{"policy_class": {":type:": "", ":serialized:": "gAWVOwAAAAAAAACMIXN0YWJsZV9iYXNlbGluZXMzLmNvbW1vbi5wb2xpY2llc5SMEUFjdG9yQ3JpdGljUG9saWN5lJOULg==", "__module__": "stable_baselines3.common.policies", "__doc__": "\n Policy class for actor-critic algorithms (has both policy and value prediction).\n Used by A2C, PPO and the likes.\n\n :param observation_space: Observation space\n :param action_space: Action space\n :param lr_schedule: Learning rate schedule (could be constant)\n :param net_arch: The specification of the policy and value networks.\n :param activation_fn: Activation function\n :param ortho_init: Whether to use or not orthogonal initialization\n :param use_sde: Whether to use State Dependent Exploration or not\n :param log_std_init: Initial value for the log standard deviation\n :param full_std: Whether to use (n_features x n_actions) parameters\n for the std instead of only (n_features,) when using gSDE\n :param use_expln: Use ``expln()`` function instead of ``exp()`` to ensure\n a positive standard deviation (cf paper). It allows to keep variance\n above zero and prevent it from growing too fast. In practice, ``exp()`` is usually enough.\n :param squash_output: Whether to squash the output using a tanh function,\n this allows to ensure boundaries when using gSDE.\n :param features_extractor_class: Features extractor to use.\n :param features_extractor_kwargs: Keyword arguments\n to pass to the features extractor.\n :param share_features_extractor: If True, the features extractor is shared between the policy and value networks.\n :param normalize_images: Whether to normalize images or not,\n dividing by 255.0 (True by default)\n :param optimizer_class: The optimizer to use,\n ``th.optim.Adam`` by default\n :param optimizer_kwargs: Additional keyword arguments,\n excluding the learning rate, to pass to the optimizer\n ", "__init__": "", "_get_constructor_parameters": "", "reset_noise": "", "_build_mlp_extractor": "", "_build": "", "forward": "", "extract_features": "", "_get_action_dist_from_latent": "", "_predict": "", "evaluate_actions": "", "get_distribution": "", "predict_values": "", "__abstractmethods__": "frozenset()", "_abc_impl": "<_abc._abc_data object at 0x000002B722CC1A00>"}, "verbose": 1, "policy_kwargs": {}, "observation_space": {":type:": "", ":serialized:": "gAWVnwEAAAAAAACMDmd5bS5zcGFjZXMuYm94lIwDQm94lJOUKYGUfZQojAVkdHlwZZSMBW51bXB5lGgFk5SMAmY0lImIh5RSlChLA4wBPJROTk5K/////0r/////SwB0lGKMBl9zaGFwZZRLCIWUjANsb3eUjBJudW1weS5jb3JlLm51bWVyaWOUjAtfZnJvbWJ1ZmZlcpSTlCiWIAAAAAAAAAAAAID/AACA/wAAgP8AAID/AACA/wAAgP8AAID/AACA/5RoCksIhZSMAUOUdJRSlIwEaGlnaJRoEiiWIAAAAAAAAAAAAIB/AACAfwAAgH8AAIB/AACAfwAAgH8AAIB/AACAf5RoCksIhZRoFXSUUpSMDWJvdW5kZWRfYmVsb3eUaBIolggAAAAAAAAAAAAAAAAAAACUaAeMAmIxlImIh5RSlChLA4wBfJROTk5K/////0r/////SwB0lGJLCIWUaBV0lFKUjA1ib3VuZGVkX2Fib3ZllGgSKJYIAAAAAAAAAAAAAAAAAAAAlGghSwiFlGgVdJRSlIwKX25wX3JhbmRvbZROdWIu", "dtype": "float32", "_shape": [8], "low": "[-inf -inf -inf -inf -inf -inf -inf -inf]", "high": "[inf inf inf inf inf inf inf inf]", "bounded_below": "[False False False False False False False False]", "bounded_above": "[False False False False False False False False]", "_np_random": null}, "action_space": {":type:": "", ":serialized:": "gAWVggAAAAAAAACME2d5bS5zcGFjZXMuZGlzY3JldGWUjAhEaXNjcmV0ZZSTlCmBlH2UKIwBbpRLBIwGX3NoYXBllCmMBWR0eXBllIwFbnVtcHmUaAeTlIwCaTiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYowKX25wX3JhbmRvbZROdWIu", "n": 4, "_shape": [], "dtype": "int64", "_np_random": null}, "n_envs": 1, "num_timesteps": 10027008, "_total_timesteps": 10000000, "_num_timesteps_at_start": 0, "seed": null, "action_noise": null, "start_time": 1679649709334151000, "learning_rate": 0.0001, "tensorboard_log": null, "lr_schedule": {":type:": "", ":serialized:": "gAWVkgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYEM6XFVzZXJzXHN1bVxhbmFjb25kYTNcZW52c1xEZWVwUkwtSEYtY291cnNlXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz8aNuLrHEMthZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "_last_obs": null, "_last_episode_starts": {":type:": "", ":serialized:": "gAWVkwAAAAAAAACMEm51bXB5LmNvcmUubnVtZXJpY5SMC19mcm9tYnVmZmVylJOUKJYgAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAlIwFbnVtcHmUjAVkdHlwZZSTlIwCYjGUiYiHlFKUKEsDjAF8lE5OTkr/////Sv////9LAHSUYksghZSMAUOUdJRSlC4="}, "_last_original_obs": null, "_episode_num": 0, "use_sde": false, "sde_sample_freq": -1, "_current_progress_remaining": -0.0027007999999999477, "ep_info_buffer": {":type:": "", ":serialized:": "gAWVHRAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKUKH2UKIwBcpSMFW51bXB5LmNvcmUubXVsdGlhcnJheZSMBnNjYWxhcpSTlIwFbnVtcHmUjAVkdHlwZZSTlIwCZjiUiYiHlFKUKEsDjAE8lE5OTkr/////Sv////9LAHSUYkMIycovgzGiBkCUhpRSlIwBbJRLaowBdJRHQLbKR4QBgeB1fZQoaAZoCWgPQwgOZhNg2MtwQJSGlFKUaBVLsmgWR0C2ykrVJ+UhdX2UKGgGaAloD0MI/InKhvVmckCUhpRSlGgVS6ZoFkdAtspN2icoY3V9lChoBmgJaA9DCHNIaqEkSnJAlIaUUpRoFUusaBZHQLbKUsguAZt1fZQoaAZoCWgPQwjEI/Hy9EBzQJSGlFKUaBVLsmgWR0C2ylRQFcIJdX2UKGgGaAloD0MI0ZUIVD9ackCUhpRSlGgVS8FoFkdAtspVRvWH13V9lChoBmgJaA9DCB7dCItKcHJAlIaUUpRoFUu4aBZHQLbKVudPLxJ1fZQoaAZoCWgPQwi3CffK/HtwQJSGlFKUaBVLqGgWR0C2ylbnTy8SdX2UKGgGaAloD0MIVK2FWWiBckCUhpRSlGgVS7FoFkdAtspz1ct5EHV9lChoBmgJaA9DCEccsoF0SHFAlIaUUpRoFUudaBZHQLbKdhOP/711fZQoaAZoCWgPQwhCJa5jHOByQJSGlFKUaBVLnmgWR0C2ynun62v0dX2UKGgGaAloD0MIyTmxhzbocECUhpRSlGgVS6xoFkdAtsp91dPcjHV9lChoBmgJaA9DCHNlUG1wfXNAlIaUUpRoFUvDaBZHQLbKf5xR2r51fZQoaAZoCWgPQwjUD+oiReRyQJSGlFKUaBVLmmgWR0C2yoCT+vQodX2UKGgGaAloD0MI6gd1kYKCcUCUhpRSlGgVS6NoFkdAtsqQRXfZVXV9lChoBmgJaA9DCLfPKjNlQnJAlIaUUpRoFUuUaBZHQLbKlBnSOR11fZQoaAZoCWgPQwhjJeZZSfdxQJSGlFKUaBVLoWgWR0C2yph2KVIJdX2UKGgGaAloD0MIaVTgZBuec0CUhpRSlGgVS69oFkdAtsqdhd+ocnV9lChoBmgJaA9DCGRA9no3LnFAlIaUUpRoFUuyaBZHQLbKoeEqUeN1fZQoaAZoCWgPQwhSRIZVfAlxQJSGlFKUaBVLl2gWR0C2yqMnuy/sdX2UKGgGaAloD0MIhKCjVe1Tc0CUhpRSlGgVS61oFkdAtsqj544ZM3V9lChoBmgJaA9DCBWNtb9z8HNAlIaUUpRoFUutaBZHQLbKtDtPYWd1fZQoaAZoCWgPQwgFw7mG2aZzQJSGlFKUaBVLq2gWR0C2ysGcOLBLdX2UKGgGaAloD0MIwK4mT1nDcECUhpRSlGgVS41oFkdAtsrO58Sf2HV9lChoBmgJaA9DCDylg/W/r3NAlIaUUpRoFUvFaBZHQLbKz+z+m3x1fZQoaAZoCWgPQwi0klZ8A9RwQJSGlFKUaBVLumgWR0C2ytxHG0eEdX2UKGgGaAloD0MIdovAWF/KckCUhpRSlGgVS6BoFkdAtsrdzxPO6nV9lChoBmgJaA9DCNnts8rM6m9AlIaUUpRoFUuvaBZHQLbK4N9YwIt1fZQoaAZoCWgPQwjj3ZGxWmRzQJSGlFKUaBVLsWgWR0C2yubK7qY7dX2UKGgGaAloD0MI4e1BCAg0ckCUhpRSlGgVS5hoFkdAtsrriS7oS3V9lChoBmgJaA9DCPilft5UjHJAlIaUUpRoFUuPaBZHQLbK8WDHwPR1fZQoaAZoCWgPQwhY5NcPcStzQJSGlFKUaBVLxmgWR0C2yvVqN6w/dX2UKGgGaAloD0MIsvShC2pSc0CUhpRSlGgVS69oFkdAtsr2Z1FH8XV9lChoBmgJaA9DCO0RaoZUznJAlIaUUpRoFUuZaBZHQLbK+nyd4FB1fZQoaAZoCWgPQwhG09nJIJdyQJSGlFKUaBVLqWgWR0C2yv7/CIk7dX2UKGgGaAloD0MIcGHdeHcuSECUhpRSlGgVS2VoFkdAtssHtzCDVnV9lChoBmgJaA9DCGcng6MkpnFAlIaUUpRoFUuzaBZHQLbLDd+5OJt1fZQoaAZoCWgPQwiOAdnrnTdyQJSGlFKUaBVLr2gWR0C2yw7FCLMtdX2UKGgGaAloD0MI3nGKjuR0cUCUhpRSlGgVS61oFkdAtssQz41xbXV9lChoBmgJaA9DCKZDp+cdZXJAlIaUUpRoFUvFaBZHQLbLHXT3IuJ1fZQoaAZoCWgPQwj1EfjDT0hzQJSGlFKUaBVLoWgWR0C2yyuZkTYedX2UKGgGaAloD0MIwZDVrV6yc0CUhpRSlGgVS9VoFkdAtss2zmfXgHV9lChoBmgJaA9DCH/eVKRCM3FAlIaUUpRoFUuqaBZHQLbLNs54nnd1fZQoaAZoCWgPQwiqtwa2SiRyQJSGlFKUaBVLuGgWR0C2yzwiFCb+dX2UKGgGaAloD0MIBK4rZgQpcUCUhpRSlGgVS75oFkdAtstIdo3713V9lChoBmgJaA9DCGv0aoCSo3FAlIaUUpRoFUvNaBZHQLbLUUqQRwt1fZQoaAZoCWgPQwgrFVRU/VR0QJSGlFKUaBVLqWgWR0C2y1mcSXdCdX2UKGgGaAloD0MIAoQPJVrzckCUhpRSlGgVS81oFkdAtstcKQaJh3V9lChoBmgJaA9DCBf03hiCQnJAlIaUUpRoFUu5aBZHQLbLXUEgW8B1fZQoaAZoCWgPQwj35jdMtBZzQJSGlFKUaBVLv2gWR0C2y1/BSDRMdX2UKGgGaAloD0MIU3qml9jxcUCUhpRSlGgVS7hoFkdAtstrUH6dlXV9lChoBmgJaA9DCC8UsB3MvHFAlIaUUpRoFUuraBZHQLbLb/QjUut1fZQoaAZoCWgPQwhmbOhmP9pzQJSGlFKUaBVLvWgWR0C2y3H+VC5VdX2UKGgGaAloD0MIj1a1pGNkckCUhpRSlGgVS6toFkdAtst8iqyWzHV9lChoBmgJaA9DCKz9ne2RPHJAlIaUUpRoFUvRaBZHQLbLge0Xxe91fZQoaAZoCWgPQwjQKjOl9StxQJSGlFKUaBVLqGgWR0C2y4b0nPVvdX2UKGgGaAloD0MI8djPYmmOcUCUhpRSlGgVS51oFkdAtsuROXVslHV9lChoBmgJaA9DCJimCHD6aHJAlIaUUpRoFUunaBZHQLbLleWOZLJ1fZQoaAZoCWgPQwgof/eOGnJxQJSGlFKUaBVLrWgWR0C2y5gJokAxdX2UKGgGaAloD0MI7YFWYIhdcUCUhpRSlGgVS49oFkdAtsuZckdFOXV9lChoBmgJaA9DCAt6bwyBCnJAlIaUUpRoFUu/aBZHQLbLnsGgSOB1fZQoaAZoCWgPQwjqlEc3gndzQJSGlFKUaBVLtWgWR0C2y6Ip6QeWdX2UKGgGaAloD0MI6E8b1Wn8cECUhpRSlGgVS6doFkdAtsumF7D2rXV9lChoBmgJaA9DCOxoHOo3DHNAlIaUUpRoFUumaBZHQLbLqTt9hJB1fZQoaAZoCWgPQwgfZcQF4MtyQJSGlFKUaBVLqmgWR0C2y7He3x4IdX2UKGgGaAloD0MIcr9DUeDuckCUhpRSlGgVS7toFkdAtsu1ZuAI6nV9lChoBmgJaA9DCEYiNIINYnFAlIaUUpRoFUujaBZHQLbLtu7HyVh1fZQoaAZoCWgPQwghk4ycxVdxQJSGlFKUaBVLqGgWR0C2y8Qxzq8ldX2UKGgGaAloD0MIK9uHvCWVcUCUhpRSlGgVS8ZoFkdAtsvMp5NXYHV9lChoBmgJaA9DCC47xD/sIHBAlIaUUpRoFUuuaBZHQLbL28m8dxR1fZQoaAZoCWgPQwhosn+ehkBzQJSGlFKUaBVLvWgWR0C2y94WHk92dX2UKGgGaAloD0MI4IWt2YoPckCUhpRSlGgVS8RoFkdAtsvj2vjfenV9lChoBmgJaA9DCEZDxqMU1HJAlIaUUpRoFUumaBZHQLbL7jXFtKt1fZQoaAZoCWgPQwiUE+0qJPFzQJSGlFKUaBVLqGgWR0C2y/TJyQxOdX2UKGgGaAloD0MIshAdAgfDc0CUhpRSlGgVS6VoFkdAtsv9+iJwbXV9lChoBmgJaA9DCLoRFhWxwnBAlIaUUpRoFUvDaBZHQLbMBDlo11p1fZQoaAZoCWgPQwg57Sk5p01wQJSGlFKUaBVLpGgWR0C2zAZ5u63BdX2UKGgGaAloD0MIS+fDs4RsckCUhpRSlGgVS5JoFkdAtswLtXxOL3V9lChoBmgJaA9DCJVgcTizdHNAlIaUUpRoFUvCaBZHQLbMDipvP1N1fZQoaAZoCWgPQwg3picssSlxQJSGlFKUaBVLrWgWR0C2zBgnYxtYdX2UKGgGaAloD0MIoS5SKEsDdECUhpRSlGgVS7RoFkdAtswi4EwFknV9lChoBmgJaA9DCGafxyiPG3NAlIaUUpRoFUuZaBZHQLbMJY8Md951fZQoaAZoCWgPQwhwCcA/JYxzQJSGlFKUaBVLtmgWR0C2zCjXWe6JdX2UKGgGaAloD0MIgsR290CBc0CUhpRSlGgVS8FoFkdAtswzC1qnFnV9lChoBmgJaA9DCPCl8KDZlHBAlIaUUpRoFUupaBZHQLbMPNqgyuZ1fZQoaAZoCWgPQwgr2hznNoZzQJSGlFKUaBVLyGgWR0C2zFD/IbOvdX2UKGgGaAloD0MI3NYWnhcgckCUhpRSlGgVS6xoFkdAtsxZwGW2PXV9lChoBmgJaA9DCOSCM/j70XFAlIaUUpRoFUunaBZHQLbMXlj3Eht1fZQoaAZoCWgPQwi/8iA9xQ1yQJSGlFKUaBVLwGgWR0C2zF4KlYU4dX2UKGgGaAloD0MIlKEqphI6cUCUhpRSlGgVS7RoFkdAtsxgVgx8D3V9lChoBmgJaA9DCLZKsDjcj3FAlIaUUpRoFUukaBZHQLbMYuMuOCJ1fZQoaAZoCWgPQwjylUBK7K5zQJSGlFKUaBVLsGgWR0C2zGWIO6NEdX2UKGgGaAloD0MIga/o1iv4cECUhpRSlGgVS7doFkdAtsxnx8UmD3V9lChoBmgJaA9DCL3jFB2J93NAlIaUUpRoFUvdaBZHQLbMZ4ZuQ6p1fZQoaAZoCWgPQwhgdk8eltdxQJSGlFKUaBVLwGgWR0C2zGkOVgQZdX2UKGgGaAloD0MIjbW/s71cdECUhpRSlGgVS6xoFkdAtsxpDlYEGXV9lChoBmgJaA9DCOSHSiNm425AlIaUUpRoFUulaBZHQLbMcNBF/hF1fZQoaAZoCWgPQwgVrdwLTJtxQJSGlFKUaBVLq2gWR0C2zHew9q1xdX2UKGgGaAloD0MIXDrmPKOjckCUhpRSlGgVS7hoFkdAtsx/guRLb3V9lChoBmgJaA9DCBOe0OuP/3FAlIaUUpRoFUuraBZHQLbMhC7K7qZ1ZS4="}, "ep_success_buffer": {":type:": "", ":serialized:": "gAWVIAAAAAAAAACMC2NvbGxlY3Rpb25zlIwFZGVxdWWUk5QpS2SGlFKULg=="}, "_n_updates": 4896, "n_steps": 1024, "gamma": 0.999, "gae_lambda": 0.98, "ent_coef": 0.01, "vf_coef": 0.5, "max_grad_norm": 0.5, "batch_size": 128, "n_epochs": 16, "clip_range": {":type:": "", ":serialized:": "gAWVkgIAAAAAAACMF2Nsb3VkcGlja2xlLmNsb3VkcGlja2xllIwOX21ha2VfZnVuY3Rpb26Uk5QoaACMDV9idWlsdGluX3R5cGWUk5SMCENvZGVUeXBllIWUUpQoSwFLAEsASwFLAUsTQwSIAFMAlE6FlCmMAV+UhZSMYEM6XFVzZXJzXHN1bVxhbmFjb25kYTNcZW52c1xEZWVwUkwtSEYtY291cnNlXGxpYlxzaXRlLXBhY2thZ2VzXHN0YWJsZV9iYXNlbGluZXMzXGNvbW1vblx1dGlscy5weZSMBGZ1bmOUS4JDAgABlIwDdmFslIWUKXSUUpR9lCiMC19fcGFja2FnZV9flIwYc3RhYmxlX2Jhc2VsaW5lczMuY29tbW9ulIwIX19uYW1lX1+UjB5zdGFibGVfYmFzZWxpbmVzMy5jb21tb24udXRpbHOUjAhfX2ZpbGVfX5RoDHVOTmgAjBBfbWFrZV9lbXB0eV9jZWxslJOUKVKUhZR0lFKUjBxjbG91ZHBpY2tsZS5jbG91ZHBpY2tsZV9mYXN0lIwSX2Z1bmN0aW9uX3NldHN0YXRllJOUaB59lH2UKGgWaA2MDF9fcXVhbG5hbWVfX5SMGWNvbnN0YW50X2ZuLjxsb2NhbHM+LmZ1bmOUjA9fX2Fubm90YXRpb25zX1+UfZSMDl9fa3dkZWZhdWx0c19flE6MDF9fZGVmYXVsdHNfX5ROjApfX21vZHVsZV9flGgXjAdfX2RvY19flE6MC19fY2xvc3VyZV9flGgAjApfbWFrZV9jZWxslJOURz/JmZmZmZmahZRSlIWUjBdfY2xvdWRwaWNrbGVfc3VibW9kdWxlc5RdlIwLX19nbG9iYWxzX1+UfZR1hpSGUjAu"}, "clip_range_vf": null, "normalize_advantage": true, "target_kl": null, "system_info": {"OS": "Windows-10-10.0.19044-SP0 10.0.19044", "Python": "3.9.16", "Stable-Baselines3": "1.7.0", "PyTorch": "2.0.0", "GPU Enabled": "True", "Numpy": "1.21.2", "Gym": "0.21.0"}}