diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_video_diffusion
/test_stable_video_diffusion.py
| import gc | |
| import random | |
| import tempfile | |
| import unittest | |
| import numpy as np | |
| import torch | |
| from transformers import ( | |
| CLIPImageProcessor, | |
| CLIPVisionConfig, | |
| CLIPVisionModelWithProjection, | |
| ) | |
| import diffusers | |
| from diffusers import ( | |
| AutoencoderKLTemporalDecoder, | |
| EulerDiscreteScheduler, | |
| StableVideoDiffusionPipeline, | |
| UNetSpatioTemporalConditionModel, | |
| ) | |
| from diffusers.utils import is_accelerate_available, is_accelerate_version, load_image, logging | |
| from diffusers.utils.import_utils import is_xformers_available | |
| from diffusers.utils.testing_utils import ( | |
| CaptureLogger, | |
| enable_full_determinism, | |
| floats_tensor, | |
| numpy_cosine_similarity_distance, | |
| require_torch_gpu, | |
| slow, | |
| torch_device, | |
| ) | |
| from ..test_pipelines_common import PipelineTesterMixin | |
| enable_full_determinism() | |
| def to_np(tensor): | |
| if isinstance(tensor, torch.Tensor): | |
| tensor = tensor.detach().cpu().numpy() | |
| return tensor | |
| class StableVideoDiffusionPipelineFastTests(PipelineTesterMixin, unittest.TestCase): | |
| pipeline_class = StableVideoDiffusionPipeline | |
| params = frozenset(["image"]) | |
| batch_params = frozenset(["image", "generator"]) | |
| required_optional_params = frozenset( | |
| [ | |
| "num_inference_steps", | |
| "generator", | |
| "latents", | |
| "return_dict", | |
| ] | |
| ) | |
| def get_dummy_components(self): | |
| torch.manual_seed(0) | |
| unet = UNetSpatioTemporalConditionModel( | |
| block_out_channels=(32, 64), | |
| layers_per_block=2, | |
| sample_size=32, | |
| in_channels=8, | |
| out_channels=4, | |
| down_block_types=( | |
| "CrossAttnDownBlockSpatioTemporal", | |
| "DownBlockSpatioTemporal", | |
| ), | |
| up_block_types=("UpBlockSpatioTemporal", "CrossAttnUpBlockSpatioTemporal"), | |
| cross_attention_dim=32, | |
| num_attention_heads=8, | |
| projection_class_embeddings_input_dim=96, | |
| addition_time_embed_dim=32, | |
| ) | |
| scheduler = EulerDiscreteScheduler( | |
| beta_start=0.00085, | |
| beta_end=0.012, | |
| beta_schedule="scaled_linear", | |
| interpolation_type="linear", | |
| num_train_timesteps=1000, | |
| prediction_type="v_prediction", | |
| sigma_max=700.0, | |
| sigma_min=0.002, | |
| steps_offset=1, | |
| timestep_spacing="leading", | |
| timestep_type="continuous", | |
| trained_betas=None, | |
| use_karras_sigmas=True, | |
| ) | |
| torch.manual_seed(0) | |
| vae = AutoencoderKLTemporalDecoder( | |
| block_out_channels=[32, 64], | |
| in_channels=3, | |
| out_channels=3, | |
| down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | |
| latent_channels=4, | |
| ) | |
| torch.manual_seed(0) | |
| config = CLIPVisionConfig( | |
| hidden_size=32, | |
| projection_dim=32, | |
| num_hidden_layers=5, | |
| num_attention_heads=4, | |
| image_size=32, | |
| intermediate_size=37, | |
| patch_size=1, | |
| ) | |
| image_encoder = CLIPVisionModelWithProjection(config) | |
| torch.manual_seed(0) | |
| feature_extractor = CLIPImageProcessor(crop_size=32, size=32) | |
| components = { | |
| "unet": unet, | |
| "image_encoder": image_encoder, | |
| "scheduler": scheduler, | |
| "vae": vae, | |
| "feature_extractor": feature_extractor, | |
| } | |
| return components | |
| def get_dummy_inputs(self, device, seed=0): | |
| if str(device).startswith("mps"): | |
| generator = torch.manual_seed(seed) | |
| else: | |
| generator = torch.Generator(device="cpu").manual_seed(seed) | |
| image = floats_tensor((1, 3, 32, 32), rng=random.Random(0)).to(device) | |
| inputs = { | |
| "generator": generator, | |
| "image": image, | |
| "num_inference_steps": 2, | |
| "output_type": "pt", | |
| "min_guidance_scale": 1.0, | |
| "max_guidance_scale": 2.5, | |
| "num_frames": 2, | |
| "height": 32, | |
| "width": 32, | |
| } | |
| return inputs | |
| def test_attention_slicing_forward_pass(self): | |
| pass | |
| def test_inference_batch_single_identical( | |
| self, | |
| batch_size=2, | |
| expected_max_diff=1e-4, | |
| ): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for components in pipe.components.values(): | |
| if hasattr(components, "set_default_attn_processor"): | |
| components.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| # Reset generator in case it is has been used in self.get_dummy_inputs | |
| inputs["generator"] = torch.Generator("cpu").manual_seed(0) | |
| logger = logging.get_logger(pipe.__module__) | |
| logger.setLevel(level=diffusers.logging.FATAL) | |
| # batchify inputs | |
| batched_inputs = {} | |
| batched_inputs.update(inputs) | |
| batched_inputs["generator"] = [torch.Generator("cpu").manual_seed(0) for i in range(batch_size)] | |
| batched_inputs["image"] = torch.cat([inputs["image"]] * batch_size, dim=0) | |
| output = pipe(**inputs).frames | |
| output_batch = pipe(**batched_inputs).frames | |
| assert len(output_batch) == batch_size | |
| max_diff = np.abs(to_np(output_batch[0]) - to_np(output[0])).max() | |
| assert max_diff < expected_max_diff | |
| def test_inference_batch_consistent(self): | |
| pass | |
| def test_np_output_type(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["output_type"] = "np" | |
| output = pipe(**inputs).frames | |
| self.assertTrue(isinstance(output, np.ndarray)) | |
| self.assertEqual(len(output.shape), 5) | |
| def test_dict_tuple_outputs_equivalent(self, expected_max_difference=1e-4): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| output = pipe(**self.get_dummy_inputs(generator_device)).frames[0] | |
| output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0] | |
| max_diff = np.abs(to_np(output) - to_np(output_tuple)).max() | |
| self.assertLess(max_diff, expected_max_difference) | |
| def test_float16_inference(self, expected_max_diff=5e-2): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| components = self.get_dummy_components() | |
| pipe_fp16 = self.pipeline_class(**components) | |
| for component in pipe_fp16.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe_fp16.to(torch_device, torch.float16) | |
| pipe_fp16.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = pipe(**inputs).frames[0] | |
| fp16_inputs = self.get_dummy_inputs(torch_device) | |
| output_fp16 = pipe_fp16(**fp16_inputs).frames[0] | |
| max_diff = np.abs(to_np(output) - to_np(output_fp16)).max() | |
| self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.") | |
| def test_save_load_float16(self, expected_max_diff=1e-2): | |
| components = self.get_dummy_components() | |
| for name, module in components.items(): | |
| if hasattr(module, "half"): | |
| components[name] = module.to(torch_device).half() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = pipe(**inputs).frames[0] | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir) | |
| pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16) | |
| for component in pipe_loaded.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe_loaded.to(torch_device) | |
| pipe_loaded.set_progress_bar_config(disable=None) | |
| for name, component in pipe_loaded.components.items(): | |
| if hasattr(component, "dtype"): | |
| self.assertTrue( | |
| component.dtype == torch.float16, | |
| f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.", | |
| ) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_loaded = pipe_loaded(**inputs).frames[0] | |
| max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
| self.assertLess( | |
| max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading." | |
| ) | |
| def test_save_load_optional_components(self, expected_max_difference=1e-4): | |
| if not hasattr(self.pipeline_class, "_optional_components"): | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| # set all optional components to None | |
| for optional_component in pipe._optional_components: | |
| setattr(pipe, optional_component, None) | |
| generator_device = "cpu" | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output = pipe(**inputs).frames[0] | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir, safe_serialization=False) | |
| pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
| for component in pipe_loaded.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe_loaded.to(torch_device) | |
| pipe_loaded.set_progress_bar_config(disable=None) | |
| for optional_component in pipe._optional_components: | |
| self.assertTrue( | |
| getattr(pipe_loaded, optional_component) is None, | |
| f"`{optional_component}` did not stay set to None after loading.", | |
| ) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_loaded = pipe_loaded(**inputs).frames[0] | |
| max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
| self.assertLess(max_diff, expected_max_difference) | |
| def test_save_load_local(self, expected_max_difference=9e-4): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output = pipe(**inputs).frames[0] | |
| logger = logging.get_logger("diffusers.pipelines.pipeline_utils") | |
| logger.setLevel(diffusers.logging.INFO) | |
| with tempfile.TemporaryDirectory() as tmpdir: | |
| pipe.save_pretrained(tmpdir, safe_serialization=False) | |
| with CaptureLogger(logger) as cap_logger: | |
| pipe_loaded = self.pipeline_class.from_pretrained(tmpdir) | |
| for name in pipe_loaded.components.keys(): | |
| if name not in pipe_loaded._optional_components: | |
| assert name in str(cap_logger) | |
| pipe_loaded.to(torch_device) | |
| pipe_loaded.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_loaded = pipe_loaded(**inputs).frames[0] | |
| max_diff = np.abs(to_np(output) - to_np(output_loaded)).max() | |
| self.assertLess(max_diff, expected_max_difference) | |
| def test_to_device(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| pipe.to("cpu") | |
| model_devices = [ | |
| component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
| ] | |
| self.assertTrue(all(device == "cpu" for device in model_devices)) | |
| output_cpu = pipe(**self.get_dummy_inputs("cpu")).frames[0] | |
| self.assertTrue(np.isnan(output_cpu).sum() == 0) | |
| pipe.to("cuda") | |
| model_devices = [ | |
| component.device.type for component in pipe.components.values() if hasattr(component, "device") | |
| ] | |
| self.assertTrue(all(device == "cuda" for device in model_devices)) | |
| output_cuda = pipe(**self.get_dummy_inputs("cuda")).frames[0] | |
| self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) | |
| def test_to_dtype(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| pipe.set_progress_bar_config(disable=None) | |
| model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
| self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | |
| pipe.to(dtype=torch.float16) | |
| model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | |
| self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | |
| def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_without_offload = pipe(**inputs).frames[0] | |
| pipe.enable_sequential_cpu_offload() | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_offload = pipe(**inputs).frames[0] | |
| max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
| self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results") | |
| def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4): | |
| generator_device = "cpu" | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe = pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_without_offload = pipe(**inputs).frames[0] | |
| pipe.enable_model_cpu_offload() | |
| inputs = self.get_dummy_inputs(generator_device) | |
| output_with_offload = pipe(**inputs).frames[0] | |
| max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
| self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results") | |
| offloaded_modules = [ | |
| v | |
| for k, v in pipe.components.items() | |
| if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload | |
| ] | |
| ( | |
| self.assertTrue(all(v.device.type == "cpu" for v in offloaded_modules)), | |
| f"Not offloaded: {[v for v in offloaded_modules if v.device.type != 'cpu']}", | |
| ) | |
| def test_xformers_attention_forwardGenerator_pass(self): | |
| expected_max_diff = 9e-4 | |
| if not self.test_xformers_attention: | |
| return | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_without_offload = pipe(**inputs).frames[0] | |
| output_without_offload = ( | |
| output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload | |
| ) | |
| pipe.enable_xformers_memory_efficient_attention() | |
| inputs = self.get_dummy_inputs(torch_device) | |
| output_with_offload = pipe(**inputs).frames[0] | |
| output_with_offload = ( | |
| output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload | |
| ) | |
| max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | |
| self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results") | |
| def test_disable_cfg(self): | |
| components = self.get_dummy_components() | |
| pipe = self.pipeline_class(**components) | |
| for component in pipe.components.values(): | |
| if hasattr(component, "set_default_attn_processor"): | |
| component.set_default_attn_processor() | |
| pipe.to(torch_device) | |
| pipe.set_progress_bar_config(disable=None) | |
| generator_device = "cpu" | |
| inputs = self.get_dummy_inputs(generator_device) | |
| inputs["max_guidance_scale"] = 1.0 | |
| output = pipe(**inputs).frames | |
| self.assertEqual(len(output.shape), 5) | |
| class StableVideoDiffusionPipelineSlowTests(unittest.TestCase): | |
| def setUp(self): | |
| # clean up the VRAM before each test | |
| super().setUp() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def tearDown(self): | |
| # clean up the VRAM after each test | |
| super().tearDown() | |
| gc.collect() | |
| torch.cuda.empty_cache() | |
| def test_sd_video(self): | |
| pipe = StableVideoDiffusionPipeline.from_pretrained( | |
| "stabilityai/stable-video-diffusion-img2vid", | |
| variant="fp16", | |
| torch_dtype=torch.float16, | |
| ) | |
| pipe.enable_model_cpu_offload() | |
| pipe.set_progress_bar_config(disable=None) | |
| image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main/pix2pix/cat_6.png?download=true" | |
| ) | |
| generator = torch.Generator("cpu").manual_seed(0) | |
| num_frames = 3 | |
| output = pipe( | |
| image=image, | |
| num_frames=num_frames, | |
| generator=generator, | |
| num_inference_steps=3, | |
| output_type="np", | |
| ) | |
| image = output.frames[0] | |
| assert image.shape == (num_frames, 576, 1024, 3) | |
| image_slice = image[0, -3:, -3:, -1] | |
| expected_slice = np.array([0.8592, 0.8645, 0.8499, 0.8722, 0.8769, 0.8421, 0.8557, 0.8528, 0.8285]) | |
| assert numpy_cosine_similarity_distance(image_slice.flatten(), expected_slice.flatten()) < 1e-3 | |