| uncond_input = tokenizer( | |
| negative_prompt, | |
| padding="max_length", | |
| max_length=max_length, | |
| truncation=True, | |
| return_tensors="pt", | |
| ) | |
| negative_prompt_embeds = text_encoder( | |
| uncond_input.input_ids.to(device), | |
| output_hidden_states=True, | |
| ) | |
| # We are only ALWAYS interested in the pooled output of the final text encoder | |
| negative_pooled_prompt_embeds = negative_prompt_embeds[0] | |
| negative_prompt_embeds = negative_prompt_embeds.hidden_states[-2] | |
| negative_prompt_embeds_list.append(negative_prompt_embeds) | |
| negative_prompt_embeds = torch.concat(negative_prompt_embeds_list, dim=-1) | |
| if self.text_encoder_2 is not None: | |
| prompt_embeds = prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| else: | |
| prompt_embeds = prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| bs_embed, seq_len, _ = prompt_embeds.shape | |
| # duplicate text embeddings for each generation per prompt, using mps friendly method | |
| prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1) | |
| if do_classifier_free_guidance: | |
| # duplicate unconditional embeddings for each generation per prompt, using mps friendly method | |
| seq_len = negative_prompt_embeds.shape[1] | |
| if self.text_encoder_2 is not None: | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.text_encoder_2.dtype, device=device) | |
| else: | |
| negative_prompt_embeds = negative_prompt_embeds.to(dtype=self.unet.dtype, device=device) | |
| negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1) | |
| negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1) | |
| pooled_prompt_embeds = pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if do_classifier_free_guidance: | |
| negative_pooled_prompt_embeds = negative_pooled_prompt_embeds.repeat(1, num_images_per_prompt).view( | |
| bs_embed * num_images_per_prompt, -1 | |
| ) | |
| if self.text_encoder is not None: | |
| if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder, lora_scale) | |
| if self.text_encoder_2 is not None: | |
| if isinstance(self, StableDiffusionXLLoraLoaderMixin) and USE_PEFT_BACKEND: | |
| # Retrieve the original scale by scaling back the LoRA layers | |
| unscale_lora_layers(self.text_encoder_2, lora_scale) | |
| return prompt_embeds, negative_prompt_embeds, pooled_prompt_embeds, negative_pooled_prompt_embeds | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.StableDiffusionPipeline.prepare_extra_step_kwargs | |
| def prepare_extra_step_kwargs(self, generator, eta): | |
| # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature | |
| # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers. | |
| # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502 | |
| # and should be between [0, 1] | |
| accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| extra_step_kwargs = {} | |
| if accepts_eta: | |
| extra_step_kwargs["eta"] = eta | |
| # check if the scheduler accepts generator | |
| accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys()) | |
| if accepts_generator: | |
| extra_step_kwargs["generator"] = generator | |
| return extra_step_kwargs | |
| # Copied from diffusers.pipelines.controlnet.pipeline_controlnet.StableDiffusionControlNetPipeline.check_image | |
| def check_image(self, image, prompt, prompt_embeds): | |
| image_is_pil = isinstance(image, PIL.Image.Image) | |
| image_is_tensor = isinstance(image, torch.Tensor) | |
| image_is_np = isinstance(image, np.ndarray) | |
| image_is_pil_list = isinstance(image, list) and isinstance(image[0], PIL.Image.Image) | |
| image_is_tensor_list = isinstance(image, list) and isinstance(image[0], torch.Tensor) | |
| image_is_np_list = isinstance(image, list) and isinstance(image[0], np.ndarray) | |
| if ( | |
| not image_is_pil | |
| and not image_is_tensor | |
| and not image_is_np | |
| and not image_is_pil_list | |
| and not image_is_tensor_list | |
| and not image_is_np_list | |
| ): | |
| raise TypeError( | |
| f"image must be passed and be one of PIL image, numpy array, torch tensor, list of PIL images, list of numpy arrays or list of torch tensors, but is {type(image)}" | |
| ) | |
| if image_is_pil: | |
| image_batch_size = 1 | |
| else: | |
| image_batch_size = len(image) | |
| if prompt is not None and isinstance(prompt, str): | |
| prompt_batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| prompt_batch_size = len(prompt) | |
| elif prompt_embeds is not None: | |
| prompt_batch_size = prompt_embeds.shape[0] | |
| if image_batch_size != 1 and image_batch_size != prompt_batch_size: | |
| raise ValueError( | |
| f"If image batch size is not 1, image batch size must be same as prompt batch size. image batch size: {image_batch_size}, prompt batch size: {prompt_batch_size}" | |
| ) | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl.StableDiffusionXLPipeline.check_inputs | |
| def check_inputs( | |
| self, | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=None, | |
| negative_prompt_2=None, | |
| prompt_embeds=None, | |
| negative_prompt_embeds=None, | |
| pooled_prompt_embeds=None, | |
| negative_pooled_prompt_embeds=None, | |
| callback_on_step_end_tensor_inputs=None, | |
| ): | |
| if height % 8 != 0 or width % 8 != 0: | |
| raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.") | |
| if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0): | |
| raise ValueError( | |
| f"`callback_steps` has to be a positive integer but is {callback_steps} of type" | |
| f" {type(callback_steps)}." | |
| ) | |
| if callback_on_step_end_tensor_inputs is not None and not all( | |
| k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs | |
| ): | |
| raise ValueError( | |
| f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}" | |
| ) | |
| if prompt is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt_2 is not None and prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `prompt_2`: {prompt_2} and `prompt_embeds`: {prompt_embeds}. Please make sure to" | |
| " only forward one of the two." | |
| ) | |
| elif prompt is None and prompt_embeds is None: | |
| raise ValueError( | |
| "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined." | |
| ) | |
| elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)): | |
| raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}") | |
| elif prompt_2 is not None and (not isinstance(prompt_2, str) and not isinstance(prompt_2, list)): | |
| raise ValueError(f"`prompt_2` has to be of type `str` or `list` but is {type(prompt_2)}") | |
| if negative_prompt is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| elif negative_prompt_2 is not None and negative_prompt_embeds is not None: | |
| raise ValueError( | |
| f"Cannot forward both `negative_prompt_2`: {negative_prompt_2} and `negative_prompt_embeds`:" | |
| f" {negative_prompt_embeds}. Please make sure to only forward one of the two." | |
| ) | |
| if prompt_embeds is not None and negative_prompt_embeds is not None: | |
| if prompt_embeds.shape != negative_prompt_embeds.shape: | |
| raise ValueError( | |
| "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but" | |
| f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`" | |
| f" {negative_prompt_embeds.shape}." | |
| ) | |
| if prompt_embeds is not None and pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `prompt_embeds` are provided, `pooled_prompt_embeds` also have to be passed. Make sure to generate `pooled_prompt_embeds` from the same text encoder that was used to generate `prompt_embeds`." | |
| ) | |
| if negative_prompt_embeds is not None and negative_pooled_prompt_embeds is None: | |
| raise ValueError( | |
| "If `negative_prompt_embeds` are provided, `negative_pooled_prompt_embeds` also have to be passed. Make sure to generate `negative_pooled_prompt_embeds` from the same text encoder that was used to generate `negative_prompt_embeds`." | |
| ) | |
| def check_conditions( | |
| self, | |
| prompt, | |
| prompt_embeds, | |
| adapter_image, | |
| control_image, | |
| adapter_conditioning_scale, | |
| controlnet_conditioning_scale, | |
| control_guidance_start, | |
| control_guidance_end, | |
| ): | |
| # controlnet checks | |
| if not isinstance(control_guidance_start, (tuple, list)): | |
| control_guidance_start = [control_guidance_start] | |
| if not isinstance(control_guidance_end, (tuple, list)): | |
| control_guidance_end = [control_guidance_end] | |
| if len(control_guidance_start) != len(control_guidance_end): | |
| raise ValueError( | |
| f"`control_guidance_start` has {len(control_guidance_start)} elements, but `control_guidance_end` has {len(control_guidance_end)} elements. Make sure to provide the same number of elements to each list." | |
| ) | |
| if isinstance(self.controlnet, MultiControlNetModel): | |
| if len(control_guidance_start) != len(self.controlnet.nets): | |
| raise ValueError( | |
| f"`control_guidance_start`: {control_guidance_start} has {len(control_guidance_start)} elements but there are {len(self.controlnet.nets)} controlnets available. Make sure to provide {len(self.controlnet.nets)}." | |
| ) | |
| for start, end in zip(control_guidance_start, control_guidance_end): | |
| if start >= end: | |
| raise ValueError( | |
| f"control guidance start: {start} cannot be larger or equal to control guidance end: {end}." | |
| ) | |
| if start < 0.0: | |
| raise ValueError(f"control guidance start: {start} can't be smaller than 0.") | |
| if end > 1.0: | |
| raise ValueError(f"control guidance end: {end} can't be larger than 1.0.") | |
| # Check controlnet `image` | |
| is_compiled = hasattr(F, "scaled_dot_product_attention") and isinstance( | |
| self.controlnet, torch._dynamo.eval_frame.OptimizedModule | |
| ) | |
| if ( | |
| isinstance(self.controlnet, ControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
| ): | |
| self.check_image(control_image, prompt, prompt_embeds) | |
| elif ( | |
| isinstance(self.controlnet, MultiControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
| ): | |
| if not isinstance(control_image, list): | |
| raise TypeError("For multiple controlnets: `control_image` must be type `list`") | |
| # When `image` is a nested list: | |
| # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) | |
| elif any(isinstance(i, list) for i in control_image): | |
| raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
| elif len(control_image) != len(self.controlnet.nets): | |
| raise ValueError( | |
| f"For multiple controlnets: `image` must have the same length as the number of controlnets, but got {len(control_image)} images and {len(self.controlnet.nets)} ControlNets." | |
| ) | |
| for image_ in control_image: | |
| self.check_image(image_, prompt, prompt_embeds) | |
| else: | |
| assert False | |
| # Check `controlnet_conditioning_scale` | |
| if ( | |
| isinstance(self.controlnet, ControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, ControlNetModel) | |
| ): | |
| if not isinstance(controlnet_conditioning_scale, float): | |
| raise TypeError("For single controlnet: `controlnet_conditioning_scale` must be type `float`.") | |
| elif ( | |
| isinstance(self.controlnet, MultiControlNetModel) | |
| or is_compiled | |
| and isinstance(self.controlnet._orig_mod, MultiControlNetModel) | |
| ): | |
| if isinstance(controlnet_conditioning_scale, list): | |
| if any(isinstance(i, list) for i in controlnet_conditioning_scale): | |
| raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
| elif isinstance(controlnet_conditioning_scale, list) and len(controlnet_conditioning_scale) != len( | |
| self.controlnet.nets | |
| ): | |
| raise ValueError( | |
| "For multiple controlnets: When `controlnet_conditioning_scale` is specified as `list`, it must have" | |
| " the same length as the number of controlnets" | |
| ) | |
| else: | |
| assert False | |
| # adapter checks | |
| if isinstance(self.adapter, T2IAdapter) or is_compiled and isinstance(self.adapter._orig_mod, T2IAdapter): | |
| self.check_image(adapter_image, prompt, prompt_embeds) | |
| elif ( | |
| isinstance(self.adapter, MultiAdapter) or is_compiled and isinstance(self.adapter._orig_mod, MultiAdapter) | |
| ): | |
| if not isinstance(adapter_image, list): | |
| raise TypeError("For multiple adapters: `adapter_image` must be type `list`") | |
| # When `image` is a nested list: | |
| # (e.g. [[canny_image_1, pose_image_1], [canny_image_2, pose_image_2]]) | |
| elif any(isinstance(i, list) for i in adapter_image): | |
| raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
| elif len(adapter_image) != len(self.adapter.adapters): | |
| raise ValueError( | |
| f"For multiple adapters: `image` must have the same length as the number of adapters, but got {len(adapter_image)} images and {len(self.adapters.nets)} Adapters." | |
| ) | |
| for image_ in adapter_image: | |
| self.check_image(image_, prompt, prompt_embeds) | |
| else: | |
| assert False | |
| # Check `adapter_conditioning_scale` | |
| if isinstance(self.adapter, T2IAdapter) or is_compiled and isinstance(self.adapter._orig_mod, T2IAdapter): | |
| if not isinstance(adapter_conditioning_scale, float): | |
| raise TypeError("For single adapter: `adapter_conditioning_scale` must be type `float`.") | |
| elif ( | |
| isinstance(self.adapter, MultiAdapter) or is_compiled and isinstance(self.adapter._orig_mod, MultiAdapter) | |
| ): | |
| if isinstance(adapter_conditioning_scale, list): | |
| if any(isinstance(i, list) for i in adapter_conditioning_scale): | |
| raise ValueError("A single batch of multiple conditionings are supported at the moment.") | |
| elif isinstance(adapter_conditioning_scale, list) and len(adapter_conditioning_scale) != len( | |
| self.adapter.adapters | |
| ): | |
| raise ValueError( | |
| "For multiple adapters: When `adapter_conditioning_scale` is specified as `list`, it must have" | |
| " the same length as the number of adapters" | |
| ) | |
| else: | |
| assert False | |
| def prepare_latents( | |
| self, | |
| batch_size, | |
| num_channels_latents, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| latents=None, | |
| image=None, | |
| timestep=None, | |
| is_strength_max=True, | |
| add_noise=True, | |
| return_noise=False, | |
| return_image_latents=False, | |
| ): | |
| shape = ( | |
| batch_size, | |
| num_channels_latents, | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ) | |
| if isinstance(generator, list) and len(generator) != batch_size: | |
| raise ValueError( | |
| f"You have passed a list of generators of length {len(generator)}, but requested an effective batch" | |
| f" size of {batch_size}. Make sure the batch size matches the length of the generators." | |
| ) | |
| if (image is None or timestep is None) and not is_strength_max: | |
| raise ValueError( | |
| "Since strength < 1. initial latents are to be initialised as a combination of Image + Noise." | |
| "However, either the image or the noise timestep has not been provided." | |
| ) | |
| if image.shape[1] == 4: | |
| image_latents = image.to(device=device, dtype=dtype) | |
| elif return_image_latents or (latents is None and not is_strength_max): | |
| image = image.to(device=device, dtype=dtype) | |
| image_latents = self._encode_vae_image(image=image, generator=generator) | |
| image_latents = image_latents.repeat(batch_size // image_latents.shape[0], 1, 1, 1) | |
| if latents is None and add_noise: | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| # if strength is 1. then initialise the latents to noise, else initial to image + noise | |
| latents = noise if is_strength_max else self.scheduler.add_noise(image_latents, noise, timestep) | |
| # if pure noise then scale the initial latents by the Scheduler's init sigma | |
| latents = latents * self.scheduler.init_noise_sigma if is_strength_max else latents | |
| elif add_noise: | |
| noise = latents.to(device) | |
| latents = noise * self.scheduler.init_noise_sigma | |
| else: | |
| noise = randn_tensor(shape, generator=generator, device=device, dtype=dtype) | |
| latents = image_latents.to(device) | |
| outputs = (latents,) | |
| if return_noise: | |
| outputs += (noise,) | |
| if return_image_latents: | |
| outputs += (image_latents,) | |
| return outputs | |
| def _encode_vae_image(self, image: torch.Tensor, generator: torch.Generator): | |
| dtype = image.dtype | |
| if self.vae.config.force_upcast: | |
| image = image.float() | |
| self.vae.to(dtype=torch.float32) | |
| if isinstance(generator, list): | |
| image_latents = [ | |
| self.vae.encode(image[i : i + 1]).latent_dist.sample(generator=generator[i]) | |
| for i in range(image.shape[0]) | |
| ] | |
| image_latents = torch.cat(image_latents, dim=0) | |
| else: | |
| image_latents = self.vae.encode(image).latent_dist.sample(generator=generator) | |
| if self.vae.config.force_upcast: | |
| self.vae.to(dtype) | |
| image_latents = image_latents.to(dtype) | |
| image_latents = self.vae.config.scaling_factor * image_latents | |
| return image_latents | |
| def prepare_mask_latents( | |
| self, | |
| mask, | |
| masked_image, | |
| batch_size, | |
| height, | |
| width, | |
| dtype, | |
| device, | |
| generator, | |
| do_classifier_free_guidance, | |
| ): | |
| # resize the mask to latents shape as we concatenate the mask to the latents | |
| # we do that before converting to dtype to avoid breaking in case we're using cpu_offload | |
| # and half precision | |
| mask = torch.nn.functional.interpolate( | |
| mask, | |
| size=( | |
| height // self.vae_scale_factor, | |
| width // self.vae_scale_factor, | |
| ), | |
| ) | |
| mask = mask.to(device=device, dtype=dtype) | |
| # duplicate mask and masked_image_latents for each generation per prompt, using mps friendly method | |
| if mask.shape[0] < batch_size: | |
| if not batch_size % mask.shape[0] == 0: | |
| raise ValueError( | |
| "The passed mask and the required batch size don't match. Masks are supposed to be duplicated to" | |
| f" a total batch size of {batch_size}, but {mask.shape[0]} masks were passed. Make sure the number" | |
| " of masks that you pass is divisible by the total requested batch size." | |
| ) | |
| mask = mask.repeat(batch_size // mask.shape[0], 1, 1, 1) | |
| mask = torch.cat([mask] * 2) if do_classifier_free_guidance else mask | |
| masked_image_latents = None | |
| if masked_image is not None: | |
| masked_image = masked_image.to(device=device, dtype=dtype) | |
| masked_image_latents = self._encode_vae_image(masked_image, generator=generator) | |
| if masked_image_latents.shape[0] < batch_size: | |
| if not batch_size % masked_image_latents.shape[0] == 0: | |
| raise ValueError( | |
| "The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
| f" to a total batch size of {batch_size}, but {masked_image_latents.shape[0]} images were passed." | |
| " Make sure the number of images that you pass is divisible by the total requested batch size." | |
| ) | |
| masked_image_latents = masked_image_latents.repeat( | |
| batch_size // masked_image_latents.shape[0], 1, 1, 1 | |
| ) | |
| masked_image_latents = ( | |
| torch.cat([masked_image_latents] * 2) if do_classifier_free_guidance else masked_image_latents | |
| ) | |
| # aligning device to prevent device errors when concating it with the latent model input | |
| masked_image_latents = masked_image_latents.to(device=device, dtype=dtype) | |
| return mask, masked_image_latents | |
| # Copied from diffusers.pipelines.stable_diffusion_xl.pipeline_stable_diffusion_xl_img2img.StableDiffusionXLImg2ImgPipeline.get_timesteps | |
| def get_timesteps(self, num_inference_steps, strength, device, denoising_start=None): | |
| # get the original timestep using init_timestep | |
| if denoising_start is None: | |
| init_timestep = min(int(num_inference_steps * strength), num_inference_steps) | |
| t_start = max(num_inference_steps - init_timestep, 0) | |
| else: | |
| t_start = 0 | |
| timesteps = self.scheduler.timesteps[t_start * self.scheduler.order :] | |
| # Strength is irrelevant if we directly request a timestep to start at; | |
| # that is, strength is determined by the denoising_start instead. | |
| if denoising_start is not None: | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (denoising_start * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = (timesteps < discrete_timestep_cutoff).sum().item() | |
| if self.scheduler.order == 2 and num_inference_steps % 2 == 0: | |
| # if the scheduler is a 2nd order scheduler we might have to do +1 | |
| # because `num_inference_steps` might be even given that every timestep | |
| # (except the highest one) is duplicated. If `num_inference_steps` is even it would | |
| # mean that we cut the timesteps in the middle of the denoising step | |
| # (between 1st and 2nd derivative) which leads to incorrect results. By adding 1 | |
| # we ensure that the denoising process always ends after the 2nd derivate step of the scheduler | |
| num_inference_steps = num_inference_steps + 1 | |
| # because t_n+1 >= t_n, we slice the timesteps starting from the end | |
| timesteps = timesteps[-num_inference_steps:] | |
| return timesteps, num_inference_steps | |
| return timesteps, num_inference_steps - t_start | |
| def _get_add_time_ids( | |
| self, | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| aesthetic_score, | |
| negative_aesthetic_score, | |
| dtype, | |
| text_encoder_projection_dim=None, | |
| ): | |
| if self.config.requires_aesthetics_score: | |
| add_time_ids = list(original_size + crops_coords_top_left + (aesthetic_score,)) | |
| add_neg_time_ids = list(original_size + crops_coords_top_left + (negative_aesthetic_score,)) | |
| else: | |
| add_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| add_neg_time_ids = list(original_size + crops_coords_top_left + target_size) | |
| passed_add_embed_dim = ( | |
| self.unet.config.addition_time_embed_dim * len(add_time_ids) + text_encoder_projection_dim | |
| ) | |
| expected_add_embed_dim = self.unet.add_embedding.linear_1.in_features | |
| if ( | |
| expected_add_embed_dim > passed_add_embed_dim | |
| and (expected_add_embed_dim - passed_add_embed_dim) == self.unet.config.addition_time_embed_dim | |
| ): | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to enable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=True)` to make sure `aesthetic_score` {aesthetic_score} and `negative_aesthetic_score` {negative_aesthetic_score} is correctly used by the model." | |
| ) | |
| elif ( | |
| expected_add_embed_dim < passed_add_embed_dim | |
| and (passed_add_embed_dim - expected_add_embed_dim) == self.unet.config.addition_time_embed_dim | |
| ): | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. Please make sure to disable `requires_aesthetics_score` with `pipe.register_to_config(requires_aesthetics_score=False)` to make sure `target_size` {target_size} is correctly used by the model." | |
| ) | |
| elif expected_add_embed_dim != passed_add_embed_dim: | |
| raise ValueError( | |
| f"Model expects an added time embedding vector of length {expected_add_embed_dim}, but a vector of {passed_add_embed_dim} was created. The model has an incorrect config. Please check `unet.config.time_embedding_type` and `text_encoder_2.config.projection_dim`." | |
| ) | |
| add_time_ids = torch.tensor([add_time_ids], dtype=dtype) | |
| add_neg_time_ids = torch.tensor([add_neg_time_ids], dtype=dtype) | |
| return add_time_ids, add_neg_time_ids | |
| # Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_upscale.StableDiffusionUpscalePipeline.upcast_vae | |
| def upcast_vae(self): | |
| dtype = self.vae.dtype | |
| self.vae.to(dtype=torch.float32) | |
| use_torch_2_0_or_xformers = isinstance( | |
| self.vae.decoder.mid_block.attentions[0].processor, | |
| (AttnProcessor2_0, XFormersAttnProcessor), | |
| ) | |
| # if xformers or torch_2_0 is used attention block does not need | |
| # to be in float32 which can save lots of memory | |
| if use_torch_2_0_or_xformers: | |
| self.vae.post_quant_conv.to(dtype) | |
| self.vae.decoder.conv_in.to(dtype) | |
| self.vae.decoder.mid_block.to(dtype) | |
| # Copied from diffusers.pipelines.t2i_adapter.pipeline_stable_diffusion_adapter.StableDiffusionAdapterPipeline._default_height_width | |
| def _default_height_width(self, height, width, image): | |
| # NOTE: It is possible that a list of images have different | |
| # dimensions for each image, so just checking the first image | |
| # is not _exactly_ correct, but it is simple. | |
| while isinstance(image, list): | |
| image = image[0] | |
| if height is None: | |
| if isinstance(image, PIL.Image.Image): | |
| height = image.height | |
| elif isinstance(image, torch.Tensor): | |
| height = image.shape[-2] | |
| # round down to nearest multiple of `self.adapter.downscale_factor` | |
| height = (height // self.adapter.downscale_factor) * self.adapter.downscale_factor | |
| if width is None: | |
| if isinstance(image, PIL.Image.Image): | |
| width = image.width | |
| elif isinstance(image, torch.Tensor): | |
| width = image.shape[-1] | |
| # round down to nearest multiple of `self.adapter.downscale_factor` | |
| width = (width // self.adapter.downscale_factor) * self.adapter.downscale_factor | |
| return height, width | |
| def prepare_control_image( | |
| self, | |
| image, | |
| width, | |
| height, | |
| batch_size, | |
| num_images_per_prompt, | |
| device, | |
| dtype, | |
| do_classifier_free_guidance=False, | |
| guess_mode=False, | |
| ): | |
| image = self.control_image_processor.preprocess(image, height=height, width=width).to(dtype=torch.float32) | |
| image_batch_size = image.shape[0] | |
| if image_batch_size == 1: | |
| repeat_by = batch_size | |
| else: | |
| # image batch size is the same as prompt batch size | |
| repeat_by = num_images_per_prompt | |
| image = image.repeat_interleave(repeat_by, dim=0) | |
| image = image.to(device=device, dtype=dtype) | |
| if do_classifier_free_guidance and not guess_mode: | |
| image = torch.cat([image] * 2) | |
| return image | |
| def __call__( | |
| self, | |
| prompt: Optional[Union[str, List[str]]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None, | |
| mask_image: Optional[Union[torch.Tensor, PIL.Image.Image]] = None, | |
| adapter_image: PipelineImageInput = None, | |
| control_image: PipelineImageInput = None, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| strength: float = 0.9999, | |
| num_inference_steps: int = 50, | |
| denoising_start: Optional[float] = None, | |
| denoising_end: Optional[float] = None, | |
| guidance_scale: float = 5.0, | |
| negative_prompt: Optional[Union[str, List[str]]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| num_images_per_prompt: Optional[int] = 1, | |
| eta: float = 0.0, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[Union[torch.Tensor]] = None, | |
| prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_prompt_embeds: Optional[torch.Tensor] = None, | |
| pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| callback: Optional[Callable[[int, int, torch.Tensor], None]] = None, | |
| callback_steps: int = 1, | |
| cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| guidance_rescale: float = 0.0, | |
| original_size: Optional[Tuple[int, int]] = None, | |
| crops_coords_top_left: Optional[Tuple[int, int]] = (0, 0), | |
| target_size: Optional[Tuple[int, int]] = None, | |
| adapter_conditioning_scale: Optional[Union[float, List[float]]] = 1.0, | |
| cond_tau: float = 1.0, | |
| aesthetic_score: float = 6.0, | |
| negative_aesthetic_score: float = 2.5, | |
| controlnet_conditioning_scale=1.0, | |
| guess_mode: bool = False, | |
| control_guidance_start=0.0, | |
| control_guidance_end=1.0, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| used in both text-encoders | |
| image (`PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch which will be inpainted, *i.e.* parts of the image will | |
| be masked out with `mask_image` and repainted according to `prompt`. | |
| mask_image (`PIL.Image.Image`): | |
| `Image`, or tensor representing an image batch, to mask `image`. White pixels in the mask will be | |
| repainted, while black pixels will be preserved. If `mask_image` is a PIL image, it will be converted | |
| to a single channel (luminance) before use. If it's a tensor, it should contain one color channel (L) | |
| instead of 3, so the expected shape would be `(B, H, W, 1)`. | |
| adapter_image (`torch.Tensor`, `PIL.Image.Image`, `List[torch.Tensor]` or `List[PIL.Image.Image]` or `List[List[PIL.Image.Image]]`): | |
| The Adapter input condition. Adapter uses this input condition to generate guidance to Unet. If the | |
| type is specified as `torch.Tensor`, it is passed to Adapter as is. PIL.Image.Image` can also be | |
| accepted as an image. The control image is automatically resized to fit the output image. | |
| control_image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, `List[np.ndarray]`,: | |
| `List[List[torch.Tensor]]`, `List[List[np.ndarray]]` or `List[List[PIL.Image.Image]]`): | |
| The ControlNet input condition to provide guidance to the `unet` for generation. If the type is | |
| specified as `torch.Tensor`, it is passed to ControlNet as is. `PIL.Image.Image` can also be | |
| accepted as an image. The dimensions of the output image defaults to `image`'s dimensions. If height | |
| and/or width are passed, `image` is resized accordingly. If multiple ControlNets are specified in | |
| `init`, images must be passed as a list such that each element of the list can be correctly batched for | |
| input to a single ControlNet. | |
| height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. | |
| width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. | |
| strength (`float`, *optional*, defaults to 1.0): | |
| Indicates extent to transform the reference `image`. Must be between 0 and 1. `image` is used as a | |
| starting point and more noise is added the higher the `strength`. The number of denoising steps depends | |
| on the amount of noise initially added. When `strength` is 1, added noise is maximum and the denoising | |
| process runs for the full number of iterations specified in `num_inference_steps`. A value of 1 | |
| essentially ignores `image`. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| denoising_start (`float`, *optional*): | |
| When specified, indicates the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| bypassed before it is initiated. Consequently, the initial part of the denoising process is skipped and | |
| it is assumed that the passed `image` is a partly denoised image. Note that when this is specified, | |
| strength will be ignored. The `denoising_start` parameter is particularly beneficial when this pipeline | |
| is integrated into a "Mixture of Denoisers" multi-pipeline setup, as detailed in [**Refining the Image | |
| Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output). | |
| denoising_end (`float`, *optional*): | |
| When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
| completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
| still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
| scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
| "Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
| Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
| guidance_scale (`float`, *optional*, defaults to 5.0): | |
| Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598). | |
| `guidance_scale` is defined as `w` of equation 2. of [Imagen | |
| Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale > | |
| 1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
| usually at the expense of lower image quality. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
| less than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| eta (`float`, *optional*, defaults to 0.0): | |
| Corresponds to parameter eta (η) in the DDIM paper: https://arxiv.org/abs/2010.02502. Only applies to | |
| [`schedulers.DDIMScheduler`], will be ignored for others. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.Tensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| negative_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionAdapterPipelineOutput`] | |
| instead of a plain tuple. | |
| callback (`Callable`, *optional*): | |
| A function that will be called every `callback_steps` steps during inference. The function will be | |
| called with the following arguments: `callback(step: int, timestep: int, latents: torch.Tensor)`. | |
| callback_steps (`int`, *optional*, defaults to 1): | |
| The frequency at which the `callback` function will be called. If not specified, the callback will be | |
| called at every step. | |
| cross_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| guidance_rescale (`float`, *optional*, defaults to 0.7): | |
| Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
| Flawed](https://arxiv.org/pdf/2305.08891.pdf) `guidance_scale` is defined as `φ` in equation 16. of | |
| [Common Diffusion Noise Schedules and Sample Steps are Flawed](https://arxiv.org/pdf/2305.08891.pdf). | |
| Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
| original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
| `original_size` defaults to `(width, height)` if not specified. Part of SDXL's micro-conditioning as | |
| explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
| `crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
| `crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
| `crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
| For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
| not specified it will default to `(width, height)`. Part of SDXL's micro-conditioning as explained in | |
| section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| controlnet_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The outputs of the controlnet are multiplied by `controlnet_conditioning_scale` before they are added to the | |
| residual in the original unet. If multiple adapters are specified in init, you can set the | |
| corresponding scale as a list. | |
| adapter_conditioning_scale (`float` or `List[float]`, *optional*, defaults to 1.0): | |
| The outputs of the adapter are multiplied by `adapter_conditioning_scale` before they are added to the | |
| residual in the original unet. If multiple adapters are specified in init, you can set the | |
| corresponding scale as a list. | |
| aesthetic_score (`float`, *optional*, defaults to 6.0): | |
| Used to simulate an aesthetic score of the generated image by influencing the positive text condition. | |
| Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
| negative_aesthetic_score (`float`, *optional*, defaults to 2.5): | |
| Part of SDXL's micro-conditioning as explained in section 2.2 of | |
| [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). Can be used to | |
| simulate an aesthetic score of the generated image by influencing the negative text condition. | |
| Examples: | |
| Returns: | |
| [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] or `tuple`: | |
| [`~pipelines.stable_diffusion.StableDiffusionAdapterPipelineOutput`] if `return_dict` is True, otherwise a | |
| `tuple`. When returning a tuple, the first element is a list with the generated images. | |
| """ | |
| # 0. Default height and width to unet | |
| controlnet = self.controlnet._orig_mod if is_compiled_module(self.controlnet) else self.controlnet | |
| adapter = self.adapter._orig_mod if is_compiled_module(self.adapter) else self.adapter | |
| height, width = self._default_height_width(height, width, adapter_image) | |
| device = self._execution_device | |
| if isinstance(adapter, MultiAdapter): | |
| adapter_input = [] | |
| for one_image in adapter_image: | |
| one_image = _preprocess_adapter_image(one_image, height, width) | |
| one_image = one_image.to(device=device, dtype=adapter.dtype) | |
| adapter_input.append(one_image) | |
| else: | |
| adapter_input = _preprocess_adapter_image(adapter_image, height, width) | |
| adapter_input = adapter_input.to(device=device, dtype=adapter.dtype) | |
| original_size = original_size or (height, width) | |
| target_size = target_size or (height, width) | |
| # 0.1 align format for control guidance | |
| if not isinstance(control_guidance_start, list) and isinstance(control_guidance_end, list): | |
| control_guidance_start = len(control_guidance_end) * [control_guidance_start] | |
| elif not isinstance(control_guidance_end, list) and isinstance(control_guidance_start, list): | |
| control_guidance_end = len(control_guidance_start) * [control_guidance_end] | |
| elif not isinstance(control_guidance_start, list) and not isinstance(control_guidance_end, list): | |
| mult = len(controlnet.nets) if isinstance(controlnet, MultiControlNetModel) else 1 | |
| control_guidance_start, control_guidance_end = ( | |
| mult * [control_guidance_start], | |
| mult * [control_guidance_end], | |
| ) | |
| if isinstance(controlnet, MultiControlNetModel) and isinstance(controlnet_conditioning_scale, float): | |
| controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(controlnet.nets) | |
| if isinstance(adapter, MultiAdapter) and isinstance(adapter_conditioning_scale, float): | |
| adapter_conditioning_scale = [adapter_conditioning_scale] * len(adapter.nets) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| callback_steps, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| ) | |
| self.check_conditions( | |
| prompt, | |
| prompt_embeds, | |
| adapter_image, | |
| control_image, | |
| adapter_conditioning_scale, | |
| controlnet_conditioning_scale, | |
| control_guidance_start, | |
| control_guidance_end, | |
| ) | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| # here `guidance_scale` is defined analog to the guidance weight `w` of equation (2) | |
| # of the Imagen paper: https://arxiv.org/pdf/2205.11487.pdf . `guidance_scale = 1` | |
| # corresponds to doing no classifier free guidance. | |
| do_classifier_free_guidance = guidance_scale > 1.0 | |
| # 3. Encode input prompt | |
| ( | |
| prompt_embeds, | |
| negative_prompt_embeds, | |
| pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| ) | |
| # 4. set timesteps | |
| def denoising_value_valid(dnv): | |
| return isinstance(dnv, float) and 0 < dnv < 1 | |
| self.scheduler.set_timesteps(num_inference_steps, device=device) | |
| timesteps, num_inference_steps = self.get_timesteps( | |
| num_inference_steps, | |
| strength, | |
| device, | |
| denoising_start=denoising_start if denoising_value_valid(denoising_start) else None, | |
| ) | |
| # check that number of inference steps is not < 1 - as this doesn't make sense | |
| if num_inference_steps < 1: | |
| raise ValueError( | |
| f"After adjusting the num_inference_steps by strength parameter: {strength}, the number of pipeline" | |
| f"steps is {num_inference_steps} which is < 1 and not appropriate for this pipeline." | |
| ) | |
| # at which timestep to set the initial noise (n.b. 50% if strength is 0.5) | |
| latent_timestep = timesteps[:1].repeat(batch_size * num_images_per_prompt) | |
| # create a boolean to check if the strength is set to 1. if so then initialise the latents with pure noise | |
| is_strength_max = strength == 1.0 | |
| # 5. Preprocess mask and image - resizes image and mask w.r.t height and width | |
| mask, masked_image, init_image = prepare_mask_and_masked_image( | |
| image, mask_image, height, width, return_image=True | |
| ) | |
| # 6. Prepare latent variables | |
| num_channels_latents = self.vae.config.latent_channels | |
| num_channels_unet = self.unet.config.in_channels | |
| return_image_latents = num_channels_unet == 4 | |
| add_noise = denoising_start is None | |
| latents_outputs = self.prepare_latents( | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| image=init_image, | |
| timestep=latent_timestep, | |
| is_strength_max=is_strength_max, | |
| add_noise=add_noise, | |
| return_noise=True, | |
| return_image_latents=return_image_latents, | |
| ) | |
| if return_image_latents: | |
| latents, noise, image_latents = latents_outputs | |
| else: | |
| latents, noise = latents_outputs | |
| # 7. Prepare mask latent variables | |
| mask, masked_image_latents = self.prepare_mask_latents( | |
| mask, | |
| masked_image, | |
| batch_size * num_images_per_prompt, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| do_classifier_free_guidance, | |
| ) | |
| # 8. Check that sizes of mask, masked image and latents match | |
| if num_channels_unet == 9: | |
| # default case for runwayml/stable-diffusion-inpainting | |
| num_channels_mask = mask.shape[1] | |
| num_channels_masked_image = masked_image_latents.shape[1] | |
| if num_channels_latents + num_channels_mask + num_channels_masked_image != self.unet.config.in_channels: | |
| raise ValueError( | |
| f"Incorrect configuration settings! The config of `pipeline.unet`: {self.unet.config} expects" | |
| f" {self.unet.config.in_channels} but received `num_channels_latents`: {num_channels_latents} +" | |
| f" `num_channels_mask`: {num_channels_mask} + `num_channels_masked_image`: {num_channels_masked_image}" | |
| f" = {num_channels_latents+num_channels_masked_image+num_channels_mask}. Please verify the config of" | |
| " `pipeline.unet` or your `mask_image` or `image` input." | |
| ) | |
| elif num_channels_unet != 4: | |
| raise ValueError( | |
| f"The unet {self.unet.__class__} should have either 4 or 9 input channels, not {self.unet.config.in_channels}." | |
| ) | |
| # 9. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
| extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
| # 10. Prepare added time ids & embeddings & adapter features | |
| if isinstance(adapter, MultiAdapter): | |
| adapter_state = adapter(adapter_input, adapter_conditioning_scale) | |
| for k, v in enumerate(adapter_state): | |
| adapter_state[k] = v | |
| else: | |
| adapter_state = adapter(adapter_input) | |
| for k, v in enumerate(adapter_state): | |
| adapter_state[k] = v * adapter_conditioning_scale | |
| if num_images_per_prompt > 1: | |
| for k, v in enumerate(adapter_state): | |
| adapter_state[k] = v.repeat(num_images_per_prompt, 1, 1, 1) | |
| if do_classifier_free_guidance: | |
| for k, v in enumerate(adapter_state): | |
| adapter_state[k] = torch.cat([v] * 2, dim=0) | |
| # 10.2 Prepare control images | |
| if isinstance(controlnet, ControlNetModel): | |
| control_image = self.prepare_control_image( | |
| image=control_image, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| elif isinstance(controlnet, MultiControlNetModel): | |
| control_images = [] | |
| for control_image_ in control_image: | |
| control_image_ = self.prepare_control_image( | |
| image=control_image_, | |
| width=width, | |
| height=height, | |
| batch_size=batch_size * num_images_per_prompt, | |
| num_images_per_prompt=num_images_per_prompt, | |
| device=device, | |
| dtype=controlnet.dtype, | |
| do_classifier_free_guidance=do_classifier_free_guidance, | |
| guess_mode=guess_mode, | |
| ) | |
| control_images.append(control_image_) | |
| control_image = control_images | |
| else: | |
| raise ValueError(f"{controlnet.__class__} is not supported.") | |
| # 8.2 Create tensor stating which controlnets to keep | |
| controlnet_keep = [] | |
| for i in range(len(timesteps)): | |
| keeps = [ | |
| 1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e) | |
| for s, e in zip(control_guidance_start, control_guidance_end) | |
| ] | |
| if isinstance(self.controlnet, MultiControlNetModel): | |
| controlnet_keep.append(keeps) | |
| else: | |
| controlnet_keep.append(keeps[0]) | |
| # ---------------------------------------------------------------- | |
| add_text_embeds = pooled_prompt_embeds | |
| if self.text_encoder_2 is None: | |
| text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
| else: | |
| text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
| add_time_ids, add_neg_time_ids = self._get_add_time_ids( | |
| original_size, | |
| crops_coords_top_left, | |
| target_size, | |
| aesthetic_score, | |
| negative_aesthetic_score, | |
| dtype=prompt_embeds.dtype, | |
| text_encoder_projection_dim=text_encoder_projection_dim, | |
| ) | |
| add_time_ids = add_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| if do_classifier_free_guidance: | |
| prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
| add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
| add_neg_time_ids = add_neg_time_ids.repeat(batch_size * num_images_per_prompt, 1) | |
| add_time_ids = torch.cat([add_neg_time_ids, add_time_ids], dim=0) | |
| prompt_embeds = prompt_embeds.to(device) | |
| add_text_embeds = add_text_embeds.to(device) | |
| add_time_ids = add_time_ids.to(device) | |
| # 11. Denoising loop | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| # 11.1 Apply denoising_end | |
| if ( | |
| denoising_end is not None | |
| and denoising_start is not None | |
| and denoising_value_valid(denoising_end) | |
| and denoising_value_valid(denoising_start) | |
| and denoising_start >= denoising_end | |
| ): | |
| raise ValueError( | |
| f"`denoising_start`: {denoising_start} cannot be larger than or equal to `denoising_end`: " | |
| + f" {denoising_end} when using type float." | |
| ) | |
| elif denoising_end is not None and denoising_value_valid(denoising_end): | |
| discrete_timestep_cutoff = int( | |
| round( | |
| self.scheduler.config.num_train_timesteps | |
| - (denoising_end * self.scheduler.config.num_train_timesteps) | |
| ) | |
| ) | |
| num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
| timesteps = timesteps[:num_inference_steps] | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
| if num_channels_unet == 9: | |
| latent_model_input = torch.cat([latent_model_input, mask, masked_image_latents], dim=1) | |
| # predict the noise residual | |
| added_cond_kwargs = { | |
| "text_embeds": add_text_embeds, | |
| "time_ids": add_time_ids, | |
| } | |
| if i < int(num_inference_steps * cond_tau): | |
| down_block_additional_residuals = [state.clone() for state in adapter_state] | |
| else: | |
| down_block_additional_residuals = None | |
| # ----------- ControlNet | |
| # expand the latents if we are doing classifier free guidance | |
| latent_model_input_controlnet = torch.cat([latents] * 2) if do_classifier_free_guidance else latents | |
| # concat latents, mask, masked_image_latents in the channel dimension | |
| latent_model_input_controlnet = self.scheduler.scale_model_input(latent_model_input_controlnet, t) | |
| # controlnet(s) inference | |
| if guess_mode and do_classifier_free_guidance: | |
| # Infer ControlNet only for the conditional batch. | |
| control_model_input = latents | |
| control_model_input = self.scheduler.scale_model_input(control_model_input, t) | |
| controlnet_prompt_embeds = prompt_embeds.chunk(2)[1] | |
| controlnet_added_cond_kwargs = { | |
| "text_embeds": add_text_embeds.chunk(2)[1], | |
| "time_ids": add_time_ids.chunk(2)[1], | |
| } | |
| else: | |
| control_model_input = latent_model_input_controlnet | |
| controlnet_prompt_embeds = prompt_embeds | |
| controlnet_added_cond_kwargs = added_cond_kwargs | |
| if isinstance(controlnet_keep[i], list): | |
| cond_scale = [c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])] | |
| else: | |
| controlnet_cond_scale = controlnet_conditioning_scale | |
| if isinstance(controlnet_cond_scale, list): | |
| controlnet_cond_scale = controlnet_cond_scale[0] | |
| cond_scale = controlnet_cond_scale * controlnet_keep[i] | |
| down_block_res_samples, mid_block_res_sample = self.controlnet( | |
| control_model_input, | |
| t, | |
| encoder_hidden_states=controlnet_prompt_embeds, | |
| controlnet_cond=control_image, | |
| conditioning_scale=cond_scale, | |
| guess_mode=guess_mode, | |
| added_cond_kwargs=controlnet_added_cond_kwargs, | |
| return_dict=False, | |
| ) | |
| noise_pred = self.unet( | |
| latent_model_input, | |
| t, | |
| encoder_hidden_states=prompt_embeds, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| added_cond_kwargs=added_cond_kwargs, | |
| return_dict=False, | |
| down_intrablock_additional_residuals=down_block_additional_residuals, # t2iadapter | |
| down_block_additional_residuals=down_block_res_samples, # controlnet | |
| mid_block_additional_residual=mid_block_res_sample, # controlnet | |
| )[0] | |
| # perform guidance | |
| if do_classifier_free_guidance: | |
| noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
| noise_pred = noise_pred_uncond + guidance_scale * (noise_pred_text - noise_pred_uncond) | |
| if do_classifier_free_guidance and guidance_rescale > 0.0: | |
| # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf | |
| noise_pred = rescale_noise_cfg( | |
| noise_pred, | |
| noise_pred_text, | |
| guidance_rescale=guidance_rescale, | |
| ) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents = self.scheduler.step( | |
| noise_pred, | |
| t, | |
| latents, | |
| **extra_step_kwargs, | |
| return_dict=False, | |
| )[0] | |
| if num_channels_unet == 4: | |
| init_latents_proper = image_latents | |
| if do_classifier_free_guidance: | |
| init_mask, _ = mask.chunk(2) | |
| else: | |
| init_mask = mask | |
| if i < len(timesteps) - 1: | |
| noise_timestep = timesteps[i + 1] | |
| init_latents_proper = self.scheduler.add_noise( | |
| init_latents_proper, | |
| noise, | |
| torch.tensor([noise_timestep]), | |
| ) | |
| latents = (1 - init_mask) * init_latents_proper + init_mask * latents | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| if callback is not None and i % callback_steps == 0: | |
| callback(i, t, latents) | |
| # make sure the VAE is in float32 mode, as it overflows in float16 | |
| if self.vae.dtype == torch.float16 and self.vae.config.force_upcast: | |
| self.upcast_vae() | |
| latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
| if output_type != "latent": | |
| image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False)[0] | |
| else: | |
| image = latents | |
| return StableDiffusionXLPipelineOutput(images=image) | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload last model to CPU | |
| if hasattr(self, "final_offload_hook") and self.final_offload_hook is not None: | |
| self.final_offload_hook.offload() | |
| if not return_dict: | |
| return (image,) | |
| return StableDiffusionXLPipelineOutput(images=image) | |