sudy-super commited on
Commit
ff54610
·
verified ·
1 Parent(s): dbf31bd

Upload model and tokenizers

Browse files
.gitattributes CHANGED
@@ -33,3 +33,5 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ context_tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
37
+ text_tokenizer/tokenizer.json filter=lfs diff=lfs merge=lfs -text
config.json ADDED
@@ -0,0 +1,188 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "./output/checkpoint-3169-consolidated",
3
+ "architectures": [
4
+ "CcubedForConditionalGeneration"
5
+ ],
6
+ "auto_map": {
7
+ "AutoConfig": "configuration_c_cubed.CcubedConfig",
8
+ "AutoModelForCausalLM": "modeling_c_cubed.CcubedForConditionalGeneration"
9
+ },
10
+ "connector_hidden_act": "gelu",
11
+ "context_config": {
12
+ "_attn_implementation_autoset": true,
13
+ "_name_or_path": "Qwen/Qwen2.5-0.5B",
14
+ "add_cross_attention": false,
15
+ "architectures": [
16
+ "Qwen2ForCausalLM"
17
+ ],
18
+ "attention_dropout": 0.0,
19
+ "bad_words_ids": null,
20
+ "begin_suppress_tokens": null,
21
+ "bos_token_id": 151643,
22
+ "chunk_size_feed_forward": 0,
23
+ "cross_attention_hidden_size": null,
24
+ "decoder_start_token_id": null,
25
+ "diversity_penalty": 0.0,
26
+ "do_sample": false,
27
+ "early_stopping": false,
28
+ "encoder_no_repeat_ngram_size": 0,
29
+ "eos_token_id": 151643,
30
+ "exponential_decay_length_penalty": null,
31
+ "finetuning_task": null,
32
+ "forced_bos_token_id": null,
33
+ "forced_eos_token_id": null,
34
+ "hidden_act": "silu",
35
+ "hidden_size": 896,
36
+ "id2label": {
37
+ "0": "LABEL_0",
38
+ "1": "LABEL_1"
39
+ },
40
+ "initializer_range": 0.02,
41
+ "intermediate_size": 4864,
42
+ "is_decoder": false,
43
+ "is_encoder_decoder": false,
44
+ "label2id": {
45
+ "LABEL_0": 0,
46
+ "LABEL_1": 1
47
+ },
48
+ "length_penalty": 1.0,
49
+ "max_length": 20,
50
+ "max_position_embeddings": 131072,
51
+ "max_window_layers": 24,
52
+ "min_length": 0,
53
+ "model_type": "qwen2",
54
+ "no_repeat_ngram_size": 0,
55
+ "num_attention_heads": 14,
56
+ "num_beam_groups": 1,
57
+ "num_beams": 1,
58
+ "num_hidden_layers": 24,
59
+ "num_key_value_heads": 2,
60
+ "num_return_sequences": 1,
61
+ "output_attentions": false,
62
+ "output_hidden_states": false,
63
+ "output_scores": false,
64
+ "pad_token_id": null,
65
+ "prefix": null,
66
+ "problem_type": null,
67
+ "pruned_heads": {},
68
+ "remove_invalid_values": false,
69
+ "repetition_penalty": 1.0,
70
+ "return_dict": true,
71
+ "return_dict_in_generate": false,
72
+ "rms_norm_eps": 1e-06,
73
+ "rope_scaling": null,
74
+ "rope_theta": 1000000.0,
75
+ "sep_token_id": null,
76
+ "sliding_window": null,
77
+ "suppress_tokens": null,
78
+ "task_specific_params": null,
79
+ "temperature": 1.0,
80
+ "tf_legacy_loss": false,
81
+ "tie_encoder_decoder": false,
82
+ "tie_word_embeddings": true,
83
+ "tokenizer_class": null,
84
+ "top_k": 50,
85
+ "top_p": 1.0,
86
+ "torch_dtype": "bfloat16",
87
+ "torchscript": false,
88
+ "typical_p": 1.0,
89
+ "use_bfloat16": false,
90
+ "use_cache": true,
91
+ "use_mrope": false,
92
+ "use_sliding_window": false,
93
+ "vocab_size": 151936
94
+ },
95
+ "context_feature_layer": -2,
96
+ "context_feature_select_strategy": "default",
97
+ "end_of_context_token_id": 151666,
98
+ "ignore_index": -100,
99
+ "model_type": "c_cubed",
100
+ "projector_hidden_act": "gelu",
101
+ "start_of_context_token_id": 151665,
102
+ "text_config": {
103
+ "_attn_implementation_autoset": true,
104
+ "_name_or_path": "Qwen/Qwen2.5-7B-Instruct",
105
+ "add_cross_attention": false,
106
+ "architectures": [
107
+ "Qwen2ForCausalLM"
108
+ ],
109
+ "attention_dropout": 0.0,
110
+ "bad_words_ids": null,
111
+ "begin_suppress_tokens": null,
112
+ "bos_token_id": 151643,
113
+ "chunk_size_feed_forward": 0,
114
+ "cross_attention_hidden_size": null,
115
+ "decoder_start_token_id": null,
116
+ "diversity_penalty": 0.0,
117
+ "do_sample": false,
118
+ "early_stopping": false,
119
+ "encoder_no_repeat_ngram_size": 0,
120
+ "eos_token_id": 151645,
121
+ "exponential_decay_length_penalty": null,
122
+ "finetuning_task": null,
123
+ "forced_bos_token_id": null,
124
+ "forced_eos_token_id": null,
125
+ "hidden_act": "silu",
126
+ "hidden_size": 3584,
127
+ "id2label": {
128
+ "0": "LABEL_0",
129
+ "1": "LABEL_1"
130
+ },
131
+ "initializer_range": 0.02,
132
+ "intermediate_size": 18944,
133
+ "is_decoder": false,
134
+ "is_encoder_decoder": false,
135
+ "label2id": {
136
+ "LABEL_0": 0,
137
+ "LABEL_1": 1
138
+ },
139
+ "length_penalty": 1.0,
140
+ "max_length": 20,
141
+ "max_position_embeddings": 131072,
142
+ "max_window_layers": 28,
143
+ "min_length": 0,
144
+ "model_type": "qwen2",
145
+ "no_repeat_ngram_size": 0,
146
+ "num_attention_heads": 28,
147
+ "num_beam_groups": 1,
148
+ "num_beams": 1,
149
+ "num_hidden_layers": 28,
150
+ "num_key_value_heads": 4,
151
+ "num_return_sequences": 1,
152
+ "output_attentions": false,
153
+ "output_hidden_states": false,
154
+ "output_scores": false,
155
+ "pad_token_id": null,
156
+ "prefix": null,
157
+ "problem_type": null,
158
+ "pruned_heads": {},
159
+ "remove_invalid_values": false,
160
+ "repetition_penalty": 1.0,
161
+ "return_dict": true,
162
+ "return_dict_in_generate": false,
163
+ "rms_norm_eps": 1e-06,
164
+ "rope_scaling": null,
165
+ "rope_theta": 1000000.0,
166
+ "sep_token_id": null,
167
+ "sliding_window": null,
168
+ "suppress_tokens": null,
169
+ "task_specific_params": null,
170
+ "temperature": 1.0,
171
+ "tf_legacy_loss": false,
172
+ "tie_encoder_decoder": false,
173
+ "tie_word_embeddings": false,
174
+ "tokenizer_class": null,
175
+ "top_k": 50,
176
+ "top_p": 1.0,
177
+ "torch_dtype": "float32",
178
+ "torchscript": false,
179
+ "typical_p": 1.0,
180
+ "use_bfloat16": false,
181
+ "use_cache": true,
182
+ "use_sliding_window": false,
183
+ "vocab_size": 152064
184
+ },
185
+ "tie_word_embeddings": false,
186
+ "torch_dtype": "bfloat16",
187
+ "transformers_version": "4.49.0.dev0"
188
+ }
configuration_c_cubed.py ADDED
@@ -0,0 +1,66 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """Ccubed model configuration"""
3
+
4
+ from transformers.configuration_utils import PretrainedConfig
5
+ from transformers.utils import logging
6
+ from transformers import CONFIG_MAPPING
7
+
8
+ logger = logging.get_logger(__name__)
9
+
10
+
11
+ class CcubedConfig(PretrainedConfig):
12
+ r"""
13
+ """
14
+
15
+ model_type = "c_cubed"
16
+
17
+ def __init__(
18
+ self,
19
+ context_config=None,
20
+ text_config=None,
21
+ ignore_index=-100,
22
+ connector_hidden_act="gelu",
23
+ context_feature_layer=-2,
24
+ context_feature_select_strategy="default",
25
+ start_of_context_token_id=None,
26
+ end_of_context_token_id=None,
27
+ tie_word_embeddings=False,
28
+ **kwargs,
29
+ ):
30
+ self.ignore_index = ignore_index
31
+ self.connector_hidden_act = connector_hidden_act
32
+ self.context_feature_layer = context_feature_layer
33
+ self.context_feature_select_strategy = context_feature_select_strategy
34
+ self.start_of_context_token_id = start_of_context_token_id
35
+ self.end_of_context_token_id = end_of_context_token_id
36
+
37
+ if context_feature_select_strategy not in ["default"]:
38
+ raise ValueError(
39
+ "context_feature_select_strategy should be one of 'default'."
40
+ f"Got: {context_feature_select_strategy}"
41
+ )
42
+
43
+ if isinstance(context_config, dict):
44
+ context_config["model_type"] = (
45
+ context_config["model_type"] if "model_type" in context_config else "qwen2"
46
+ )
47
+ context_config = CONFIG_MAPPING[context_config["model_type"]](**context_config)
48
+
49
+ self.context_config = context_config
50
+
51
+ if isinstance(text_config, dict):
52
+ text_config["model_type"] = text_config["model_type"] if "model_type" in text_config else "qwen2"
53
+ text_config = CONFIG_MAPPING[text_config["model_type"]](**text_config)
54
+
55
+ self.text_config = text_config
56
+
57
+ super().__init__(
58
+ tie_word_embeddings=tie_word_embeddings,
59
+ ignore_index=ignore_index,
60
+ connector_hidden_act=connector_hidden_act,
61
+ context_feature_layer=context_feature_layer,
62
+ context_feature_select_strategy=context_feature_select_strategy,
63
+ start_of_context_token_id=start_of_context_token_id,
64
+ end_of_context_token_id=end_of_context_token_id,
65
+ **kwargs
66
+ )
context_tokenizer/added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
context_tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
context_tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|endoftext|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
context_tokenizer/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
context_tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|endoftext|>",
201
+ "errors": "replace",
202
+ "extra_special_tokens": {},
203
+ "model_max_length": 131072,
204
+ "pad_token": "<|endoftext|>",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
context_tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
generation_config.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "_from_model_config": true,
3
+ "bos_token_id": 151643,
4
+ "eos_token_id": 151645,
5
+ "transformers_version": "4.49.0.dev0"
6
+ }
model-00001-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:512761d92bcd349074ca0699aa951ea8958a49c9ea3d63c3175253b40f8d2767
3
+ size 4911735722
model-00002-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cb68d7d9dd8485aa735d5d3d9e2665bad5c164891158f1b275f35a5bfd6cce36
3
+ size 4991497784
model-00003-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:22e4ee359842319636ce1f8a376bcb005aeccadf254901a1170aa1512b74d3b9
3
+ size 4932752872
model-00004-of-00004.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:67bb9a1557eec756179072f4eae58209482098e533cd1c32dc18dfd7544bdb47
3
+ size 1691924640
model.safetensors.index.json ADDED
@@ -0,0 +1,650 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 16527827202
4
+ },
5
+ "weight_map": {
6
+ "connector.dynamic_pooling.imp_estim_attn.k_proj.weight": "model-00001-of-00004.safetensors",
7
+ "connector.dynamic_pooling.imp_estim_attn.o_proj.weight": "model-00001-of-00004.safetensors",
8
+ "connector.dynamic_pooling.imp_estim_attn.q_proj.weight": "model-00001-of-00004.safetensors",
9
+ "connector.dynamic_pooling.imp_estim_attn.v_proj.weight": "model-00001-of-00004.safetensors",
10
+ "connector.dynamic_pooling.scale_param": "model-00001-of-00004.safetensors",
11
+ "connector.dynamic_pooling.size_estim_attn.k_proj.weight": "model-00001-of-00004.safetensors",
12
+ "connector.dynamic_pooling.size_estim_attn.o_proj.weight": "model-00001-of-00004.safetensors",
13
+ "connector.dynamic_pooling.size_estim_attn.q_proj.weight": "model-00001-of-00004.safetensors",
14
+ "connector.dynamic_pooling.size_estim_attn.v_proj.weight": "model-00001-of-00004.safetensors",
15
+ "connector.linear_1.bias": "model-00001-of-00004.safetensors",
16
+ "connector.linear_1.weight": "model-00001-of-00004.safetensors",
17
+ "connector.linear_2.bias": "model-00001-of-00004.safetensors",
18
+ "connector.linear_2.weight": "model-00001-of-00004.safetensors",
19
+ "context_tower.tower.lm_head.weight": "model-00001-of-00004.safetensors",
20
+ "context_tower.tower.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
21
+ "context_tower.tower.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
22
+ "context_tower.tower.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
23
+ "context_tower.tower.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
24
+ "context_tower.tower.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
25
+ "context_tower.tower.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
26
+ "context_tower.tower.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
27
+ "context_tower.tower.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
28
+ "context_tower.tower.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
29
+ "context_tower.tower.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
30
+ "context_tower.tower.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
31
+ "context_tower.tower.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
32
+ "context_tower.tower.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
33
+ "context_tower.tower.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
34
+ "context_tower.tower.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
35
+ "context_tower.tower.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
36
+ "context_tower.tower.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
37
+ "context_tower.tower.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
38
+ "context_tower.tower.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
39
+ "context_tower.tower.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
40
+ "context_tower.tower.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
41
+ "context_tower.tower.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
42
+ "context_tower.tower.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
43
+ "context_tower.tower.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
44
+ "context_tower.tower.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
45
+ "context_tower.tower.model.layers.10.input_layernorm.weight": "model-00001-of-00004.safetensors",
46
+ "context_tower.tower.model.layers.10.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
47
+ "context_tower.tower.model.layers.10.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
48
+ "context_tower.tower.model.layers.10.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
49
+ "context_tower.tower.model.layers.10.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
50
+ "context_tower.tower.model.layers.10.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
51
+ "context_tower.tower.model.layers.10.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
52
+ "context_tower.tower.model.layers.10.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
53
+ "context_tower.tower.model.layers.10.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
54
+ "context_tower.tower.model.layers.10.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
55
+ "context_tower.tower.model.layers.10.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
56
+ "context_tower.tower.model.layers.10.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
57
+ "context_tower.tower.model.layers.11.input_layernorm.weight": "model-00001-of-00004.safetensors",
58
+ "context_tower.tower.model.layers.11.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
59
+ "context_tower.tower.model.layers.11.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
60
+ "context_tower.tower.model.layers.11.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
61
+ "context_tower.tower.model.layers.11.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
62
+ "context_tower.tower.model.layers.11.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
63
+ "context_tower.tower.model.layers.11.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
64
+ "context_tower.tower.model.layers.11.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
65
+ "context_tower.tower.model.layers.11.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
66
+ "context_tower.tower.model.layers.11.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
67
+ "context_tower.tower.model.layers.11.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
68
+ "context_tower.tower.model.layers.11.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
69
+ "context_tower.tower.model.layers.12.input_layernorm.weight": "model-00001-of-00004.safetensors",
70
+ "context_tower.tower.model.layers.12.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
71
+ "context_tower.tower.model.layers.12.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
72
+ "context_tower.tower.model.layers.12.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
73
+ "context_tower.tower.model.layers.12.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
74
+ "context_tower.tower.model.layers.12.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
75
+ "context_tower.tower.model.layers.12.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
76
+ "context_tower.tower.model.layers.12.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
77
+ "context_tower.tower.model.layers.12.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
78
+ "context_tower.tower.model.layers.12.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
79
+ "context_tower.tower.model.layers.12.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
80
+ "context_tower.tower.model.layers.12.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
81
+ "context_tower.tower.model.layers.13.input_layernorm.weight": "model-00001-of-00004.safetensors",
82
+ "context_tower.tower.model.layers.13.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
83
+ "context_tower.tower.model.layers.13.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
84
+ "context_tower.tower.model.layers.13.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
85
+ "context_tower.tower.model.layers.13.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
86
+ "context_tower.tower.model.layers.13.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
87
+ "context_tower.tower.model.layers.13.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
88
+ "context_tower.tower.model.layers.13.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
89
+ "context_tower.tower.model.layers.13.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
90
+ "context_tower.tower.model.layers.13.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
91
+ "context_tower.tower.model.layers.13.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
92
+ "context_tower.tower.model.layers.13.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
93
+ "context_tower.tower.model.layers.14.input_layernorm.weight": "model-00001-of-00004.safetensors",
94
+ "context_tower.tower.model.layers.14.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
95
+ "context_tower.tower.model.layers.14.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
96
+ "context_tower.tower.model.layers.14.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
97
+ "context_tower.tower.model.layers.14.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
98
+ "context_tower.tower.model.layers.14.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
99
+ "context_tower.tower.model.layers.14.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
100
+ "context_tower.tower.model.layers.14.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
101
+ "context_tower.tower.model.layers.14.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
102
+ "context_tower.tower.model.layers.14.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
103
+ "context_tower.tower.model.layers.14.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
104
+ "context_tower.tower.model.layers.14.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
105
+ "context_tower.tower.model.layers.15.input_layernorm.weight": "model-00001-of-00004.safetensors",
106
+ "context_tower.tower.model.layers.15.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
107
+ "context_tower.tower.model.layers.15.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
108
+ "context_tower.tower.model.layers.15.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
109
+ "context_tower.tower.model.layers.15.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
110
+ "context_tower.tower.model.layers.15.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
111
+ "context_tower.tower.model.layers.15.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
112
+ "context_tower.tower.model.layers.15.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
113
+ "context_tower.tower.model.layers.15.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
114
+ "context_tower.tower.model.layers.15.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
115
+ "context_tower.tower.model.layers.15.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
116
+ "context_tower.tower.model.layers.15.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
117
+ "context_tower.tower.model.layers.16.input_layernorm.weight": "model-00001-of-00004.safetensors",
118
+ "context_tower.tower.model.layers.16.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
119
+ "context_tower.tower.model.layers.16.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
120
+ "context_tower.tower.model.layers.16.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
121
+ "context_tower.tower.model.layers.16.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
122
+ "context_tower.tower.model.layers.16.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
123
+ "context_tower.tower.model.layers.16.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
124
+ "context_tower.tower.model.layers.16.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
125
+ "context_tower.tower.model.layers.16.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
126
+ "context_tower.tower.model.layers.16.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
127
+ "context_tower.tower.model.layers.16.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
128
+ "context_tower.tower.model.layers.16.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
129
+ "context_tower.tower.model.layers.17.input_layernorm.weight": "model-00001-of-00004.safetensors",
130
+ "context_tower.tower.model.layers.17.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
131
+ "context_tower.tower.model.layers.17.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
132
+ "context_tower.tower.model.layers.17.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
133
+ "context_tower.tower.model.layers.17.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
134
+ "context_tower.tower.model.layers.17.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
135
+ "context_tower.tower.model.layers.17.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
136
+ "context_tower.tower.model.layers.17.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
137
+ "context_tower.tower.model.layers.17.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
138
+ "context_tower.tower.model.layers.17.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
139
+ "context_tower.tower.model.layers.17.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
140
+ "context_tower.tower.model.layers.17.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
141
+ "context_tower.tower.model.layers.18.input_layernorm.weight": "model-00001-of-00004.safetensors",
142
+ "context_tower.tower.model.layers.18.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
143
+ "context_tower.tower.model.layers.18.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
144
+ "context_tower.tower.model.layers.18.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
145
+ "context_tower.tower.model.layers.18.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
146
+ "context_tower.tower.model.layers.18.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
147
+ "context_tower.tower.model.layers.18.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
148
+ "context_tower.tower.model.layers.18.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
149
+ "context_tower.tower.model.layers.18.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
150
+ "context_tower.tower.model.layers.18.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
151
+ "context_tower.tower.model.layers.18.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
152
+ "context_tower.tower.model.layers.18.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
153
+ "context_tower.tower.model.layers.19.input_layernorm.weight": "model-00001-of-00004.safetensors",
154
+ "context_tower.tower.model.layers.19.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
155
+ "context_tower.tower.model.layers.19.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
156
+ "context_tower.tower.model.layers.19.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
157
+ "context_tower.tower.model.layers.19.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
158
+ "context_tower.tower.model.layers.19.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
159
+ "context_tower.tower.model.layers.19.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
160
+ "context_tower.tower.model.layers.19.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
161
+ "context_tower.tower.model.layers.19.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
162
+ "context_tower.tower.model.layers.19.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
163
+ "context_tower.tower.model.layers.19.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
164
+ "context_tower.tower.model.layers.19.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
165
+ "context_tower.tower.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
166
+ "context_tower.tower.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
167
+ "context_tower.tower.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
168
+ "context_tower.tower.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
169
+ "context_tower.tower.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
170
+ "context_tower.tower.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
171
+ "context_tower.tower.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
172
+ "context_tower.tower.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
173
+ "context_tower.tower.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
174
+ "context_tower.tower.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
175
+ "context_tower.tower.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
176
+ "context_tower.tower.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
177
+ "context_tower.tower.model.layers.20.input_layernorm.weight": "model-00001-of-00004.safetensors",
178
+ "context_tower.tower.model.layers.20.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
179
+ "context_tower.tower.model.layers.20.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
180
+ "context_tower.tower.model.layers.20.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
181
+ "context_tower.tower.model.layers.20.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
182
+ "context_tower.tower.model.layers.20.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
183
+ "context_tower.tower.model.layers.20.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
184
+ "context_tower.tower.model.layers.20.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
185
+ "context_tower.tower.model.layers.20.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
186
+ "context_tower.tower.model.layers.20.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
187
+ "context_tower.tower.model.layers.20.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
188
+ "context_tower.tower.model.layers.20.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
189
+ "context_tower.tower.model.layers.21.input_layernorm.weight": "model-00001-of-00004.safetensors",
190
+ "context_tower.tower.model.layers.21.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
191
+ "context_tower.tower.model.layers.21.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
192
+ "context_tower.tower.model.layers.21.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
193
+ "context_tower.tower.model.layers.21.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
194
+ "context_tower.tower.model.layers.21.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
195
+ "context_tower.tower.model.layers.21.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
196
+ "context_tower.tower.model.layers.21.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
197
+ "context_tower.tower.model.layers.21.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
198
+ "context_tower.tower.model.layers.21.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
199
+ "context_tower.tower.model.layers.21.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
200
+ "context_tower.tower.model.layers.21.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
201
+ "context_tower.tower.model.layers.22.input_layernorm.weight": "model-00001-of-00004.safetensors",
202
+ "context_tower.tower.model.layers.22.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
203
+ "context_tower.tower.model.layers.22.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
204
+ "context_tower.tower.model.layers.22.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
205
+ "context_tower.tower.model.layers.22.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
206
+ "context_tower.tower.model.layers.22.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
207
+ "context_tower.tower.model.layers.22.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
208
+ "context_tower.tower.model.layers.22.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
209
+ "context_tower.tower.model.layers.22.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
210
+ "context_tower.tower.model.layers.22.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
211
+ "context_tower.tower.model.layers.22.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
212
+ "context_tower.tower.model.layers.22.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
213
+ "context_tower.tower.model.layers.23.input_layernorm.weight": "model-00001-of-00004.safetensors",
214
+ "context_tower.tower.model.layers.23.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
215
+ "context_tower.tower.model.layers.23.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
216
+ "context_tower.tower.model.layers.23.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
217
+ "context_tower.tower.model.layers.23.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
218
+ "context_tower.tower.model.layers.23.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
219
+ "context_tower.tower.model.layers.23.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
220
+ "context_tower.tower.model.layers.23.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
221
+ "context_tower.tower.model.layers.23.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
222
+ "context_tower.tower.model.layers.23.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
223
+ "context_tower.tower.model.layers.23.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
224
+ "context_tower.tower.model.layers.23.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
225
+ "context_tower.tower.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
226
+ "context_tower.tower.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
227
+ "context_tower.tower.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
228
+ "context_tower.tower.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
229
+ "context_tower.tower.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
230
+ "context_tower.tower.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
231
+ "context_tower.tower.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
232
+ "context_tower.tower.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
233
+ "context_tower.tower.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
234
+ "context_tower.tower.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
235
+ "context_tower.tower.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
236
+ "context_tower.tower.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
237
+ "context_tower.tower.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
238
+ "context_tower.tower.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
239
+ "context_tower.tower.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
240
+ "context_tower.tower.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
241
+ "context_tower.tower.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
242
+ "context_tower.tower.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
243
+ "context_tower.tower.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
244
+ "context_tower.tower.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
245
+ "context_tower.tower.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
246
+ "context_tower.tower.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
247
+ "context_tower.tower.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
248
+ "context_tower.tower.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
249
+ "context_tower.tower.model.layers.5.input_layernorm.weight": "model-00001-of-00004.safetensors",
250
+ "context_tower.tower.model.layers.5.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
251
+ "context_tower.tower.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
252
+ "context_tower.tower.model.layers.5.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
253
+ "context_tower.tower.model.layers.5.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
254
+ "context_tower.tower.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
255
+ "context_tower.tower.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
256
+ "context_tower.tower.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
257
+ "context_tower.tower.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
258
+ "context_tower.tower.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
259
+ "context_tower.tower.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
260
+ "context_tower.tower.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
261
+ "context_tower.tower.model.layers.6.input_layernorm.weight": "model-00001-of-00004.safetensors",
262
+ "context_tower.tower.model.layers.6.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
263
+ "context_tower.tower.model.layers.6.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
264
+ "context_tower.tower.model.layers.6.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
265
+ "context_tower.tower.model.layers.6.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
266
+ "context_tower.tower.model.layers.6.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
267
+ "context_tower.tower.model.layers.6.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
268
+ "context_tower.tower.model.layers.6.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
269
+ "context_tower.tower.model.layers.6.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
270
+ "context_tower.tower.model.layers.6.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
271
+ "context_tower.tower.model.layers.6.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
272
+ "context_tower.tower.model.layers.6.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
273
+ "context_tower.tower.model.layers.7.input_layernorm.weight": "model-00001-of-00004.safetensors",
274
+ "context_tower.tower.model.layers.7.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
275
+ "context_tower.tower.model.layers.7.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
276
+ "context_tower.tower.model.layers.7.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
277
+ "context_tower.tower.model.layers.7.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
278
+ "context_tower.tower.model.layers.7.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
279
+ "context_tower.tower.model.layers.7.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
280
+ "context_tower.tower.model.layers.7.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
281
+ "context_tower.tower.model.layers.7.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
282
+ "context_tower.tower.model.layers.7.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
283
+ "context_tower.tower.model.layers.7.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
284
+ "context_tower.tower.model.layers.7.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
285
+ "context_tower.tower.model.layers.8.input_layernorm.weight": "model-00001-of-00004.safetensors",
286
+ "context_tower.tower.model.layers.8.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
287
+ "context_tower.tower.model.layers.8.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
288
+ "context_tower.tower.model.layers.8.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
289
+ "context_tower.tower.model.layers.8.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
290
+ "context_tower.tower.model.layers.8.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
291
+ "context_tower.tower.model.layers.8.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
292
+ "context_tower.tower.model.layers.8.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
293
+ "context_tower.tower.model.layers.8.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
294
+ "context_tower.tower.model.layers.8.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
295
+ "context_tower.tower.model.layers.8.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
296
+ "context_tower.tower.model.layers.8.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
297
+ "context_tower.tower.model.layers.9.input_layernorm.weight": "model-00001-of-00004.safetensors",
298
+ "context_tower.tower.model.layers.9.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
299
+ "context_tower.tower.model.layers.9.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
300
+ "context_tower.tower.model.layers.9.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
301
+ "context_tower.tower.model.layers.9.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
302
+ "context_tower.tower.model.layers.9.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
303
+ "context_tower.tower.model.layers.9.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
304
+ "context_tower.tower.model.layers.9.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
305
+ "context_tower.tower.model.layers.9.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
306
+ "context_tower.tower.model.layers.9.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
307
+ "context_tower.tower.model.layers.9.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
308
+ "context_tower.tower.model.layers.9.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
309
+ "context_tower.tower.model.norm.weight": "model-00001-of-00004.safetensors",
310
+ "language_model.lm_head.weight": "model-00004-of-00004.safetensors",
311
+ "language_model.model.embed_tokens.weight": "model-00001-of-00004.safetensors",
312
+ "language_model.model.layers.0.input_layernorm.weight": "model-00001-of-00004.safetensors",
313
+ "language_model.model.layers.0.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
314
+ "language_model.model.layers.0.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
315
+ "language_model.model.layers.0.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
316
+ "language_model.model.layers.0.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
317
+ "language_model.model.layers.0.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
318
+ "language_model.model.layers.0.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
319
+ "language_model.model.layers.0.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
320
+ "language_model.model.layers.0.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
321
+ "language_model.model.layers.0.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
322
+ "language_model.model.layers.0.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
323
+ "language_model.model.layers.0.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
324
+ "language_model.model.layers.1.input_layernorm.weight": "model-00001-of-00004.safetensors",
325
+ "language_model.model.layers.1.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
326
+ "language_model.model.layers.1.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
327
+ "language_model.model.layers.1.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
328
+ "language_model.model.layers.1.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
329
+ "language_model.model.layers.1.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
330
+ "language_model.model.layers.1.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
331
+ "language_model.model.layers.1.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
332
+ "language_model.model.layers.1.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
333
+ "language_model.model.layers.1.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
334
+ "language_model.model.layers.1.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
335
+ "language_model.model.layers.1.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
336
+ "language_model.model.layers.10.input_layernorm.weight": "model-00002-of-00004.safetensors",
337
+ "language_model.model.layers.10.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
338
+ "language_model.model.layers.10.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
339
+ "language_model.model.layers.10.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
340
+ "language_model.model.layers.10.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
341
+ "language_model.model.layers.10.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
342
+ "language_model.model.layers.10.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
343
+ "language_model.model.layers.10.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
344
+ "language_model.model.layers.10.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
345
+ "language_model.model.layers.10.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
346
+ "language_model.model.layers.10.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
347
+ "language_model.model.layers.10.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
348
+ "language_model.model.layers.11.input_layernorm.weight": "model-00002-of-00004.safetensors",
349
+ "language_model.model.layers.11.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
350
+ "language_model.model.layers.11.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
351
+ "language_model.model.layers.11.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
352
+ "language_model.model.layers.11.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
353
+ "language_model.model.layers.11.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
354
+ "language_model.model.layers.11.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
355
+ "language_model.model.layers.11.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
356
+ "language_model.model.layers.11.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
357
+ "language_model.model.layers.11.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
358
+ "language_model.model.layers.11.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
359
+ "language_model.model.layers.11.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
360
+ "language_model.model.layers.12.input_layernorm.weight": "model-00002-of-00004.safetensors",
361
+ "language_model.model.layers.12.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
362
+ "language_model.model.layers.12.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
363
+ "language_model.model.layers.12.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
364
+ "language_model.model.layers.12.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
365
+ "language_model.model.layers.12.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
366
+ "language_model.model.layers.12.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
367
+ "language_model.model.layers.12.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
368
+ "language_model.model.layers.12.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
369
+ "language_model.model.layers.12.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
370
+ "language_model.model.layers.12.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
371
+ "language_model.model.layers.12.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
372
+ "language_model.model.layers.13.input_layernorm.weight": "model-00002-of-00004.safetensors",
373
+ "language_model.model.layers.13.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
374
+ "language_model.model.layers.13.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
375
+ "language_model.model.layers.13.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
376
+ "language_model.model.layers.13.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
377
+ "language_model.model.layers.13.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
378
+ "language_model.model.layers.13.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
379
+ "language_model.model.layers.13.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
380
+ "language_model.model.layers.13.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
381
+ "language_model.model.layers.13.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
382
+ "language_model.model.layers.13.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
383
+ "language_model.model.layers.13.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
384
+ "language_model.model.layers.14.input_layernorm.weight": "model-00002-of-00004.safetensors",
385
+ "language_model.model.layers.14.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
386
+ "language_model.model.layers.14.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
387
+ "language_model.model.layers.14.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
388
+ "language_model.model.layers.14.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
389
+ "language_model.model.layers.14.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
390
+ "language_model.model.layers.14.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
391
+ "language_model.model.layers.14.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
392
+ "language_model.model.layers.14.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
393
+ "language_model.model.layers.14.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
394
+ "language_model.model.layers.14.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
395
+ "language_model.model.layers.14.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
396
+ "language_model.model.layers.15.input_layernorm.weight": "model-00002-of-00004.safetensors",
397
+ "language_model.model.layers.15.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
398
+ "language_model.model.layers.15.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
399
+ "language_model.model.layers.15.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
400
+ "language_model.model.layers.15.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
401
+ "language_model.model.layers.15.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
402
+ "language_model.model.layers.15.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
403
+ "language_model.model.layers.15.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
404
+ "language_model.model.layers.15.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
405
+ "language_model.model.layers.15.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
406
+ "language_model.model.layers.15.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
407
+ "language_model.model.layers.15.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
408
+ "language_model.model.layers.16.input_layernorm.weight": "model-00003-of-00004.safetensors",
409
+ "language_model.model.layers.16.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
410
+ "language_model.model.layers.16.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
411
+ "language_model.model.layers.16.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
412
+ "language_model.model.layers.16.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
413
+ "language_model.model.layers.16.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
414
+ "language_model.model.layers.16.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
415
+ "language_model.model.layers.16.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
416
+ "language_model.model.layers.16.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
417
+ "language_model.model.layers.16.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
418
+ "language_model.model.layers.16.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
419
+ "language_model.model.layers.16.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
420
+ "language_model.model.layers.17.input_layernorm.weight": "model-00003-of-00004.safetensors",
421
+ "language_model.model.layers.17.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
422
+ "language_model.model.layers.17.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
423
+ "language_model.model.layers.17.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
424
+ "language_model.model.layers.17.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
425
+ "language_model.model.layers.17.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
426
+ "language_model.model.layers.17.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
427
+ "language_model.model.layers.17.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
428
+ "language_model.model.layers.17.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
429
+ "language_model.model.layers.17.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
430
+ "language_model.model.layers.17.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
431
+ "language_model.model.layers.17.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
432
+ "language_model.model.layers.18.input_layernorm.weight": "model-00003-of-00004.safetensors",
433
+ "language_model.model.layers.18.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
434
+ "language_model.model.layers.18.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
435
+ "language_model.model.layers.18.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
436
+ "language_model.model.layers.18.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
437
+ "language_model.model.layers.18.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
438
+ "language_model.model.layers.18.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
439
+ "language_model.model.layers.18.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
440
+ "language_model.model.layers.18.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
441
+ "language_model.model.layers.18.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
442
+ "language_model.model.layers.18.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
443
+ "language_model.model.layers.18.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
444
+ "language_model.model.layers.19.input_layernorm.weight": "model-00003-of-00004.safetensors",
445
+ "language_model.model.layers.19.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
446
+ "language_model.model.layers.19.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
447
+ "language_model.model.layers.19.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
448
+ "language_model.model.layers.19.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
449
+ "language_model.model.layers.19.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
450
+ "language_model.model.layers.19.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
451
+ "language_model.model.layers.19.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
452
+ "language_model.model.layers.19.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
453
+ "language_model.model.layers.19.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
454
+ "language_model.model.layers.19.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
455
+ "language_model.model.layers.19.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
456
+ "language_model.model.layers.2.input_layernorm.weight": "model-00001-of-00004.safetensors",
457
+ "language_model.model.layers.2.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
458
+ "language_model.model.layers.2.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
459
+ "language_model.model.layers.2.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
460
+ "language_model.model.layers.2.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
461
+ "language_model.model.layers.2.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
462
+ "language_model.model.layers.2.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
463
+ "language_model.model.layers.2.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
464
+ "language_model.model.layers.2.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
465
+ "language_model.model.layers.2.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
466
+ "language_model.model.layers.2.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
467
+ "language_model.model.layers.2.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
468
+ "language_model.model.layers.20.input_layernorm.weight": "model-00003-of-00004.safetensors",
469
+ "language_model.model.layers.20.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
470
+ "language_model.model.layers.20.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
471
+ "language_model.model.layers.20.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
472
+ "language_model.model.layers.20.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
473
+ "language_model.model.layers.20.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
474
+ "language_model.model.layers.20.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
475
+ "language_model.model.layers.20.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
476
+ "language_model.model.layers.20.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
477
+ "language_model.model.layers.20.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
478
+ "language_model.model.layers.20.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
479
+ "language_model.model.layers.20.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
480
+ "language_model.model.layers.21.input_layernorm.weight": "model-00003-of-00004.safetensors",
481
+ "language_model.model.layers.21.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
482
+ "language_model.model.layers.21.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
483
+ "language_model.model.layers.21.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
484
+ "language_model.model.layers.21.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
485
+ "language_model.model.layers.21.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
486
+ "language_model.model.layers.21.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
487
+ "language_model.model.layers.21.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
488
+ "language_model.model.layers.21.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
489
+ "language_model.model.layers.21.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
490
+ "language_model.model.layers.21.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
491
+ "language_model.model.layers.21.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
492
+ "language_model.model.layers.22.input_layernorm.weight": "model-00003-of-00004.safetensors",
493
+ "language_model.model.layers.22.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
494
+ "language_model.model.layers.22.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
495
+ "language_model.model.layers.22.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
496
+ "language_model.model.layers.22.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
497
+ "language_model.model.layers.22.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
498
+ "language_model.model.layers.22.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
499
+ "language_model.model.layers.22.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
500
+ "language_model.model.layers.22.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
501
+ "language_model.model.layers.22.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
502
+ "language_model.model.layers.22.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
503
+ "language_model.model.layers.22.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
504
+ "language_model.model.layers.23.input_layernorm.weight": "model-00003-of-00004.safetensors",
505
+ "language_model.model.layers.23.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
506
+ "language_model.model.layers.23.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
507
+ "language_model.model.layers.23.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
508
+ "language_model.model.layers.23.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
509
+ "language_model.model.layers.23.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
510
+ "language_model.model.layers.23.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
511
+ "language_model.model.layers.23.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
512
+ "language_model.model.layers.23.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
513
+ "language_model.model.layers.23.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
514
+ "language_model.model.layers.23.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
515
+ "language_model.model.layers.23.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
516
+ "language_model.model.layers.24.input_layernorm.weight": "model-00003-of-00004.safetensors",
517
+ "language_model.model.layers.24.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
518
+ "language_model.model.layers.24.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
519
+ "language_model.model.layers.24.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
520
+ "language_model.model.layers.24.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
521
+ "language_model.model.layers.24.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
522
+ "language_model.model.layers.24.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
523
+ "language_model.model.layers.24.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
524
+ "language_model.model.layers.24.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
525
+ "language_model.model.layers.24.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
526
+ "language_model.model.layers.24.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
527
+ "language_model.model.layers.24.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
528
+ "language_model.model.layers.25.input_layernorm.weight": "model-00003-of-00004.safetensors",
529
+ "language_model.model.layers.25.mlp.down_proj.weight": "model-00003-of-00004.safetensors",
530
+ "language_model.model.layers.25.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
531
+ "language_model.model.layers.25.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
532
+ "language_model.model.layers.25.post_attention_layernorm.weight": "model-00003-of-00004.safetensors",
533
+ "language_model.model.layers.25.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
534
+ "language_model.model.layers.25.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
535
+ "language_model.model.layers.25.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
536
+ "language_model.model.layers.25.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
537
+ "language_model.model.layers.25.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
538
+ "language_model.model.layers.25.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
539
+ "language_model.model.layers.25.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
540
+ "language_model.model.layers.26.input_layernorm.weight": "model-00004-of-00004.safetensors",
541
+ "language_model.model.layers.26.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
542
+ "language_model.model.layers.26.mlp.gate_proj.weight": "model-00003-of-00004.safetensors",
543
+ "language_model.model.layers.26.mlp.up_proj.weight": "model-00003-of-00004.safetensors",
544
+ "language_model.model.layers.26.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
545
+ "language_model.model.layers.26.self_attn.k_proj.bias": "model-00003-of-00004.safetensors",
546
+ "language_model.model.layers.26.self_attn.k_proj.weight": "model-00003-of-00004.safetensors",
547
+ "language_model.model.layers.26.self_attn.o_proj.weight": "model-00003-of-00004.safetensors",
548
+ "language_model.model.layers.26.self_attn.q_proj.bias": "model-00003-of-00004.safetensors",
549
+ "language_model.model.layers.26.self_attn.q_proj.weight": "model-00003-of-00004.safetensors",
550
+ "language_model.model.layers.26.self_attn.v_proj.bias": "model-00003-of-00004.safetensors",
551
+ "language_model.model.layers.26.self_attn.v_proj.weight": "model-00003-of-00004.safetensors",
552
+ "language_model.model.layers.27.input_layernorm.weight": "model-00004-of-00004.safetensors",
553
+ "language_model.model.layers.27.mlp.down_proj.weight": "model-00004-of-00004.safetensors",
554
+ "language_model.model.layers.27.mlp.gate_proj.weight": "model-00004-of-00004.safetensors",
555
+ "language_model.model.layers.27.mlp.up_proj.weight": "model-00004-of-00004.safetensors",
556
+ "language_model.model.layers.27.post_attention_layernorm.weight": "model-00004-of-00004.safetensors",
557
+ "language_model.model.layers.27.self_attn.k_proj.bias": "model-00004-of-00004.safetensors",
558
+ "language_model.model.layers.27.self_attn.k_proj.weight": "model-00004-of-00004.safetensors",
559
+ "language_model.model.layers.27.self_attn.o_proj.weight": "model-00004-of-00004.safetensors",
560
+ "language_model.model.layers.27.self_attn.q_proj.bias": "model-00004-of-00004.safetensors",
561
+ "language_model.model.layers.27.self_attn.q_proj.weight": "model-00004-of-00004.safetensors",
562
+ "language_model.model.layers.27.self_attn.v_proj.bias": "model-00004-of-00004.safetensors",
563
+ "language_model.model.layers.27.self_attn.v_proj.weight": "model-00004-of-00004.safetensors",
564
+ "language_model.model.layers.3.input_layernorm.weight": "model-00001-of-00004.safetensors",
565
+ "language_model.model.layers.3.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
566
+ "language_model.model.layers.3.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
567
+ "language_model.model.layers.3.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
568
+ "language_model.model.layers.3.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
569
+ "language_model.model.layers.3.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
570
+ "language_model.model.layers.3.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
571
+ "language_model.model.layers.3.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
572
+ "language_model.model.layers.3.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
573
+ "language_model.model.layers.3.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
574
+ "language_model.model.layers.3.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
575
+ "language_model.model.layers.3.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
576
+ "language_model.model.layers.4.input_layernorm.weight": "model-00001-of-00004.safetensors",
577
+ "language_model.model.layers.4.mlp.down_proj.weight": "model-00001-of-00004.safetensors",
578
+ "language_model.model.layers.4.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
579
+ "language_model.model.layers.4.mlp.up_proj.weight": "model-00001-of-00004.safetensors",
580
+ "language_model.model.layers.4.post_attention_layernorm.weight": "model-00001-of-00004.safetensors",
581
+ "language_model.model.layers.4.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
582
+ "language_model.model.layers.4.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
583
+ "language_model.model.layers.4.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
584
+ "language_model.model.layers.4.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
585
+ "language_model.model.layers.4.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
586
+ "language_model.model.layers.4.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
587
+ "language_model.model.layers.4.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
588
+ "language_model.model.layers.5.input_layernorm.weight": "model-00002-of-00004.safetensors",
589
+ "language_model.model.layers.5.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
590
+ "language_model.model.layers.5.mlp.gate_proj.weight": "model-00001-of-00004.safetensors",
591
+ "language_model.model.layers.5.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
592
+ "language_model.model.layers.5.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
593
+ "language_model.model.layers.5.self_attn.k_proj.bias": "model-00001-of-00004.safetensors",
594
+ "language_model.model.layers.5.self_attn.k_proj.weight": "model-00001-of-00004.safetensors",
595
+ "language_model.model.layers.5.self_attn.o_proj.weight": "model-00001-of-00004.safetensors",
596
+ "language_model.model.layers.5.self_attn.q_proj.bias": "model-00001-of-00004.safetensors",
597
+ "language_model.model.layers.5.self_attn.q_proj.weight": "model-00001-of-00004.safetensors",
598
+ "language_model.model.layers.5.self_attn.v_proj.bias": "model-00001-of-00004.safetensors",
599
+ "language_model.model.layers.5.self_attn.v_proj.weight": "model-00001-of-00004.safetensors",
600
+ "language_model.model.layers.6.input_layernorm.weight": "model-00002-of-00004.safetensors",
601
+ "language_model.model.layers.6.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
602
+ "language_model.model.layers.6.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
603
+ "language_model.model.layers.6.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
604
+ "language_model.model.layers.6.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
605
+ "language_model.model.layers.6.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
606
+ "language_model.model.layers.6.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
607
+ "language_model.model.layers.6.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
608
+ "language_model.model.layers.6.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
609
+ "language_model.model.layers.6.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
610
+ "language_model.model.layers.6.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
611
+ "language_model.model.layers.6.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
612
+ "language_model.model.layers.7.input_layernorm.weight": "model-00002-of-00004.safetensors",
613
+ "language_model.model.layers.7.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
614
+ "language_model.model.layers.7.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
615
+ "language_model.model.layers.7.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
616
+ "language_model.model.layers.7.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
617
+ "language_model.model.layers.7.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
618
+ "language_model.model.layers.7.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
619
+ "language_model.model.layers.7.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
620
+ "language_model.model.layers.7.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
621
+ "language_model.model.layers.7.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
622
+ "language_model.model.layers.7.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
623
+ "language_model.model.layers.7.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
624
+ "language_model.model.layers.8.input_layernorm.weight": "model-00002-of-00004.safetensors",
625
+ "language_model.model.layers.8.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
626
+ "language_model.model.layers.8.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
627
+ "language_model.model.layers.8.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
628
+ "language_model.model.layers.8.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
629
+ "language_model.model.layers.8.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
630
+ "language_model.model.layers.8.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
631
+ "language_model.model.layers.8.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
632
+ "language_model.model.layers.8.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
633
+ "language_model.model.layers.8.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
634
+ "language_model.model.layers.8.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
635
+ "language_model.model.layers.8.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
636
+ "language_model.model.layers.9.input_layernorm.weight": "model-00002-of-00004.safetensors",
637
+ "language_model.model.layers.9.mlp.down_proj.weight": "model-00002-of-00004.safetensors",
638
+ "language_model.model.layers.9.mlp.gate_proj.weight": "model-00002-of-00004.safetensors",
639
+ "language_model.model.layers.9.mlp.up_proj.weight": "model-00002-of-00004.safetensors",
640
+ "language_model.model.layers.9.post_attention_layernorm.weight": "model-00002-of-00004.safetensors",
641
+ "language_model.model.layers.9.self_attn.k_proj.bias": "model-00002-of-00004.safetensors",
642
+ "language_model.model.layers.9.self_attn.k_proj.weight": "model-00002-of-00004.safetensors",
643
+ "language_model.model.layers.9.self_attn.o_proj.weight": "model-00002-of-00004.safetensors",
644
+ "language_model.model.layers.9.self_attn.q_proj.bias": "model-00002-of-00004.safetensors",
645
+ "language_model.model.layers.9.self_attn.q_proj.weight": "model-00002-of-00004.safetensors",
646
+ "language_model.model.layers.9.self_attn.v_proj.bias": "model-00002-of-00004.safetensors",
647
+ "language_model.model.layers.9.self_attn.v_proj.weight": "model-00002-of-00004.safetensors",
648
+ "language_model.model.norm.weight": "model-00004-of-00004.safetensors"
649
+ }
650
+ }
modeling_c_cubed.py ADDED
@@ -0,0 +1,738 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # coding=utf-8
2
+ """PyTorch Ccubed model."""
3
+
4
+ import math
5
+ from dataclasses import dataclass
6
+ from typing import List, Optional, Tuple, Union
7
+
8
+ import numpy as np
9
+ import torch
10
+ import torch.utils.checkpoint
11
+ from torch import nn
12
+
13
+ from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
14
+ from transformers.activations import ACT2FN
15
+ from transformers.cache_utils import Cache, DynamicCache, StaticCache
16
+ from transformers.processing_utils import Unpack
17
+ from transformers.image_processing_utils import select_best_resolution
18
+ from transformers.modeling_outputs import ModelOutput
19
+ from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
20
+ from transformers.utils import (
21
+ add_start_docstrings,
22
+ add_start_docstrings_to_model_forward,
23
+ logging,
24
+ replace_return_docstrings,
25
+ is_flash_attn_2_available,
26
+ is_flash_attn_greater_or_equal_2_10
27
+ )
28
+ from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
29
+ from .configuration_c_cubed import CcubedConfig
30
+
31
+
32
+ logger = logging.get_logger(__name__)
33
+
34
+ _CONFIG_FOR_DOC = "CcubedConfig"
35
+
36
+
37
+ def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
38
+ """
39
+ This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
40
+ num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
41
+ """
42
+ batch, num_key_value_heads, slen, head_dim = hidden_states.shape
43
+ if n_rep == 1:
44
+ return hidden_states
45
+ hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
46
+ return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
47
+
48
+
49
+ @dataclass
50
+ class CcubedCausalLMOutputWithPast(ModelOutput):
51
+ """
52
+ Base class for Ccubed causal language model (or autoregressive) outputs.
53
+
54
+ Args:
55
+ loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
56
+ Language modeling loss (for next-token prediction).
57
+ logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
58
+ Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
59
+ past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
60
+ Tuple of `tuple(torch.FloatTensor)` of length `config.context_config.num_layers`, with each tuple having 2 tensors of shape
61
+ `(batch_size, num_heads, sequence_length, embed_size_per_head)`)
62
+
63
+ Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
64
+ `past_key_values` input) to speed up sequential decoding.
65
+ hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
66
+ Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
67
+ one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
68
+
69
+ Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
70
+ attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
71
+ Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
72
+ sequence_length)`.
73
+
74
+ Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
75
+ heads.
76
+ context_hidden_states (`torch.FloatTensor`, *optional*):
77
+ A `torch.FloatTensor` of size (batch_size, sequence_length, hidden_size)`.
78
+ context_hidden_states of the model produced by the context encoder and after projecting the last hidden state.
79
+ """
80
+
81
+ loss: Optional[torch.FloatTensor] = None
82
+ logits: torch.FloatTensor = None
83
+ past_key_values: Optional[List[torch.FloatTensor]] = None
84
+ hidden_states: Optional[Tuple[torch.FloatTensor]] = None
85
+ attentions: Optional[Tuple[torch.FloatTensor]] = None
86
+ context_hidden_states: Optional[torch.FloatTensor] = None
87
+
88
+
89
+ class CcubedDynamicAttention(nn.Module):
90
+ """
91
+ Attention mechanism adapted for dynamic output size based on Mistral's architecture. This attention layer computes
92
+ the output attention scores which are used to determine the pooling size dynamically.
93
+ """
94
+
95
+ def __init__(self, config: CcubedConfig):
96
+ super().__init__()
97
+
98
+ self.config = config
99
+ self.hidden_size = config.context_config.hidden_size
100
+ self.num_heads = config.context_config.num_attention_heads
101
+ self.head_dim = getattr(config.context_config, "head_dim", self.hidden_size // self.num_heads)
102
+ self.num_key_value_heads = config.context_config.num_key_value_heads
103
+ self.num_key_value_groups = self.num_heads // self.num_key_value_heads
104
+ self.scaling = self.head_dim ** -0.5
105
+ self.attention_dropout = getattr(self.config.context_config, "attention_dropout", 0.0)
106
+
107
+ # Query, Key, Value, and Output Projections
108
+ self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
109
+ self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
110
+ self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
111
+ self.o_proj = nn.Linear(self.num_heads * self.head_dim, 1, bias=False)
112
+
113
+ def forward(
114
+ self,
115
+ hidden_states: torch.Tensor,
116
+ attention_mask: Optional[torch.Tensor] = None,
117
+ output_attentions: bool = False,
118
+ ):
119
+ # Get input dimensions
120
+ bsz, seq_len, hidden_size = hidden_states.size()
121
+
122
+ # Query, Key, Value projections
123
+ query_states = self.q_proj(hidden_states)
124
+ key_states = self.k_proj(hidden_states)
125
+ value_states = self.v_proj(hidden_states)
126
+
127
+ # Reshape and transpose to [batch_size, num_heads, seq_len, head_dim]
128
+ query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
129
+ key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
130
+ value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
131
+
132
+ # Repeat key and value states for multi-head attention
133
+ key_states = repeat_kv(key_states, self.num_key_value_groups)
134
+ value_states = repeat_kv(value_states, self.num_key_value_groups)
135
+
136
+ # Compute attention scores
137
+ attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
138
+
139
+ # Apply softmax to get attention probabilities
140
+ attn_weights = nn.functional.softmax(attn_weights, dim=-1)
141
+
142
+ # Apply attention to values
143
+ attn_output = torch.matmul(attn_weights, value_states)
144
+
145
+ # Reshape attention output
146
+ attn_output = attn_output.transpose(1, 2).contiguous()
147
+ attn_output = attn_output.reshape(bsz, seq_len, -1)
148
+
149
+ # Project to output dimension
150
+ attn_output = self.o_proj(attn_output)
151
+
152
+ if not output_attentions:
153
+ attn_weights = None
154
+
155
+ return attn_output, attn_weights
156
+
157
+
158
+ class CcubedDynamicFlashAttention2(CcubedDynamicAttention):
159
+ def __init__(self, config: CcubedConfig):
160
+ super().__init__(config)
161
+ self.is_causal = False # Assuming non-causal attention for this context
162
+
163
+ def forward(
164
+ self,
165
+ hidden_states: torch.Tensor,
166
+ attention_mask: Optional[torch.Tensor] = None,
167
+ output_attentions: bool = False,
168
+ **kwargs: Unpack[FlashAttentionKwargs],
169
+ ):
170
+ input_shape = hidden_states.shape[:-1]
171
+ hidden_shape = (*input_shape, -1, self.head_dim)
172
+
173
+ query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
174
+ key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
175
+ value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
176
+
177
+ sliding_window = None
178
+ if getattr(self.config, "sliding_window", None) is not None:
179
+ sliding_window = self.config.sliding_window
180
+
181
+ attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
182
+
183
+ attn_output, attn_weights = attention_interface(
184
+ self,
185
+ query_states,
186
+ key_states,
187
+ value_states,
188
+ attention_mask,
189
+ dropout=0.0 if not self.training else self.attention_dropout,
190
+ scaling=self.scaling,
191
+ sliding_window=sliding_window, # main diff with Llama
192
+ **kwargs,
193
+ )
194
+
195
+ attn_output = attn_output.reshape(*input_shape, -1).contiguous()
196
+ attn_output = self.o_proj(attn_output)
197
+ return attn_output, attn_weights
198
+
199
+
200
+ class CcubedDynamicWeightedAvgPool1d(nn.Module):
201
+ """
202
+ A module that dynamically determines the output size based on input
203
+ and performs weighted average pooling with separate attention mechanisms
204
+ for output size estimation and weighted pooling.
205
+ """
206
+ def __init__(self, config, output_size_min=32, output_size_max=131072):
207
+ super().__init__()
208
+ # Attention mechanism for estimating output size
209
+ self.size_estim_attn = CcubedDynamicFlashAttention2(config) # CcubedDynamicAttention(config)
210
+ # Attention mechanism for weighted pooling
211
+ self.imp_estim_attn = CcubedDynamicFlashAttention2(config) # CcubedDynamicAttention(config)
212
+ self.output_size_min = output_size_min
213
+ self.output_size_max = (
214
+ config.context_config.max_position_embeddings if config.context_config.max_position_embeddings is not None else output_size_max
215
+ )
216
+ self.scale_param = nn.Parameter(torch.tensor(0.01))
217
+
218
+ def forward(self, hidden_states, context_attention_mask=None):
219
+ """
220
+ Args:
221
+ x: Input tensor of shape (batch_size, seq_len, hidden_size)
222
+
223
+ Returns:
224
+ Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
225
+ - pooled_output: Padded tensor of compressed sequences (batch_size, max_pooled_len, hidden_size)
226
+ - attention_mask: Binary mask indicating valid tokens (batch_size, max_pooled_len)
227
+ - dynamic_output_sizes: Dynamic output sizes for each batch (batch_size,)
228
+ """
229
+ batch_size, seq_len, hidden_size = hidden_states.size()
230
+ device = hidden_states.device
231
+
232
+ # Estimate output size using attention mechanism
233
+ # attn_output_size: (batch_size, seq_len, 1)
234
+ attn_output_size, _ = self.size_estim_attn(hidden_states)
235
+
236
+ # Calculate dynamic output sizes for each batch item
237
+ # (batch_size, seq_len, 1) -> (batch_size, 1)
238
+ batch_attn_means = torch.sigmoid(attn_output_size).mean(dim=1)
239
+ scaled_batch_means = batch_attn_means * self.scale_param.to(batch_attn_means.dtype)
240
+
241
+ # Calculate dynamic output sizes (batch_size,)
242
+ dynamic_output_sizes = (
243
+ (scaled_batch_means * (self.output_size_max - self.output_size_min)) + self.output_size_min
244
+ ).int().squeeze(-1)
245
+
246
+ max_pooled_len = dynamic_output_sizes.max().item()
247
+
248
+ # Compute attention weights for weighted pooling
249
+ # attn_output_weights: (batch_size, seq_len, 1)
250
+ attn_output_weights, _ = self.imp_estim_attn(hidden_states)
251
+ # Normalize with sigmoid function for use as weights
252
+ # attention_weights: (batch_size, seq_len)
253
+ attention_weights = torch.sigmoid(attn_output_weights).squeeze(-1)
254
+
255
+ # If context_attention_mask is provided, apply it to zero out weights for invalid tokens
256
+ if context_attention_mask is not None:
257
+ attention_weights = attention_weights * context_attention_mask
258
+
259
+ # Initialize output tensors
260
+ # pooled_output: (batch_size, max_pooled_len, hidden_size)
261
+ pooled_output = torch.zeros(
262
+ batch_size, max_pooled_len, hidden_size,
263
+ device=device, dtype=hidden_states.dtype
264
+ )
265
+ # attention_mask: (batch_size, max_pooled_len)
266
+ attention_mask = torch.zeros(
267
+ batch_size, max_pooled_len,
268
+ dtype=torch.bool, device=device
269
+ )
270
+
271
+ for batch_idx in range(batch_size):
272
+ output_size = dynamic_output_sizes[batch_idx].item()
273
+ item_input = hidden_states[batch_idx] # Shape: (seq_len, hidden_size)
274
+ item_weights = attention_weights[batch_idx] # Shape: (seq_len)
275
+
276
+ # Perform weighted pooling
277
+ pooled_values = []
278
+ batch_attn_mask = torch.zeros(output_size, dtype=torch.bool, device=device)
279
+ # Split the sequence evenly
280
+ intervals = torch.linspace(0, seq_len, steps=output_size + 1).long()
281
+ for i in range(output_size):
282
+ start = intervals[i].item()
283
+ end = intervals[i + 1].item()
284
+ chunk_input = item_input[start:end] # Shape: (chunk_size, hidden_size)
285
+ chunk_weights = item_weights[start:end] # Shape: (chunk_size)
286
+ if chunk_weights.sum() == 0:
287
+ # If the sum of weights is zero, add a zero vector
288
+ pooled_value = torch.zeros(hidden_size, device=device, dtype=hidden_states.dtype)
289
+ else:
290
+ # Calculate weighted average
291
+ weighted_input = chunk_input * chunk_weights.unsqueeze(-1) # Shape: (chunk_size, hidden_size)
292
+ pooled_value = weighted_input.sum(dim=0) / (chunk_weights.sum() + 1e-8) # Shape: (hidden_size)
293
+ batch_attn_mask[i] = True
294
+ pooled_values.append(pooled_value)
295
+
296
+ if pooled_values: # Only stack if there are values
297
+ # Convert the result to a tensor
298
+ pooled_values = torch.stack(pooled_values) # Shape: (output_size, hidden_size)
299
+ # Store the result
300
+ pooled_output[batch_idx, -output_size:] = pooled_values
301
+ attention_mask[batch_idx, -output_size:] = batch_attn_mask
302
+
303
+ return pooled_output, attention_mask, dynamic_output_sizes
304
+
305
+
306
+ class CcubedContextLanguageConnector(nn.Module):
307
+ def __init__(self, config: CcubedConfig):
308
+ super().__init__()
309
+
310
+ self.dynamic_pooling = CcubedDynamicWeightedAvgPool1d(config)
311
+
312
+ self.linear_1 = nn.Linear(
313
+ config.context_config.hidden_size,
314
+ config.text_config.hidden_size,
315
+ bias=True
316
+ )
317
+ self.act = ACT2FN[config.projector_hidden_act]
318
+ self.linear_2 = nn.Linear(
319
+ config.text_config.hidden_size,
320
+ config.text_config.hidden_size,
321
+ bias=True
322
+ )
323
+
324
+ def forward(self, context_features):
325
+ # context_features: [batch_size, seq_len, hidden_size]
326
+ # Apply dynamic adaptive average pooling with attention
327
+ pooled_output, attention_mask, dynamic_output_sizes = self.dynamic_pooling(
328
+ hidden_states=context_features
329
+ )
330
+
331
+ hidden_states = self.linear_1(pooled_output)
332
+ hidden_states = self.act(hidden_states)
333
+ hidden_states = self.linear_2(hidden_states)
334
+
335
+ return hidden_states, attention_mask
336
+
337
+
338
+ class CcubedContextTower(nn.Module):
339
+ def __init__(self, config: CcubedConfig):
340
+ super().__init__()
341
+
342
+ self.tower = AutoModelForCausalLM.from_config(
343
+ config.context_config,
344
+ attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
345
+ )
346
+ self.select_layer = config.context_feature_layer
347
+
348
+ def feature_select(self, llm_outputs):
349
+ hidden_states = llm_outputs.hidden_states
350
+ return hidden_states[self.select_layer]
351
+
352
+ def forward(
353
+ self,
354
+ input_ids,
355
+ inputs_embeds,
356
+ attention_mask
357
+ ):
358
+ outputs = self.tower(
359
+ input_ids=input_ids,
360
+ inputs_embeds=inputs_embeds,
361
+ attention_mask=attention_mask,
362
+ output_hidden_states=True
363
+ )
364
+ features = self.feature_select(outputs)
365
+ return features
366
+
367
+
368
+ class CcubedPreTrainedModel(PreTrainedModel):
369
+ config_class = CcubedConfig
370
+ base_model_prefix = "model"
371
+ supports_gradient_checkpointing = True
372
+ _no_split_modules = [] # ["CcubedContextLanguageConnector", "CcubedContextTower"]
373
+ _skip_keys_device_placement = ["past_key_values"]
374
+ _supports_flash_attn_2 = True
375
+ _supports_sdpa = True
376
+ _supports_cache_class = True
377
+ _supports_quantized_cache = True
378
+ _supports_static_cache = True
379
+
380
+ def _init_weights(self, module):
381
+ std = (
382
+ self.config.initializer_range
383
+ if hasattr(self.config, "initializer_range")
384
+ else self.config.text_config.initializer_range
385
+ )
386
+ if isinstance(module, nn.Linear):
387
+ module.weight.data.normal_(mean=0.0, std=std)
388
+ if module.bias is not None:
389
+ module.bias.data.zero_()
390
+ elif isinstance(module, nn.Embedding):
391
+ module.weight.data.normal_(mean=0.0, std=std)
392
+ if module.padding_idx is not None:
393
+ module.weight.data[module.padding_idx].zero_()
394
+
395
+
396
+ class CcubedForConditionalGeneration(CcubedPreTrainedModel):
397
+ def __init__(self, config: CcubedConfig):
398
+ super().__init__(config)
399
+ self.context_tower = CcubedContextTower(config)
400
+ self.connector = CcubedContextLanguageConnector(config)
401
+
402
+ self.language_model = AutoModelForCausalLM.from_config(
403
+ config.text_config,
404
+ attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
405
+ )
406
+
407
+ self.vocab_size = config.text_config.vocab_size
408
+ self.ignore_index = config.ignore_index if hasattr(config, 'ignore_index') else -100
409
+ self.start_of_context_token_id = config.start_of_context_token_id
410
+ self.end_of_context_token_id = config.end_of_context_token_id
411
+
412
+ self.post_init()
413
+
414
+ def get_input_embeddings(self):
415
+ return self.language_model.get_input_embeddings()
416
+
417
+ def get_context_input_embeddings(self):
418
+ return self.context_tower.tower.get_input_embeddings()
419
+
420
+ def set_input_embeddings(self, value):
421
+ self.language_model.set_input_embeddings(value)
422
+
423
+ def set_context_input_embeddings(self, value):
424
+ self.context_tower.tower.set_input_embeddings(value)
425
+
426
+ def get_output_embeddings(self):
427
+ return self.language_model.get_output_embeddings()
428
+
429
+ def get_context_output_embeddings(self):
430
+ return self.context_tower.tower.get_output_embeddings()
431
+
432
+ def set_output_embeddings(self, new_embeddings):
433
+ self.language_model.set_output_embeddings(new_embeddings)
434
+
435
+ def set_context_output_embeddings(self, new_embeddings):
436
+ self.context_tower.tower.set_output_embeddings(new_embeddings)
437
+
438
+ def set_decoder(self, decoder):
439
+ self.language_model.set_decoder(decoder)
440
+
441
+ def set_context_encoder(self, decoder):
442
+ self.context_tower.tower.set_decoder(decoder)
443
+
444
+ def get_decoder(self):
445
+ return self.language_model.get_decoder()
446
+
447
+ def get_context_encoder(self):
448
+ return self.context_tower.tower.get_decoder()
449
+
450
+ def tie_weights(self):
451
+ return self.language_model.tie_weights()
452
+
453
+ def context_tie_weights(self):
454
+ return self.context_tower.tower.tie_weights()
455
+
456
+ def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
457
+ model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
458
+ # update vocab size
459
+ self.config.text_config.vocab_size = model_embeds.num_embeddings
460
+ self.vocab_size = model_embeds.num_embeddings
461
+ return model_embeds
462
+
463
+ def _merge_context_features(
464
+ self,
465
+ context_features = None,
466
+ inputs_embeds = None,
467
+ attention_mask = None,
468
+ context_attention_mask=None,
469
+ position_ids=None,
470
+ labels=None,
471
+ ):
472
+ if context_features is None:
473
+ return inputs_embeds, attention_mask, position_ids, labels
474
+
475
+ batch_size, seq_length, embed_dim = inputs_embeds.shape
476
+ context_seq_len = context_features.size(1)
477
+
478
+ # Create embeddings for begin and end of context tokens
479
+ begin_context_embed = self.get_input_embeddings()(torch.tensor(self.start_of_context_token_id, device=context_features.device))
480
+ end_context_embed = self.get_input_embeddings()(torch.tensor(self.end_of_context_token_id, device=context_features.device))
481
+
482
+ # Determine the actual lengths of context sequences (excluding padding)
483
+ if context_attention_mask is not None:
484
+ # context_attention_mask: [batch_size, context_seq_len, 1]
485
+ context_attention_mask = context_attention_mask.squeeze(-1) # [batch_size, context_seq_len]
486
+ # Sum over sequence length to get actual lengths
487
+ context_lengths = context_attention_mask.sum(dim=1).long() # [batch_size]
488
+ else:
489
+ # If no context_attention_mask is provided, assume full length
490
+ context_lengths = torch.full((batch_size,), context_seq_len, device=context_features.device, dtype=torch.long)
491
+ context_attention_mask = torch.ones(batch_size, context_seq_len, device=context_features.device, dtype=torch.long)
492
+
493
+ # Rearrange context features to include padding at the beginning
494
+ # Identify the maximum context length (excluding padding)
495
+ max_context_length = context_lengths.max().item()
496
+ # Calculate the amount of padding needed for each sample
497
+ padding_lengths = context_seq_len - context_lengths # [batch_size]
498
+
499
+ # Create new context_features with padding at the beginning
500
+ new_context_features = []
501
+ for i in range(batch_size):
502
+ padding_len = padding_lengths[i].item()
503
+ # Create padding embeddings (zeros)
504
+ padding_embed = torch.zeros(padding_len, embed_dim, device=context_features.device, dtype=context_features.dtype)
505
+ # Get actual context features (excluding padding)
506
+ actual_context = context_features[i, padding_len:context_seq_len]
507
+ # Concatenate padding, begin token, actual context, end token
508
+ sample_context = torch.cat([
509
+ padding_embed,
510
+ begin_context_embed.unsqueeze(0),
511
+ actual_context,
512
+ end_context_embed.unsqueeze(0)
513
+ ], dim=0) # [context_seq_len + 2, embed_dim]
514
+ new_context_features.append(sample_context)
515
+ # Stack to create [batch_size, new_context_seq_len, embed_dim]
516
+ context_features = torch.stack(new_context_features, dim=0)
517
+ new_context_seq_len = context_features.size(1)
518
+
519
+ # Update context_attention_mask accordingly
520
+ new_context_attention_mask = []
521
+ for i in range(batch_size):
522
+ padding_len = padding_lengths[i].item()
523
+ # Create padding mask (zeros)
524
+ padding_mask = torch.zeros(padding_len, device=context_features.device, dtype=attention_mask.dtype)
525
+ # Begin and end token masks
526
+ begin_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
527
+ end_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
528
+ # Actual context attention mask (excluding padding)
529
+ actual_mask = context_attention_mask[i, padding_len:context_seq_len]
530
+ # Concatenate masks
531
+ sample_mask = torch.cat([
532
+ padding_mask,
533
+ begin_attention,
534
+ actual_mask,
535
+ end_attention
536
+ ], dim=0) # [context_seq_len + 2]
537
+ new_context_attention_mask.append(sample_mask)
538
+ # Stack to create [batch_size, new_context_seq_len]
539
+ context_attention_mask = torch.stack(new_context_attention_mask, dim=0)
540
+
541
+ # Concatenate context features with input embeddings
542
+ new_inputs_embeds = torch.cat([context_features, inputs_embeds], dim=1) # [batch_size, total_seq_len, embed_dim]
543
+
544
+ # Concatenate attention masks
545
+ new_attention_mask = torch.cat([context_attention_mask, attention_mask], dim=1)
546
+
547
+ # Create new position_ids
548
+ total_seq_len = new_inputs_embeds.size(1)
549
+ new_position_ids = torch.arange(total_seq_len, device=inputs_embeds.device).unsqueeze(0).expand(batch_size, -1)
550
+
551
+ # Update labels if provided
552
+ if labels is not None:
553
+ # Create ignore labels for context (including padding and special tokens)
554
+ context_labels = torch.full((batch_size, new_context_seq_len), self.ignore_index, device=labels.device, dtype=labels.dtype)
555
+ new_labels = torch.cat([context_labels, labels], dim=1)
556
+ else:
557
+ new_labels = None
558
+
559
+ return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
560
+
561
+
562
+ @replace_return_docstrings(output_type=CcubedCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
563
+ def forward(
564
+ self,
565
+ context_input_ids: torch.LongTensor = None,
566
+ context_inputs_embeds: Optional[torch.FloatTensor] = None,
567
+ context_attention_mask: Optional[torch.Tensor] = None,
568
+ input_ids: torch.LongTensor = None,
569
+ inputs_embeds: Optional[torch.FloatTensor] = None,
570
+ attention_mask: Optional[torch.Tensor] = None,
571
+ position_ids: Optional[torch.LongTensor] = None,
572
+ past_key_values: Optional[List[torch.FloatTensor]] = None,
573
+ labels: Optional[torch.LongTensor] = None,
574
+ use_cache: Optional[bool] = None,
575
+ output_attentions: Optional[bool] = None,
576
+ output_hidden_states: Optional[bool] = None,
577
+ return_dict: Optional[bool] = None,
578
+ cache_position: Optional[torch.LongTensor] = None,
579
+ logits_to_keep: int = 0,
580
+ ) -> Union[Tuple, CcubedCausalLMOutputWithPast]:
581
+ """
582
+ Perform a forward pass through the Ccubed model, optionally conditioning on context input.
583
+
584
+ Args:
585
+ context_input_ids (`torch.LongTensor` of shape `(batch_size, context_sequence_length)`, *optional*):
586
+ Token IDs of the context input sequence.
587
+ context_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, context_sequence_length, hidden_size)`, *optional*):
588
+ Pre-computed context embeddings. If provided, will not compute embeddings from context_input_ids.
589
+ context_attention_mask (`torch.Tensor` of shape `(batch_size, context_sequence_length)`, *optional*):
590
+ Attention mask for context input sequence.
591
+ input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
592
+ Token IDs of the input sequence.
593
+ inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
594
+ Optionally, instead of passing `input_ids`, you can pass an embedded representation directly.
595
+ attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
596
+ Mask to avoid performing attention on padding token indices.
597
+ position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
598
+ Indices of positions of each input sequence token.
599
+ past_key_values (`List[torch.FloatTensor]`, *optional*):
600
+ Pre-computed hidden-states (key and value tensors) that can be used to speed up sequential decoding.
601
+ labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
602
+ Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
603
+ config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
604
+ (masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
605
+ use_cache (`bool`, *optional*):
606
+ If `True`, past key values will be used to speed up decoding.
607
+ output_attentions (`bool`, *optional*):
608
+ If `True`, return the attention tensors for each layer.
609
+ output_hidden_states (`bool`, *optional*):
610
+ If `True`, return the hidden states of all layers.
611
+ return_dict (`bool`, *optional*):
612
+ If `True`, return a `CcubedCausalLMOutputWithPast` instead of a plain tuple.
613
+ num_logits_to_keep (`int`, *optional*):
614
+ Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
615
+ `input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
616
+ token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
617
+
618
+ Returns:
619
+ `Union[Tuple, CcubedCausalLMOutputWithPast]`: A tuple containing various model outputs or a `CcubedCausalLMOutputWithPast` instance.
620
+ The CcubedCausalLMOutputWithPast contains the following fields:
621
+ - loss (`torch.FloatTensor`, *optional*): Language modeling loss if labels provided, None otherwise.
622
+ - logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocab_size)`): Prediction scores.
623
+ - past_key_values (`List[torch.FloatTensor]`, *optional*): Pre-computed hidden states for efficient decoding.
624
+ - hidden_states (`Tuple[torch.FloatTensor]`, *optional*): Layer hidden states if output_hidden_states=True.
625
+ - attentions (`Tuple[torch.FloatTensor]`, *optional*): Layer attention weights if output_attentions=True.
626
+ - context_hidden_states (`torch.FloatTensor`, *optional*): Final hidden states from the context tower.
627
+ """
628
+
629
+ output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
630
+ output_hidden_states = (
631
+ output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
632
+ )
633
+ return_dict = return_dict if return_dict is not None else self.config.use_return_dict
634
+
635
+
636
+ all_inputs_none = (
637
+ input_ids is None and
638
+ inputs_embeds is None and
639
+ context_input_ids is None and
640
+ context_inputs_embeds is None
641
+ )
642
+
643
+ if all_inputs_none:
644
+ raise ValueError("You must provide either non-empty input_ids/inputs_embeds or context_input_ids/context_inputs_embeds.")
645
+
646
+
647
+ if context_input_ids is not None or context_inputs_embeds is not None:
648
+ context_features = self.context_tower(
649
+ input_ids=context_input_ids,
650
+ inputs_embeds=context_inputs_embeds,
651
+ attention_mask=context_attention_mask,
652
+ )
653
+ context_features, context_attention_mask = self.connector(
654
+ context_features=context_features
655
+ )
656
+ else:
657
+ context_features = None
658
+ context_attention_mask = None
659
+
660
+
661
+ if inputs_embeds is None and input_ids is not None:
662
+ inputs_embeds = self.get_input_embeddings()(input_ids)
663
+
664
+ if inputs_embeds is not None:
665
+ inputs_embeds, attention_mask, position_ids, labels = self._merge_context_features(
666
+ context_features=context_features,
667
+ inputs_embeds=inputs_embeds,
668
+ attention_mask=attention_mask,
669
+ context_attention_mask=context_attention_mask,
670
+ position_ids=position_ids,
671
+ labels=labels,
672
+ )
673
+ else:
674
+ inputs_embeds = context_features
675
+ attention_mask = context_attention_mask
676
+
677
+ outputs = self.language_model(
678
+ attention_mask=attention_mask,
679
+ position_ids=position_ids,
680
+ past_key_values=past_key_values,
681
+ inputs_embeds=inputs_embeds,
682
+ use_cache=use_cache,
683
+ output_attentions=output_attentions,
684
+ output_hidden_states=output_hidden_states,
685
+ return_dict=return_dict,
686
+ cache_position=cache_position,
687
+ logits_to_keep=logits_to_keep,
688
+ )
689
+
690
+ logits = outputs[0]
691
+
692
+ loss = None
693
+ if labels is not None:
694
+ shift_logits = logits[..., :-1, :].contiguous()
695
+ shift_labels = labels[..., 1:].contiguous()
696
+ loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
697
+ loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device))
698
+
699
+ if not return_dict:
700
+ output = (logits,) + outputs[1:]
701
+ return (loss,) + output if loss is not None else output
702
+
703
+ return CcubedCausalLMOutputWithPast(
704
+ loss=loss,
705
+ logits=logits,
706
+ past_key_values=outputs.past_key_values,
707
+ hidden_states=outputs.hidden_states,
708
+ attentions=outputs.attentions,
709
+ context_hidden_states=context_features,
710
+ )
711
+
712
+ def prepare_inputs_for_generation(
713
+ self,
714
+ input_ids,
715
+ past_key_values=None,
716
+ attention_mask=None,
717
+ inputs_embeds=None,
718
+ context_features=None,
719
+ **kwargs
720
+ ):
721
+ if past_key_values:
722
+ input_ids = input_ids[:, -1:]
723
+
724
+ # if `inputs_embeds` are passed, we only want to use them in the 1st generation step
725
+ if inputs_embeds is not None and past_key_values is None:
726
+ model_inputs = {"inputs_embeds": inputs_embeds}
727
+ else:
728
+ model_inputs = {"input_ids": input_ids}
729
+
730
+ model_inputs.update(
731
+ {
732
+ "past_key_values": past_key_values,
733
+ "use_cache": kwargs.get("use_cache"),
734
+ "attention_mask": attention_mask,
735
+ "context_features": context_features,
736
+ }
737
+ )
738
+ return model_inputs
text_tokenizer/added_tokens.json ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|ctx_end|>": 151666,
7
+ "<|ctx_start|>": 151665,
8
+ "<|endoftext|>": 151643,
9
+ "<|file_sep|>": 151664,
10
+ "<|fim_middle|>": 151660,
11
+ "<|fim_pad|>": 151662,
12
+ "<|fim_prefix|>": 151659,
13
+ "<|fim_suffix|>": 151661,
14
+ "<|im_end|>": 151645,
15
+ "<|im_start|>": 151644,
16
+ "<|image_pad|>": 151655,
17
+ "<|object_ref_end|>": 151647,
18
+ "<|object_ref_start|>": 151646,
19
+ "<|quad_end|>": 151651,
20
+ "<|quad_start|>": 151650,
21
+ "<|repo_name|>": 151663,
22
+ "<|video_pad|>": 151656,
23
+ "<|vision_end|>": 151653,
24
+ "<|vision_pad|>": 151654,
25
+ "<|vision_start|>": 151652
26
+ }
text_tokenizer/merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
text_tokenizer/special_tokens_map.json ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>",
16
+ "<|ctx_start|>",
17
+ "<|ctx_end|>"
18
+ ],
19
+ "eos_token": {
20
+ "content": "<|im_end|>",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false
25
+ },
26
+ "pad_token": {
27
+ "content": "<|endoftext|>",
28
+ "lstrip": false,
29
+ "normalized": false,
30
+ "rstrip": false,
31
+ "single_word": false
32
+ }
33
+ }
text_tokenizer/tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8720cd2ad3b0c43b93dfdacb8f894b297827dec51604ccb3e777ce295068a66f
3
+ size 11422274
text_tokenizer/tokenizer_config.json ADDED
@@ -0,0 +1,226 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ },
181
+ "151665": {
182
+ "content": "<|ctx_start|>",
183
+ "lstrip": false,
184
+ "normalized": false,
185
+ "rstrip": false,
186
+ "single_word": false,
187
+ "special": true
188
+ },
189
+ "151666": {
190
+ "content": "<|ctx_end|>",
191
+ "lstrip": false,
192
+ "normalized": false,
193
+ "rstrip": false,
194
+ "single_word": false,
195
+ "special": true
196
+ }
197
+ },
198
+ "additional_special_tokens": [
199
+ "<|im_start|>",
200
+ "<|im_end|>",
201
+ "<|object_ref_start|>",
202
+ "<|object_ref_end|>",
203
+ "<|box_start|>",
204
+ "<|box_end|>",
205
+ "<|quad_start|>",
206
+ "<|quad_end|>",
207
+ "<|vision_start|>",
208
+ "<|vision_end|>",
209
+ "<|vision_pad|>",
210
+ "<|image_pad|>",
211
+ "<|video_pad|>",
212
+ "<|ctx_start|>",
213
+ "<|ctx_end|>"
214
+ ],
215
+ "bos_token": null,
216
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
217
+ "clean_up_tokenization_spaces": false,
218
+ "eos_token": "<|im_end|>",
219
+ "errors": "replace",
220
+ "extra_special_tokens": {},
221
+ "model_max_length": 131072,
222
+ "pad_token": "<|endoftext|>",
223
+ "split_special_tokens": false,
224
+ "tokenizer_class": "Qwen2Tokenizer",
225
+ "unk_token": null
226
+ }
text_tokenizer/vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1 @@
 
 
1
+ {"tokenizer_class": "CcubedDualTokenizer"}