|  | import unittest | 
					
						
						|  |  | 
					
						
						|  | import numpy as np | 
					
						
						|  | import torch | 
					
						
						|  | from transformers import CLIPTextConfig, CLIPTextModel, CLIPTextModelWithProjection, CLIPTokenizer | 
					
						
						|  |  | 
					
						
						|  | import diffusers | 
					
						
						|  | from diffusers import ( | 
					
						
						|  | AnimateDiffSDXLPipeline, | 
					
						
						|  | AutoencoderKL, | 
					
						
						|  | DDIMScheduler, | 
					
						
						|  | MotionAdapter, | 
					
						
						|  | UNet2DConditionModel, | 
					
						
						|  | UNetMotionModel, | 
					
						
						|  | ) | 
					
						
						|  | from diffusers.utils import is_xformers_available, logging | 
					
						
						|  | from diffusers.utils.testing_utils import torch_device | 
					
						
						|  |  | 
					
						
						|  | from ..pipeline_params import TEXT_TO_IMAGE_BATCH_PARAMS, TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS, TEXT_TO_IMAGE_PARAMS | 
					
						
						|  | from ..test_pipelines_common import ( | 
					
						
						|  | IPAdapterTesterMixin, | 
					
						
						|  | PipelineTesterMixin, | 
					
						
						|  | SDFunctionTesterMixin, | 
					
						
						|  | SDXLOptionalComponentsTesterMixin, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | def to_np(tensor): | 
					
						
						|  | if isinstance(tensor, torch.Tensor): | 
					
						
						|  | tensor = tensor.detach().cpu().numpy() | 
					
						
						|  |  | 
					
						
						|  | return tensor | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AnimateDiffPipelineSDXLFastTests( | 
					
						
						|  | IPAdapterTesterMixin, | 
					
						
						|  | SDFunctionTesterMixin, | 
					
						
						|  | PipelineTesterMixin, | 
					
						
						|  | SDXLOptionalComponentsTesterMixin, | 
					
						
						|  | unittest.TestCase, | 
					
						
						|  | ): | 
					
						
						|  | pipeline_class = AnimateDiffSDXLPipeline | 
					
						
						|  | params = TEXT_TO_IMAGE_PARAMS | 
					
						
						|  | batch_params = TEXT_TO_IMAGE_BATCH_PARAMS | 
					
						
						|  | required_optional_params = frozenset( | 
					
						
						|  | [ | 
					
						
						|  | "num_inference_steps", | 
					
						
						|  | "generator", | 
					
						
						|  | "latents", | 
					
						
						|  | "return_dict", | 
					
						
						|  | "callback_on_step_end", | 
					
						
						|  | "callback_on_step_end_tensor_inputs", | 
					
						
						|  | ] | 
					
						
						|  | ) | 
					
						
						|  | callback_cfg_params = TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS.union({"add_text_embeds", "add_time_ids"}) | 
					
						
						|  |  | 
					
						
						|  | def get_dummy_components(self, time_cond_proj_dim=None): | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | unet = UNet2DConditionModel( | 
					
						
						|  | block_out_channels=(32, 64, 128), | 
					
						
						|  | layers_per_block=2, | 
					
						
						|  | time_cond_proj_dim=time_cond_proj_dim, | 
					
						
						|  | sample_size=32, | 
					
						
						|  | in_channels=4, | 
					
						
						|  | out_channels=4, | 
					
						
						|  | down_block_types=("DownBlock2D", "CrossAttnDownBlock2D", "CrossAttnDownBlock2D"), | 
					
						
						|  | up_block_types=("CrossAttnUpBlock2D", "CrossAttnUpBlock2D", "UpBlock2D"), | 
					
						
						|  |  | 
					
						
						|  | attention_head_dim=(2, 4, 8), | 
					
						
						|  | use_linear_projection=True, | 
					
						
						|  | addition_embed_type="text_time", | 
					
						
						|  | addition_time_embed_dim=8, | 
					
						
						|  | transformer_layers_per_block=(1, 2, 4), | 
					
						
						|  | projection_class_embeddings_input_dim=80, | 
					
						
						|  | cross_attention_dim=64, | 
					
						
						|  | norm_num_groups=1, | 
					
						
						|  | ) | 
					
						
						|  | scheduler = DDIMScheduler( | 
					
						
						|  | beta_start=0.00085, | 
					
						
						|  | beta_end=0.012, | 
					
						
						|  | beta_schedule="linear", | 
					
						
						|  | clip_sample=False, | 
					
						
						|  | ) | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | vae = AutoencoderKL( | 
					
						
						|  | block_out_channels=[32, 64], | 
					
						
						|  | in_channels=3, | 
					
						
						|  | out_channels=3, | 
					
						
						|  | down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"], | 
					
						
						|  | up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"], | 
					
						
						|  | latent_channels=4, | 
					
						
						|  | sample_size=128, | 
					
						
						|  | ) | 
					
						
						|  | torch.manual_seed(0) | 
					
						
						|  | text_encoder_config = CLIPTextConfig( | 
					
						
						|  | bos_token_id=0, | 
					
						
						|  | eos_token_id=2, | 
					
						
						|  | hidden_size=32, | 
					
						
						|  | intermediate_size=37, | 
					
						
						|  | layer_norm_eps=1e-05, | 
					
						
						|  | num_attention_heads=4, | 
					
						
						|  | num_hidden_layers=5, | 
					
						
						|  | pad_token_id=1, | 
					
						
						|  | vocab_size=1000, | 
					
						
						|  |  | 
					
						
						|  | hidden_act="gelu", | 
					
						
						|  | projection_dim=32, | 
					
						
						|  | ) | 
					
						
						|  | text_encoder = CLIPTextModel(text_encoder_config) | 
					
						
						|  | tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | 
					
						
						|  | text_encoder_2 = CLIPTextModelWithProjection(text_encoder_config) | 
					
						
						|  | tokenizer_2 = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip") | 
					
						
						|  | motion_adapter = MotionAdapter( | 
					
						
						|  | block_out_channels=(32, 64, 128), | 
					
						
						|  | motion_layers_per_block=2, | 
					
						
						|  | motion_norm_num_groups=2, | 
					
						
						|  | motion_num_attention_heads=4, | 
					
						
						|  | use_motion_mid_block=False, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | components = { | 
					
						
						|  | "unet": unet, | 
					
						
						|  | "scheduler": scheduler, | 
					
						
						|  | "vae": vae, | 
					
						
						|  | "motion_adapter": motion_adapter, | 
					
						
						|  | "text_encoder": text_encoder, | 
					
						
						|  | "tokenizer": tokenizer, | 
					
						
						|  | "text_encoder_2": text_encoder_2, | 
					
						
						|  | "tokenizer_2": tokenizer_2, | 
					
						
						|  | "feature_extractor": None, | 
					
						
						|  | "image_encoder": None, | 
					
						
						|  | } | 
					
						
						|  | return components | 
					
						
						|  |  | 
					
						
						|  | def get_dummy_inputs(self, device, seed=0): | 
					
						
						|  | if str(device).startswith("mps"): | 
					
						
						|  | generator = torch.manual_seed(seed) | 
					
						
						|  | else: | 
					
						
						|  | generator = torch.Generator(device=device).manual_seed(seed) | 
					
						
						|  |  | 
					
						
						|  | inputs = { | 
					
						
						|  | "prompt": "A painting of a squirrel eating a burger", | 
					
						
						|  | "generator": generator, | 
					
						
						|  | "num_inference_steps": 2, | 
					
						
						|  | "guidance_scale": 7.5, | 
					
						
						|  | "output_type": "np", | 
					
						
						|  | } | 
					
						
						|  | return inputs | 
					
						
						|  |  | 
					
						
						|  | def test_motion_unet_loading(self): | 
					
						
						|  | components = self.get_dummy_components() | 
					
						
						|  | pipe = AnimateDiffSDXLPipeline(**components) | 
					
						
						|  |  | 
					
						
						|  | assert isinstance(pipe.unet, UNetMotionModel) | 
					
						
						|  |  | 
					
						
						|  | @unittest.skip("Attention slicing is not enabled in this pipeline") | 
					
						
						|  | def test_attention_slicing_forward_pass(self): | 
					
						
						|  | pass | 
					
						
						|  |  | 
					
						
						|  | def test_inference_batch_single_identical( | 
					
						
						|  | self, | 
					
						
						|  | batch_size=2, | 
					
						
						|  | expected_max_diff=1e-4, | 
					
						
						|  | additional_params_copy_to_batched_inputs=["num_inference_steps"], | 
					
						
						|  | ): | 
					
						
						|  | components = self.get_dummy_components() | 
					
						
						|  | pipe = self.pipeline_class(**components) | 
					
						
						|  | for components in pipe.components.values(): | 
					
						
						|  | if hasattr(components, "set_default_attn_processor"): | 
					
						
						|  | components.set_default_attn_processor() | 
					
						
						|  |  | 
					
						
						|  | pipe.to(torch_device) | 
					
						
						|  | pipe.set_progress_bar_config(disable=None) | 
					
						
						|  | inputs = self.get_dummy_inputs(torch_device) | 
					
						
						|  |  | 
					
						
						|  | inputs["generator"] = self.get_generator(0) | 
					
						
						|  |  | 
					
						
						|  | logger = logging.get_logger(pipe.__module__) | 
					
						
						|  | logger.setLevel(level=diffusers.logging.FATAL) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | batched_inputs = {} | 
					
						
						|  | batched_inputs.update(inputs) | 
					
						
						|  |  | 
					
						
						|  | for name in self.batch_params: | 
					
						
						|  | if name not in inputs: | 
					
						
						|  | continue | 
					
						
						|  |  | 
					
						
						|  | value = inputs[name] | 
					
						
						|  | if name == "prompt": | 
					
						
						|  | len_prompt = len(value) | 
					
						
						|  | batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)] | 
					
						
						|  | batched_inputs[name][-1] = 100 * "very long" | 
					
						
						|  |  | 
					
						
						|  | else: | 
					
						
						|  | batched_inputs[name] = batch_size * [value] | 
					
						
						|  |  | 
					
						
						|  | if "generator" in inputs: | 
					
						
						|  | batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)] | 
					
						
						|  |  | 
					
						
						|  | if "batch_size" in inputs: | 
					
						
						|  | batched_inputs["batch_size"] = batch_size | 
					
						
						|  |  | 
					
						
						|  | for arg in additional_params_copy_to_batched_inputs: | 
					
						
						|  | batched_inputs[arg] = inputs[arg] | 
					
						
						|  |  | 
					
						
						|  | output = pipe(**inputs) | 
					
						
						|  | output_batch = pipe(**batched_inputs) | 
					
						
						|  |  | 
					
						
						|  | assert output_batch[0].shape[0] == batch_size | 
					
						
						|  |  | 
					
						
						|  | max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max() | 
					
						
						|  | assert max_diff < expected_max_diff | 
					
						
						|  |  | 
					
						
						|  | @unittest.skipIf(torch_device != "cuda", reason="CUDA and CPU are required to switch devices") | 
					
						
						|  | def test_to_device(self): | 
					
						
						|  | components = self.get_dummy_components() | 
					
						
						|  | pipe = self.pipeline_class(**components) | 
					
						
						|  | pipe.set_progress_bar_config(disable=None) | 
					
						
						|  |  | 
					
						
						|  | pipe.to("cpu") | 
					
						
						|  |  | 
					
						
						|  | model_devices = [ | 
					
						
						|  | component.device.type for component in pipe.components.values() if hasattr(component, "device") | 
					
						
						|  | ] | 
					
						
						|  | self.assertTrue(all(device == "cpu" for device in model_devices)) | 
					
						
						|  |  | 
					
						
						|  | output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0] | 
					
						
						|  | self.assertTrue(np.isnan(output_cpu).sum() == 0) | 
					
						
						|  |  | 
					
						
						|  | pipe.to("cuda") | 
					
						
						|  | model_devices = [ | 
					
						
						|  | component.device.type for component in pipe.components.values() if hasattr(component, "device") | 
					
						
						|  | ] | 
					
						
						|  | self.assertTrue(all(device == "cuda" for device in model_devices)) | 
					
						
						|  |  | 
					
						
						|  | output_cuda = pipe(**self.get_dummy_inputs("cuda"))[0] | 
					
						
						|  | self.assertTrue(np.isnan(to_np(output_cuda)).sum() == 0) | 
					
						
						|  |  | 
					
						
						|  | def test_to_dtype(self): | 
					
						
						|  | components = self.get_dummy_components() | 
					
						
						|  | pipe = self.pipeline_class(**components) | 
					
						
						|  | pipe.set_progress_bar_config(disable=None) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | 
					
						
						|  | self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes)) | 
					
						
						|  |  | 
					
						
						|  | pipe.to(dtype=torch.float16) | 
					
						
						|  | model_dtypes = [component.dtype for component in pipe.components.values() if hasattr(component, "dtype")] | 
					
						
						|  | self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes)) | 
					
						
						|  |  | 
					
						
						|  | def test_prompt_embeds(self): | 
					
						
						|  | components = self.get_dummy_components() | 
					
						
						|  | pipe = self.pipeline_class(**components) | 
					
						
						|  | pipe.set_progress_bar_config(disable=None) | 
					
						
						|  | pipe.to(torch_device) | 
					
						
						|  |  | 
					
						
						|  | inputs = self.get_dummy_inputs(torch_device) | 
					
						
						|  | prompt = inputs.pop("prompt") | 
					
						
						|  |  | 
					
						
						|  | ( | 
					
						
						|  | prompt_embeds, | 
					
						
						|  | negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds, | 
					
						
						|  | ) = pipe.encode_prompt(prompt) | 
					
						
						|  |  | 
					
						
						|  | pipe( | 
					
						
						|  | **inputs, | 
					
						
						|  | prompt_embeds=prompt_embeds, | 
					
						
						|  | negative_prompt_embeds=negative_prompt_embeds, | 
					
						
						|  | pooled_prompt_embeds=pooled_prompt_embeds, | 
					
						
						|  | negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def test_save_load_optional_components(self): | 
					
						
						|  | self._test_save_load_optional_components() | 
					
						
						|  |  | 
					
						
						|  | @unittest.skipIf( | 
					
						
						|  | torch_device != "cuda" or not is_xformers_available(), | 
					
						
						|  | reason="XFormers attention is only available with CUDA and `xformers` installed", | 
					
						
						|  | ) | 
					
						
						|  | def test_xformers_attention_forwardGenerator_pass(self): | 
					
						
						|  | components = self.get_dummy_components() | 
					
						
						|  | pipe = self.pipeline_class(**components) | 
					
						
						|  | for component in pipe.components.values(): | 
					
						
						|  | if hasattr(component, "set_default_attn_processor"): | 
					
						
						|  | component.set_default_attn_processor() | 
					
						
						|  | pipe.to(torch_device) | 
					
						
						|  | pipe.set_progress_bar_config(disable=None) | 
					
						
						|  |  | 
					
						
						|  | inputs = self.get_dummy_inputs(torch_device) | 
					
						
						|  | output_without_offload = pipe(**inputs).frames[0] | 
					
						
						|  | output_without_offload = ( | 
					
						
						|  | output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | pipe.enable_xformers_memory_efficient_attention() | 
					
						
						|  | inputs = self.get_dummy_inputs(torch_device) | 
					
						
						|  | output_with_offload = pipe(**inputs).frames[0] | 
					
						
						|  | output_with_offload = ( | 
					
						
						|  | output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max() | 
					
						
						|  | self.assertLess(max_diff, 1e-4, "XFormers attention should not affect the inference results") | 
					
						
						|  |  |