diffusers-sdxl-controlnet
/
tests
/pipelines
/stable_diffusion
/test_onnx_stable_diffusion_upscale.py
| # coding=utf-8 | |
| # Copyright 2022 HuggingFace Inc. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import random | |
| import unittest | |
| import numpy as np | |
| from diffusers import ( | |
| DPMSolverMultistepScheduler, | |
| EulerAncestralDiscreteScheduler, | |
| EulerDiscreteScheduler, | |
| LMSDiscreteScheduler, | |
| OnnxStableDiffusionUpscalePipeline, | |
| PNDMScheduler, | |
| ) | |
| from diffusers.utils.testing_utils import ( | |
| floats_tensor, | |
| is_onnx_available, | |
| load_image, | |
| nightly, | |
| require_onnxruntime, | |
| require_torch_gpu, | |
| ) | |
| from ..test_pipelines_onnx_common import OnnxPipelineTesterMixin | |
| if is_onnx_available(): | |
| import onnxruntime as ort | |
| class OnnxStableDiffusionUpscalePipelineFastTests(OnnxPipelineTesterMixin, unittest.TestCase): | |
| # TODO: is there an appropriate internal test set? | |
| hub_checkpoint = "ssube/stable-diffusion-x4-upscaler-onnx" | |
| def get_dummy_inputs(self, seed=0): | |
| image = floats_tensor((1, 3, 128, 128), rng=random.Random(seed)) | |
| generator = np.random.RandomState(seed) | |
| inputs = { | |
| "prompt": "A painting of a squirrel eating a burger", | |
| "image": image, | |
| "generator": generator, | |
| "num_inference_steps": 3, | |
| "guidance_scale": 7.5, | |
| "output_type": "np", | |
| } | |
| return inputs | |
| def test_pipeline_default_ddpm(self): | |
| pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs() | |
| image = pipe(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1].flatten() | |
| # started as 128, should now be 512 | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array([0.6957, 0.7002, 0.7186, 0.6881, 0.6693, 0.6910, 0.7445, 0.7274, 0.7056]) | |
| assert np.abs(image_slice - expected_slice).max() < 1e-1 | |
| def test_pipeline_pndm(self): | |
| pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") | |
| pipe.scheduler = PNDMScheduler.from_config(pipe.scheduler.config, skip_prk_steps=True) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs() | |
| image = pipe(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array([0.7349, 0.7347, 0.7034, 0.7696, 0.7876, 0.7597, 0.7916, 0.8085, 0.8036]) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 | |
| def test_pipeline_dpm_multistep(self): | |
| pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") | |
| pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs() | |
| image = pipe(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array( | |
| [0.7659278, 0.76437664, 0.75579107, 0.7691116, 0.77666986, 0.7727672, 0.7758664, 0.7812226, 0.76942515] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 | |
| def test_pipeline_euler(self): | |
| pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") | |
| pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs() | |
| image = pipe(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array( | |
| [0.6974782, 0.68902093, 0.70135885, 0.7583618, 0.7804545, 0.7854912, 0.78667426, 0.78743863, 0.78070223] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 | |
| def test_pipeline_euler_ancestral(self): | |
| pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained(self.hub_checkpoint, provider="CPUExecutionProvider") | |
| pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) | |
| pipe.set_progress_bar_config(disable=None) | |
| inputs = self.get_dummy_inputs() | |
| image = pipe(**inputs).images | |
| image_slice = image[0, -3:, -3:, -1] | |
| assert image.shape == (1, 512, 512, 3) | |
| expected_slice = np.array( | |
| [0.77424496, 0.773601, 0.7645288, 0.7769598, 0.7772739, 0.7738688, 0.78187233, 0.77879584, 0.767043] | |
| ) | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 1e-1 | |
| class OnnxStableDiffusionUpscalePipelineIntegrationTests(unittest.TestCase): | |
| def gpu_provider(self): | |
| return ( | |
| "CUDAExecutionProvider", | |
| { | |
| "gpu_mem_limit": "15000000000", # 15GB | |
| "arena_extend_strategy": "kSameAsRequested", | |
| }, | |
| ) | |
| def gpu_options(self): | |
| options = ort.SessionOptions() | |
| options.enable_mem_pattern = False | |
| return options | |
| def test_inference_default_ddpm(self): | |
| init_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/img2img/sketch-mountains-input.jpg" | |
| ) | |
| init_image = init_image.resize((128, 128)) | |
| # using the PNDM scheduler by default | |
| pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained( | |
| "ssube/stable-diffusion-x4-upscaler-onnx", | |
| provider=self.gpu_provider, | |
| sess_options=self.gpu_options, | |
| ) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "A fantasy landscape, trending on artstation" | |
| generator = np.random.RandomState(0) | |
| output = pipe( | |
| prompt=prompt, | |
| image=init_image, | |
| guidance_scale=7.5, | |
| num_inference_steps=10, | |
| generator=generator, | |
| output_type="np", | |
| ) | |
| images = output.images | |
| image_slice = images[0, 255:258, 383:386, -1] | |
| assert images.shape == (1, 512, 512, 3) | |
| expected_slice = np.array([0.4883, 0.4947, 0.4980, 0.4975, 0.4982, 0.4980, 0.5000, 0.5006, 0.4972]) | |
| # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 | |
| def test_inference_k_lms(self): | |
| init_image = load_image( | |
| "https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main" | |
| "/img2img/sketch-mountains-input.jpg" | |
| ) | |
| init_image = init_image.resize((128, 128)) | |
| lms_scheduler = LMSDiscreteScheduler.from_pretrained( | |
| "ssube/stable-diffusion-x4-upscaler-onnx", subfolder="scheduler" | |
| ) | |
| pipe = OnnxStableDiffusionUpscalePipeline.from_pretrained( | |
| "ssube/stable-diffusion-x4-upscaler-onnx", | |
| scheduler=lms_scheduler, | |
| provider=self.gpu_provider, | |
| sess_options=self.gpu_options, | |
| ) | |
| pipe.set_progress_bar_config(disable=None) | |
| prompt = "A fantasy landscape, trending on artstation" | |
| generator = np.random.RandomState(0) | |
| output = pipe( | |
| prompt=prompt, | |
| image=init_image, | |
| guidance_scale=7.5, | |
| num_inference_steps=20, | |
| generator=generator, | |
| output_type="np", | |
| ) | |
| images = output.images | |
| image_slice = images[0, 255:258, 383:386, -1] | |
| assert images.shape == (1, 512, 512, 3) | |
| expected_slice = np.array( | |
| [0.50173753, 0.50223356, 0.502039, 0.50233036, 0.5023725, 0.5022601, 0.5018758, 0.50234085, 0.50241566] | |
| ) | |
| # TODO: lower the tolerance after finding the cause of onnxruntime reproducibility issues | |
| assert np.abs(image_slice.flatten() - expected_slice).max() < 2e-2 | |