Add README.md
Browse files
README.md
ADDED
@@ -0,0 +1,28 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# BioGPT INT8 Quantized for Medical Feature Extraction
|
2 |
+
|
3 |
+
This is an INT8 quantized version of Microsoft's BioGPT for CPU inference.
|
4 |
+
|
5 |
+
## Quick Start
|
6 |
+
|
7 |
+
```python
|
8 |
+
import torch
|
9 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
10 |
+
|
11 |
+
# Load base model and apply quantization
|
12 |
+
tokenizer = AutoTokenizer.from_pretrained("microsoft/biogpt")
|
13 |
+
model = AutoModelForCausalLM.from_pretrained("microsoft/biogpt", torch_dtype=torch.float16)
|
14 |
+
model = torch.quantization.quantize_dynamic(model, {torch.nn.Linear}, dtype=torch.qint8)
|
15 |
+
model.eval()
|
16 |
+
|
17 |
+
# Use for inference
|
18 |
+
prompt = "Extract medical features: Patient is 45-year-old male with fever 101.2F"
|
19 |
+
inputs = tokenizer.encode(prompt, return_tensors="pt")
|
20 |
+
outputs = model.generate(inputs, max_new_tokens=100)
|
21 |
+
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
|
22 |
+
```
|
23 |
+
|
24 |
+
## Model Details
|
25 |
+
- Base: microsoft/biogpt
|
26 |
+
- Quantization: INT8 dynamic
|
27 |
+
- Size: ~85MB (vs 1.56GB original)
|
28 |
+
- Optimized for: CPU inference
|