Update modeling_c_cubed.py
Browse files- modeling_c_cubed.py +710 -738
modeling_c_cubed.py
CHANGED
@@ -1,738 +1,710 @@
|
|
1 |
-
# coding=utf-8
|
2 |
-
"""PyTorch Ccubed model."""
|
3 |
-
|
4 |
-
import math
|
5 |
-
from dataclasses import dataclass
|
6 |
-
from typing import List, Optional, Tuple, Union
|
7 |
-
|
8 |
-
import numpy as np
|
9 |
-
import torch
|
10 |
-
import torch.utils.checkpoint
|
11 |
-
from torch import nn
|
12 |
-
|
13 |
-
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
14 |
-
from transformers.activations import ACT2FN
|
15 |
-
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
16 |
-
from transformers.processing_utils import Unpack
|
17 |
-
from transformers.image_processing_utils import select_best_resolution
|
18 |
-
from transformers.modeling_outputs import ModelOutput
|
19 |
-
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
|
20 |
-
from transformers.utils import (
|
21 |
-
add_start_docstrings,
|
22 |
-
add_start_docstrings_to_model_forward,
|
23 |
-
logging,
|
24 |
-
replace_return_docstrings,
|
25 |
-
is_flash_attn_2_available,
|
26 |
-
is_flash_attn_greater_or_equal_2_10
|
27 |
-
)
|
28 |
-
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
|
29 |
-
from .configuration_c_cubed import CcubedConfig
|
30 |
-
|
31 |
-
|
32 |
-
logger = logging.get_logger(__name__)
|
33 |
-
|
34 |
-
_CONFIG_FOR_DOC = "CcubedConfig"
|
35 |
-
|
36 |
-
|
37 |
-
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
38 |
-
"""
|
39 |
-
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
40 |
-
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
41 |
-
"""
|
42 |
-
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
43 |
-
if n_rep == 1:
|
44 |
-
return hidden_states
|
45 |
-
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
46 |
-
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
47 |
-
|
48 |
-
|
49 |
-
@dataclass
|
50 |
-
class CcubedCausalLMOutputWithPast(ModelOutput):
|
51 |
-
"""
|
52 |
-
Base class for Ccubed causal language model (or autoregressive) outputs.
|
53 |
-
|
54 |
-
Args:
|
55 |
-
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
56 |
-
Language modeling loss (for next-token prediction).
|
57 |
-
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
58 |
-
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
59 |
-
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
60 |
-
Tuple of `tuple(torch.FloatTensor)` of length `config.context_config.num_layers`, with each tuple having 2 tensors of shape
|
61 |
-
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
62 |
-
|
63 |
-
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
64 |
-
`past_key_values` input) to speed up sequential decoding.
|
65 |
-
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
66 |
-
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
67 |
-
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
68 |
-
|
69 |
-
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
70 |
-
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
71 |
-
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
-
sequence_length)`.
|
73 |
-
|
74 |
-
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
75 |
-
heads.
|
76 |
-
context_hidden_states (`torch.FloatTensor`, *optional*):
|
77 |
-
A `torch.FloatTensor` of size (batch_size, sequence_length, hidden_size)`.
|
78 |
-
context_hidden_states of the model produced by the context encoder and after projecting the last hidden state.
|
79 |
-
"""
|
80 |
-
|
81 |
-
loss: Optional[torch.FloatTensor] = None
|
82 |
-
logits: torch.FloatTensor = None
|
83 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None
|
84 |
-
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
85 |
-
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
86 |
-
context_hidden_states: Optional[torch.FloatTensor] = None
|
87 |
-
|
88 |
-
|
89 |
-
class CcubedDynamicAttention(nn.Module):
|
90 |
-
"""
|
91 |
-
Attention mechanism adapted for dynamic output size based on Mistral's architecture. This attention layer computes
|
92 |
-
the output attention scores which are used to determine the pooling size dynamically.
|
93 |
-
"""
|
94 |
-
|
95 |
-
def __init__(self, config: CcubedConfig):
|
96 |
-
super().__init__()
|
97 |
-
|
98 |
-
self.config = config
|
99 |
-
self.hidden_size = config.context_config.hidden_size
|
100 |
-
self.num_heads = config.context_config.num_attention_heads
|
101 |
-
self.head_dim = getattr(config.context_config, "head_dim", self.hidden_size // self.num_heads)
|
102 |
-
self.num_key_value_heads = config.context_config.num_key_value_heads
|
103 |
-
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
104 |
-
self.scaling = self.head_dim ** -0.5
|
105 |
-
self.attention_dropout = getattr(self.config.context_config, "attention_dropout", 0.0)
|
106 |
-
|
107 |
-
# Query, Key, Value, and Output Projections
|
108 |
-
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
109 |
-
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
110 |
-
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
111 |
-
self.o_proj = nn.Linear(self.num_heads * self.head_dim, 1, bias=False)
|
112 |
-
|
113 |
-
def forward(
|
114 |
-
self,
|
115 |
-
hidden_states: torch.Tensor,
|
116 |
-
attention_mask: Optional[torch.Tensor] = None,
|
117 |
-
output_attentions: bool = False,
|
118 |
-
):
|
119 |
-
# Get input dimensions
|
120 |
-
bsz, seq_len, hidden_size = hidden_states.size()
|
121 |
-
|
122 |
-
# Query, Key, Value projections
|
123 |
-
query_states = self.q_proj(hidden_states)
|
124 |
-
key_states = self.k_proj(hidden_states)
|
125 |
-
value_states = self.v_proj(hidden_states)
|
126 |
-
|
127 |
-
# Reshape and transpose to [batch_size, num_heads, seq_len, head_dim]
|
128 |
-
query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
129 |
-
key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
130 |
-
value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
131 |
-
|
132 |
-
# Repeat key and value states for multi-head attention
|
133 |
-
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
134 |
-
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
135 |
-
|
136 |
-
# Compute attention scores
|
137 |
-
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
138 |
-
|
139 |
-
# Apply softmax to get attention probabilities
|
140 |
-
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
141 |
-
|
142 |
-
# Apply attention to values
|
143 |
-
attn_output = torch.matmul(attn_weights, value_states)
|
144 |
-
|
145 |
-
# Reshape attention output
|
146 |
-
attn_output = attn_output.transpose(1, 2).contiguous()
|
147 |
-
attn_output = attn_output.reshape(bsz, seq_len, -1)
|
148 |
-
|
149 |
-
# Project to output dimension
|
150 |
-
attn_output = self.o_proj(attn_output)
|
151 |
-
|
152 |
-
if not output_attentions:
|
153 |
-
attn_weights = None
|
154 |
-
|
155 |
-
return attn_output, attn_weights
|
156 |
-
|
157 |
-
|
158 |
-
class CcubedDynamicFlashAttention2(CcubedDynamicAttention):
|
159 |
-
def __init__(self, config: CcubedConfig):
|
160 |
-
super().__init__(config)
|
161 |
-
self.is_causal = False # Assuming non-causal attention for this context
|
162 |
-
|
163 |
-
def forward(
|
164 |
-
self,
|
165 |
-
hidden_states: torch.Tensor,
|
166 |
-
attention_mask: Optional[torch.Tensor] = None,
|
167 |
-
output_attentions: bool = False,
|
168 |
-
**kwargs: Unpack[FlashAttentionKwargs],
|
169 |
-
):
|
170 |
-
input_shape = hidden_states.shape[:-1]
|
171 |
-
hidden_shape = (*input_shape, -1, self.head_dim)
|
172 |
-
|
173 |
-
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
174 |
-
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
175 |
-
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
176 |
-
|
177 |
-
sliding_window = None
|
178 |
-
if getattr(self.config, "sliding_window", None) is not None:
|
179 |
-
sliding_window = self.config.sliding_window
|
180 |
-
|
181 |
-
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
182 |
-
|
183 |
-
attn_output, attn_weights = attention_interface(
|
184 |
-
self,
|
185 |
-
query_states,
|
186 |
-
key_states,
|
187 |
-
value_states,
|
188 |
-
attention_mask,
|
189 |
-
dropout=0.0 if not self.training else self.attention_dropout,
|
190 |
-
scaling=self.scaling,
|
191 |
-
sliding_window=sliding_window, # main diff with Llama
|
192 |
-
**kwargs,
|
193 |
-
)
|
194 |
-
|
195 |
-
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
196 |
-
attn_output = self.o_proj(attn_output)
|
197 |
-
return attn_output, attn_weights
|
198 |
-
|
199 |
-
|
200 |
-
class CcubedDynamicWeightedAvgPool1d(nn.Module):
|
201 |
-
"""
|
202 |
-
A module that dynamically determines the output size based on input
|
203 |
-
and performs weighted average pooling with separate attention mechanisms
|
204 |
-
for output size estimation and weighted pooling.
|
205 |
-
"""
|
206 |
-
def __init__(self, config, output_size_min=32, output_size_max=131072):
|
207 |
-
super().__init__()
|
208 |
-
# Attention mechanism for estimating output size
|
209 |
-
self.size_estim_attn = CcubedDynamicFlashAttention2(config) # CcubedDynamicAttention(config)
|
210 |
-
# Attention mechanism for weighted pooling
|
211 |
-
self.imp_estim_attn = CcubedDynamicFlashAttention2(config) # CcubedDynamicAttention(config)
|
212 |
-
self.output_size_min = output_size_min
|
213 |
-
self.output_size_max = (
|
214 |
-
config.context_config.max_position_embeddings if config.context_config.max_position_embeddings is not None else output_size_max
|
215 |
-
)
|
216 |
-
self.scale_param = nn.Parameter(torch.tensor(0.01))
|
217 |
-
|
218 |
-
def forward(self, hidden_states, context_attention_mask=None):
|
219 |
-
"""
|
220 |
-
Args:
|
221 |
-
x: Input tensor of shape (batch_size, seq_len, hidden_size)
|
222 |
-
|
223 |
-
Returns:
|
224 |
-
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
225 |
-
- pooled_output: Padded tensor of compressed sequences (batch_size, max_pooled_len, hidden_size)
|
226 |
-
- attention_mask: Binary mask indicating valid tokens (batch_size, max_pooled_len)
|
227 |
-
- dynamic_output_sizes: Dynamic output sizes for each batch (batch_size,)
|
228 |
-
"""
|
229 |
-
batch_size, seq_len, hidden_size = hidden_states.size()
|
230 |
-
device = hidden_states.device
|
231 |
-
|
232 |
-
# Estimate output size using attention mechanism
|
233 |
-
# attn_output_size: (batch_size, seq_len, 1)
|
234 |
-
attn_output_size, _ = self.size_estim_attn(hidden_states)
|
235 |
-
|
236 |
-
# Calculate dynamic output sizes for each batch item
|
237 |
-
# (batch_size, seq_len, 1) -> (batch_size, 1)
|
238 |
-
batch_attn_means = torch.sigmoid(attn_output_size).mean(dim=1)
|
239 |
-
scaled_batch_means = batch_attn_means * self.scale_param.to(batch_attn_means.dtype)
|
240 |
-
|
241 |
-
# Calculate dynamic output sizes (batch_size,)
|
242 |
-
dynamic_output_sizes = (
|
243 |
-
(scaled_batch_means * (self.output_size_max - self.output_size_min)) + self.output_size_min
|
244 |
-
).int().squeeze(-1)
|
245 |
-
|
246 |
-
max_pooled_len = dynamic_output_sizes.max().item()
|
247 |
-
|
248 |
-
# Compute attention weights for weighted pooling
|
249 |
-
# attn_output_weights: (batch_size, seq_len, 1)
|
250 |
-
attn_output_weights, _ = self.imp_estim_attn(hidden_states)
|
251 |
-
# Normalize with sigmoid function for use as weights
|
252 |
-
# attention_weights: (batch_size, seq_len)
|
253 |
-
attention_weights = torch.sigmoid(attn_output_weights).squeeze(-1)
|
254 |
-
|
255 |
-
# If context_attention_mask is provided, apply it to zero out weights for invalid tokens
|
256 |
-
if context_attention_mask is not None:
|
257 |
-
attention_weights = attention_weights * context_attention_mask
|
258 |
-
|
259 |
-
# Initialize output tensors
|
260 |
-
# pooled_output: (batch_size, max_pooled_len, hidden_size)
|
261 |
-
pooled_output = torch.zeros(
|
262 |
-
batch_size, max_pooled_len, hidden_size,
|
263 |
-
device=device, dtype=hidden_states.dtype
|
264 |
-
)
|
265 |
-
# attention_mask: (batch_size, max_pooled_len)
|
266 |
-
attention_mask = torch.zeros(
|
267 |
-
batch_size, max_pooled_len,
|
268 |
-
dtype=torch.bool, device=device
|
269 |
-
)
|
270 |
-
|
271 |
-
for batch_idx in range(batch_size):
|
272 |
-
output_size = dynamic_output_sizes[batch_idx].item()
|
273 |
-
item_input = hidden_states[batch_idx] # Shape: (seq_len, hidden_size)
|
274 |
-
item_weights = attention_weights[batch_idx] # Shape: (seq_len)
|
275 |
-
|
276 |
-
# Perform weighted pooling
|
277 |
-
pooled_values = []
|
278 |
-
batch_attn_mask = torch.zeros(output_size, dtype=torch.bool, device=device)
|
279 |
-
# Split the sequence evenly
|
280 |
-
intervals = torch.linspace(0, seq_len, steps=output_size + 1).long()
|
281 |
-
for i in range(output_size):
|
282 |
-
start = intervals[i].item()
|
283 |
-
end = intervals[i + 1].item()
|
284 |
-
chunk_input = item_input[start:end] # Shape: (chunk_size, hidden_size)
|
285 |
-
chunk_weights = item_weights[start:end] # Shape: (chunk_size)
|
286 |
-
if chunk_weights.sum() == 0:
|
287 |
-
# If the sum of weights is zero, add a zero vector
|
288 |
-
pooled_value = torch.zeros(hidden_size, device=device, dtype=hidden_states.dtype)
|
289 |
-
else:
|
290 |
-
# Calculate weighted average
|
291 |
-
weighted_input = chunk_input * chunk_weights.unsqueeze(-1) # Shape: (chunk_size, hidden_size)
|
292 |
-
pooled_value = weighted_input.sum(dim=0) / (chunk_weights.sum() + 1e-8) # Shape: (hidden_size)
|
293 |
-
batch_attn_mask[i] = True
|
294 |
-
pooled_values.append(pooled_value)
|
295 |
-
|
296 |
-
if pooled_values: # Only stack if there are values
|
297 |
-
# Convert the result to a tensor
|
298 |
-
pooled_values = torch.stack(pooled_values) # Shape: (output_size, hidden_size)
|
299 |
-
# Store the result
|
300 |
-
pooled_output[batch_idx, -output_size:] = pooled_values
|
301 |
-
attention_mask[batch_idx, -output_size:] = batch_attn_mask
|
302 |
-
|
303 |
-
return pooled_output, attention_mask, dynamic_output_sizes
|
304 |
-
|
305 |
-
|
306 |
-
class CcubedContextLanguageConnector(nn.Module):
|
307 |
-
def __init__(self, config: CcubedConfig):
|
308 |
-
super().__init__()
|
309 |
-
|
310 |
-
self.dynamic_pooling = CcubedDynamicWeightedAvgPool1d(config)
|
311 |
-
|
312 |
-
self.linear_1 = nn.Linear(
|
313 |
-
config.context_config.hidden_size,
|
314 |
-
config.text_config.hidden_size,
|
315 |
-
bias=True
|
316 |
-
)
|
317 |
-
self.act = ACT2FN[config.projector_hidden_act]
|
318 |
-
self.linear_2 = nn.Linear(
|
319 |
-
config.text_config.hidden_size,
|
320 |
-
config.text_config.hidden_size,
|
321 |
-
bias=True
|
322 |
-
)
|
323 |
-
|
324 |
-
def forward(self, context_features):
|
325 |
-
# context_features: [batch_size, seq_len, hidden_size]
|
326 |
-
# Apply dynamic adaptive average pooling with attention
|
327 |
-
pooled_output, attention_mask, dynamic_output_sizes = self.dynamic_pooling(
|
328 |
-
hidden_states=context_features
|
329 |
-
)
|
330 |
-
|
331 |
-
hidden_states = self.linear_1(pooled_output)
|
332 |
-
hidden_states = self.act(hidden_states)
|
333 |
-
hidden_states = self.linear_2(hidden_states)
|
334 |
-
|
335 |
-
return hidden_states, attention_mask
|
336 |
-
|
337 |
-
|
338 |
-
class CcubedContextTower(nn.Module):
|
339 |
-
def __init__(self, config: CcubedConfig):
|
340 |
-
super().__init__()
|
341 |
-
|
342 |
-
self.tower = AutoModelForCausalLM.from_config(
|
343 |
-
config.context_config,
|
344 |
-
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
|
345 |
-
)
|
346 |
-
self.select_layer = config.context_feature_layer
|
347 |
-
|
348 |
-
def feature_select(self, llm_outputs):
|
349 |
-
hidden_states = llm_outputs.hidden_states
|
350 |
-
return hidden_states[self.select_layer]
|
351 |
-
|
352 |
-
def forward(
|
353 |
-
self,
|
354 |
-
input_ids,
|
355 |
-
inputs_embeds,
|
356 |
-
attention_mask
|
357 |
-
):
|
358 |
-
outputs = self.tower(
|
359 |
-
input_ids=input_ids,
|
360 |
-
inputs_embeds=inputs_embeds,
|
361 |
-
attention_mask=attention_mask,
|
362 |
-
output_hidden_states=True
|
363 |
-
)
|
364 |
-
features = self.feature_select(outputs)
|
365 |
-
return features
|
366 |
-
|
367 |
-
|
368 |
-
class CcubedPreTrainedModel(PreTrainedModel):
|
369 |
-
config_class = CcubedConfig
|
370 |
-
base_model_prefix = "model"
|
371 |
-
supports_gradient_checkpointing = True
|
372 |
-
_no_split_modules = [] # ["CcubedContextLanguageConnector", "CcubedContextTower"]
|
373 |
-
_skip_keys_device_placement = ["past_key_values"]
|
374 |
-
_supports_flash_attn_2 = True
|
375 |
-
_supports_sdpa = True
|
376 |
-
_supports_cache_class = True
|
377 |
-
_supports_quantized_cache = True
|
378 |
-
_supports_static_cache = True
|
379 |
-
|
380 |
-
def _init_weights(self, module):
|
381 |
-
std = (
|
382 |
-
self.config.initializer_range
|
383 |
-
if hasattr(self.config, "initializer_range")
|
384 |
-
else self.config.text_config.initializer_range
|
385 |
-
)
|
386 |
-
if isinstance(module, nn.Linear):
|
387 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
388 |
-
if module.bias is not None:
|
389 |
-
module.bias.data.zero_()
|
390 |
-
elif isinstance(module, nn.Embedding):
|
391 |
-
module.weight.data.normal_(mean=0.0, std=std)
|
392 |
-
if module.padding_idx is not None:
|
393 |
-
module.weight.data[module.padding_idx].zero_()
|
394 |
-
|
395 |
-
|
396 |
-
class CcubedForConditionalGeneration(CcubedPreTrainedModel):
|
397 |
-
def __init__(self, config: CcubedConfig):
|
398 |
-
super().__init__(config)
|
399 |
-
self.context_tower = CcubedContextTower(config)
|
400 |
-
self.connector = CcubedContextLanguageConnector(config)
|
401 |
-
|
402 |
-
self.language_model = AutoModelForCausalLM.from_config(
|
403 |
-
config.text_config,
|
404 |
-
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
|
405 |
-
)
|
406 |
-
|
407 |
-
self.vocab_size = config.text_config.vocab_size
|
408 |
-
self.ignore_index = config.ignore_index if hasattr(config, 'ignore_index') else -100
|
409 |
-
self.start_of_context_token_id = config.start_of_context_token_id
|
410 |
-
self.end_of_context_token_id = config.end_of_context_token_id
|
411 |
-
|
412 |
-
self.post_init()
|
413 |
-
|
414 |
-
def get_input_embeddings(self):
|
415 |
-
return self.language_model.get_input_embeddings()
|
416 |
-
|
417 |
-
def get_context_input_embeddings(self):
|
418 |
-
return self.context_tower.tower.get_input_embeddings()
|
419 |
-
|
420 |
-
def set_input_embeddings(self, value):
|
421 |
-
self.language_model.set_input_embeddings(value)
|
422 |
-
|
423 |
-
def set_context_input_embeddings(self, value):
|
424 |
-
self.context_tower.tower.set_input_embeddings(value)
|
425 |
-
|
426 |
-
def get_output_embeddings(self):
|
427 |
-
return self.language_model.get_output_embeddings()
|
428 |
-
|
429 |
-
def get_context_output_embeddings(self):
|
430 |
-
return self.context_tower.tower.get_output_embeddings()
|
431 |
-
|
432 |
-
def set_output_embeddings(self, new_embeddings):
|
433 |
-
self.language_model.set_output_embeddings(new_embeddings)
|
434 |
-
|
435 |
-
def set_context_output_embeddings(self, new_embeddings):
|
436 |
-
self.context_tower.tower.set_output_embeddings(new_embeddings)
|
437 |
-
|
438 |
-
def set_decoder(self, decoder):
|
439 |
-
self.language_model.set_decoder(decoder)
|
440 |
-
|
441 |
-
def set_context_encoder(self, decoder):
|
442 |
-
self.context_tower.tower.set_decoder(decoder)
|
443 |
-
|
444 |
-
def get_decoder(self):
|
445 |
-
return self.language_model.get_decoder()
|
446 |
-
|
447 |
-
def get_context_encoder(self):
|
448 |
-
return self.context_tower.tower.get_decoder()
|
449 |
-
|
450 |
-
def tie_weights(self):
|
451 |
-
return self.language_model.tie_weights()
|
452 |
-
|
453 |
-
def context_tie_weights(self):
|
454 |
-
return self.context_tower.tower.tie_weights()
|
455 |
-
|
456 |
-
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
457 |
-
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
458 |
-
# update vocab size
|
459 |
-
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
460 |
-
self.vocab_size = model_embeds.num_embeddings
|
461 |
-
return model_embeds
|
462 |
-
|
463 |
-
def _merge_context_features(
|
464 |
-
self,
|
465 |
-
context_features = None,
|
466 |
-
inputs_embeds = None,
|
467 |
-
attention_mask = None,
|
468 |
-
context_attention_mask=None,
|
469 |
-
position_ids=None,
|
470 |
-
labels=None,
|
471 |
-
):
|
472 |
-
if context_features is None:
|
473 |
-
return inputs_embeds, attention_mask, position_ids, labels
|
474 |
-
|
475 |
-
batch_size, seq_length, embed_dim = inputs_embeds.shape
|
476 |
-
context_seq_len = context_features.size(1)
|
477 |
-
|
478 |
-
# Create embeddings for begin and end of context tokens
|
479 |
-
begin_context_embed = self.get_input_embeddings()(torch.tensor(self.start_of_context_token_id, device=context_features.device))
|
480 |
-
end_context_embed = self.get_input_embeddings()(torch.tensor(self.end_of_context_token_id, device=context_features.device))
|
481 |
-
|
482 |
-
# Determine the actual lengths of context sequences (excluding padding)
|
483 |
-
if context_attention_mask is not None:
|
484 |
-
# context_attention_mask: [batch_size, context_seq_len, 1]
|
485 |
-
context_attention_mask = context_attention_mask.squeeze(-1) # [batch_size, context_seq_len]
|
486 |
-
# Sum over sequence length to get actual lengths
|
487 |
-
context_lengths = context_attention_mask.sum(dim=1).long() # [batch_size]
|
488 |
-
else:
|
489 |
-
# If no context_attention_mask is provided, assume full length
|
490 |
-
context_lengths = torch.full((batch_size,), context_seq_len, device=context_features.device, dtype=torch.long)
|
491 |
-
context_attention_mask = torch.ones(batch_size, context_seq_len, device=context_features.device, dtype=torch.long)
|
492 |
-
|
493 |
-
# Rearrange context features to include padding at the beginning
|
494 |
-
# Identify the maximum context length (excluding padding)
|
495 |
-
max_context_length = context_lengths.max().item()
|
496 |
-
# Calculate the amount of padding needed for each sample
|
497 |
-
padding_lengths = context_seq_len - context_lengths # [batch_size]
|
498 |
-
|
499 |
-
# Create new context_features with padding at the beginning
|
500 |
-
new_context_features = []
|
501 |
-
for i in range(batch_size):
|
502 |
-
padding_len = padding_lengths[i].item()
|
503 |
-
# Create padding embeddings (zeros)
|
504 |
-
padding_embed = torch.zeros(padding_len, embed_dim, device=context_features.device, dtype=context_features.dtype)
|
505 |
-
# Get actual context features (excluding padding)
|
506 |
-
actual_context = context_features[i, padding_len:context_seq_len]
|
507 |
-
# Concatenate padding, begin token, actual context, end token
|
508 |
-
sample_context = torch.cat([
|
509 |
-
padding_embed,
|
510 |
-
begin_context_embed.unsqueeze(0),
|
511 |
-
actual_context,
|
512 |
-
end_context_embed.unsqueeze(0)
|
513 |
-
], dim=0) # [context_seq_len + 2, embed_dim]
|
514 |
-
new_context_features.append(sample_context)
|
515 |
-
# Stack to create [batch_size, new_context_seq_len, embed_dim]
|
516 |
-
context_features = torch.stack(new_context_features, dim=0)
|
517 |
-
new_context_seq_len = context_features.size(1)
|
518 |
-
|
519 |
-
# Update context_attention_mask accordingly
|
520 |
-
new_context_attention_mask = []
|
521 |
-
for i in range(batch_size):
|
522 |
-
padding_len = padding_lengths[i].item()
|
523 |
-
# Create padding mask (zeros)
|
524 |
-
padding_mask = torch.zeros(padding_len, device=context_features.device, dtype=attention_mask.dtype)
|
525 |
-
# Begin and end token masks
|
526 |
-
begin_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
|
527 |
-
end_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
|
528 |
-
# Actual context attention mask (excluding padding)
|
529 |
-
actual_mask = context_attention_mask[i, padding_len:context_seq_len]
|
530 |
-
# Concatenate masks
|
531 |
-
sample_mask = torch.cat([
|
532 |
-
padding_mask,
|
533 |
-
begin_attention,
|
534 |
-
actual_mask,
|
535 |
-
end_attention
|
536 |
-
], dim=0) # [context_seq_len + 2]
|
537 |
-
new_context_attention_mask.append(sample_mask)
|
538 |
-
# Stack to create [batch_size, new_context_seq_len]
|
539 |
-
context_attention_mask = torch.stack(new_context_attention_mask, dim=0)
|
540 |
-
|
541 |
-
# Concatenate context features with input embeddings
|
542 |
-
new_inputs_embeds = torch.cat([context_features, inputs_embeds], dim=1) # [batch_size, total_seq_len, embed_dim]
|
543 |
-
|
544 |
-
# Concatenate attention masks
|
545 |
-
new_attention_mask = torch.cat([context_attention_mask, attention_mask], dim=1)
|
546 |
-
|
547 |
-
# Create new position_ids
|
548 |
-
total_seq_len = new_inputs_embeds.size(1)
|
549 |
-
new_position_ids = torch.arange(total_seq_len, device=inputs_embeds.device).unsqueeze(0).expand(batch_size, -1)
|
550 |
-
|
551 |
-
# Update labels if provided
|
552 |
-
if labels is not None:
|
553 |
-
# Create ignore labels for context (including padding and special tokens)
|
554 |
-
context_labels = torch.full((batch_size, new_context_seq_len), self.ignore_index, device=labels.device, dtype=labels.dtype)
|
555 |
-
new_labels = torch.cat([context_labels, labels], dim=1)
|
556 |
-
else:
|
557 |
-
new_labels = None
|
558 |
-
|
559 |
-
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
|
560 |
-
|
561 |
-
|
562 |
-
@replace_return_docstrings(output_type=CcubedCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
563 |
-
def forward(
|
564 |
-
self,
|
565 |
-
context_input_ids: torch.LongTensor = None,
|
566 |
-
context_inputs_embeds: Optional[torch.FloatTensor] = None,
|
567 |
-
context_attention_mask: Optional[torch.Tensor] = None,
|
568 |
-
input_ids: torch.LongTensor = None,
|
569 |
-
inputs_embeds: Optional[torch.FloatTensor] = None,
|
570 |
-
attention_mask: Optional[torch.Tensor] = None,
|
571 |
-
position_ids: Optional[torch.LongTensor] = None,
|
572 |
-
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
573 |
-
labels: Optional[torch.LongTensor] = None,
|
574 |
-
use_cache: Optional[bool] = None,
|
575 |
-
output_attentions: Optional[bool] = None,
|
576 |
-
output_hidden_states: Optional[bool] = None,
|
577 |
-
return_dict: Optional[bool] = None,
|
578 |
-
cache_position: Optional[torch.LongTensor] = None,
|
579 |
-
logits_to_keep: int = 0,
|
580 |
-
) -> Union[Tuple, CcubedCausalLMOutputWithPast]:
|
581 |
-
"""
|
582 |
-
Perform a forward pass through the Ccubed model, optionally conditioning on context input.
|
583 |
-
|
584 |
-
Args:
|
585 |
-
context_input_ids (`torch.LongTensor` of shape `(batch_size, context_sequence_length)`, *optional*):
|
586 |
-
Token IDs of the context input sequence.
|
587 |
-
context_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, context_sequence_length, hidden_size)`, *optional*):
|
588 |
-
Pre-computed context embeddings. If provided, will not compute embeddings from context_input_ids.
|
589 |
-
context_attention_mask (`torch.Tensor` of shape `(batch_size, context_sequence_length)`, *optional*):
|
590 |
-
Attention mask for context input sequence.
|
591 |
-
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
592 |
-
Token IDs of the input sequence.
|
593 |
-
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
594 |
-
Optionally, instead of passing `input_ids`, you can pass an embedded representation directly.
|
595 |
-
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
596 |
-
Mask to avoid performing attention on padding token indices.
|
597 |
-
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
598 |
-
Indices of positions of each input sequence token.
|
599 |
-
past_key_values (`List[torch.FloatTensor]`, *optional*):
|
600 |
-
Pre-computed hidden-states (key and value tensors) that can be used to speed up sequential decoding.
|
601 |
-
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
602 |
-
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
603 |
-
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
604 |
-
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
605 |
-
use_cache (`bool`, *optional*):
|
606 |
-
If `True`, past key values will be used to speed up decoding.
|
607 |
-
output_attentions (`bool`, *optional*):
|
608 |
-
If `True`, return the attention tensors for each layer.
|
609 |
-
output_hidden_states (`bool`, *optional*):
|
610 |
-
If `True`, return the hidden states of all layers.
|
611 |
-
return_dict (`bool`, *optional*):
|
612 |
-
If `True`, return a `CcubedCausalLMOutputWithPast` instead of a plain tuple.
|
613 |
-
num_logits_to_keep (`int`, *optional*):
|
614 |
-
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
615 |
-
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
616 |
-
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
617 |
-
|
618 |
-
Returns:
|
619 |
-
`Union[Tuple, CcubedCausalLMOutputWithPast]`: A tuple containing various model outputs or a `CcubedCausalLMOutputWithPast` instance.
|
620 |
-
The CcubedCausalLMOutputWithPast contains the following fields:
|
621 |
-
- loss (`torch.FloatTensor`, *optional*): Language modeling loss if labels provided, None otherwise.
|
622 |
-
- logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocab_size)`): Prediction scores.
|
623 |
-
- past_key_values (`List[torch.FloatTensor]`, *optional*): Pre-computed hidden states for efficient decoding.
|
624 |
-
- hidden_states (`Tuple[torch.FloatTensor]`, *optional*): Layer hidden states if output_hidden_states=True.
|
625 |
-
- attentions (`Tuple[torch.FloatTensor]`, *optional*): Layer attention weights if output_attentions=True.
|
626 |
-
- context_hidden_states (`torch.FloatTensor`, *optional*): Final hidden states from the context tower.
|
627 |
-
"""
|
628 |
-
|
629 |
-
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
630 |
-
output_hidden_states = (
|
631 |
-
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
632 |
-
)
|
633 |
-
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
634 |
-
|
635 |
-
|
636 |
-
all_inputs_none = (
|
637 |
-
input_ids is None and
|
638 |
-
inputs_embeds is None and
|
639 |
-
context_input_ids is None and
|
640 |
-
context_inputs_embeds is None
|
641 |
-
)
|
642 |
-
|
643 |
-
if all_inputs_none:
|
644 |
-
raise ValueError("You must provide either non-empty input_ids/inputs_embeds or context_input_ids/context_inputs_embeds.")
|
645 |
-
|
646 |
-
|
647 |
-
if context_input_ids is not None or context_inputs_embeds is not None:
|
648 |
-
context_features = self.context_tower(
|
649 |
-
input_ids=context_input_ids,
|
650 |
-
inputs_embeds=context_inputs_embeds,
|
651 |
-
attention_mask=context_attention_mask,
|
652 |
-
)
|
653 |
-
context_features, context_attention_mask = self.connector(
|
654 |
-
context_features=context_features
|
655 |
-
)
|
656 |
-
else:
|
657 |
-
context_features = None
|
658 |
-
context_attention_mask = None
|
659 |
-
|
660 |
-
|
661 |
-
if inputs_embeds is None and input_ids is not None:
|
662 |
-
inputs_embeds = self.get_input_embeddings()(input_ids)
|
663 |
-
|
664 |
-
if inputs_embeds is not None:
|
665 |
-
inputs_embeds, attention_mask, position_ids, labels = self._merge_context_features(
|
666 |
-
context_features=context_features,
|
667 |
-
inputs_embeds=inputs_embeds,
|
668 |
-
attention_mask=attention_mask,
|
669 |
-
context_attention_mask=context_attention_mask,
|
670 |
-
position_ids=position_ids,
|
671 |
-
labels=labels,
|
672 |
-
)
|
673 |
-
else:
|
674 |
-
inputs_embeds = context_features
|
675 |
-
attention_mask = context_attention_mask
|
676 |
-
|
677 |
-
outputs = self.language_model(
|
678 |
-
attention_mask=attention_mask,
|
679 |
-
position_ids=position_ids,
|
680 |
-
past_key_values=past_key_values,
|
681 |
-
inputs_embeds=inputs_embeds,
|
682 |
-
use_cache=use_cache,
|
683 |
-
output_attentions=output_attentions,
|
684 |
-
output_hidden_states=output_hidden_states,
|
685 |
-
return_dict=return_dict,
|
686 |
-
cache_position=cache_position,
|
687 |
-
logits_to_keep=logits_to_keep,
|
688 |
-
)
|
689 |
-
|
690 |
-
logits = outputs[0]
|
691 |
-
|
692 |
-
loss = None
|
693 |
-
if labels is not None:
|
694 |
-
shift_logits = logits[..., :-1, :].contiguous()
|
695 |
-
shift_labels = labels[..., 1:].contiguous()
|
696 |
-
loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
|
697 |
-
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device))
|
698 |
-
|
699 |
-
if not return_dict:
|
700 |
-
output = (logits,) + outputs[1:]
|
701 |
-
return (loss,) + output if loss is not None else output
|
702 |
-
|
703 |
-
return CcubedCausalLMOutputWithPast(
|
704 |
-
loss=loss,
|
705 |
-
logits=logits,
|
706 |
-
past_key_values=outputs.past_key_values,
|
707 |
-
hidden_states=outputs.hidden_states,
|
708 |
-
attentions=outputs.attentions,
|
709 |
-
context_hidden_states=context_features,
|
710 |
-
)
|
711 |
-
|
712 |
-
def prepare_inputs_for_generation(
|
713 |
-
self,
|
714 |
-
input_ids,
|
715 |
-
past_key_values=None,
|
716 |
-
attention_mask=None,
|
717 |
-
inputs_embeds=None,
|
718 |
-
context_features=None,
|
719 |
-
**kwargs
|
720 |
-
):
|
721 |
-
if past_key_values:
|
722 |
-
input_ids = input_ids[:, -1:]
|
723 |
-
|
724 |
-
# if `inputs_embeds` are passed, we only want to use them in the 1st generation step
|
725 |
-
if inputs_embeds is not None and past_key_values is None:
|
726 |
-
model_inputs = {"inputs_embeds": inputs_embeds}
|
727 |
-
else:
|
728 |
-
model_inputs = {"input_ids": input_ids}
|
729 |
-
|
730 |
-
model_inputs.update(
|
731 |
-
{
|
732 |
-
"past_key_values": past_key_values,
|
733 |
-
"use_cache": kwargs.get("use_cache"),
|
734 |
-
"attention_mask": attention_mask,
|
735 |
-
"context_features": context_features,
|
736 |
-
}
|
737 |
-
)
|
738 |
-
return model_inputs
|
|
|
1 |
+
# coding=utf-8
|
2 |
+
"""PyTorch Ccubed model."""
|
3 |
+
|
4 |
+
import math
|
5 |
+
from dataclasses import dataclass
|
6 |
+
from typing import List, Optional, Tuple, Union
|
7 |
+
|
8 |
+
import numpy as np
|
9 |
+
import torch
|
10 |
+
import torch.utils.checkpoint
|
11 |
+
from torch import nn
|
12 |
+
|
13 |
+
from transformers.modeling_utils import ALL_ATTENTION_FUNCTIONS, PreTrainedModel
|
14 |
+
from transformers.activations import ACT2FN
|
15 |
+
from transformers.cache_utils import Cache, DynamicCache, StaticCache
|
16 |
+
from transformers.processing_utils import Unpack
|
17 |
+
from transformers.image_processing_utils import select_best_resolution
|
18 |
+
from transformers.modeling_outputs import ModelOutput
|
19 |
+
from transformers.modeling_flash_attention_utils import FlashAttentionKwargs, _flash_attention_forward
|
20 |
+
from transformers.utils import (
|
21 |
+
add_start_docstrings,
|
22 |
+
add_start_docstrings_to_model_forward,
|
23 |
+
logging,
|
24 |
+
replace_return_docstrings,
|
25 |
+
is_flash_attn_2_available,
|
26 |
+
is_flash_attn_greater_or_equal_2_10
|
27 |
+
)
|
28 |
+
from transformers import AutoTokenizer, AutoModel, AutoModelForCausalLM
|
29 |
+
from .configuration_c_cubed import CcubedConfig
|
30 |
+
|
31 |
+
|
32 |
+
logger = logging.get_logger(__name__)
|
33 |
+
|
34 |
+
_CONFIG_FOR_DOC = "CcubedConfig"
|
35 |
+
|
36 |
+
|
37 |
+
def repeat_kv(hidden_states: torch.Tensor, n_rep: int) -> torch.Tensor:
|
38 |
+
"""
|
39 |
+
This is the equivalent of torch.repeat_interleave(x, dim=1, repeats=n_rep). The hidden states go from (batch,
|
40 |
+
num_key_value_heads, seqlen, head_dim) to (batch, num_attention_heads, seqlen, head_dim)
|
41 |
+
"""
|
42 |
+
batch, num_key_value_heads, slen, head_dim = hidden_states.shape
|
43 |
+
if n_rep == 1:
|
44 |
+
return hidden_states
|
45 |
+
hidden_states = hidden_states[:, :, None, :, :].expand(batch, num_key_value_heads, n_rep, slen, head_dim)
|
46 |
+
return hidden_states.reshape(batch, num_key_value_heads * n_rep, slen, head_dim)
|
47 |
+
|
48 |
+
|
49 |
+
@dataclass
|
50 |
+
class CcubedCausalLMOutputWithPast(ModelOutput):
|
51 |
+
"""
|
52 |
+
Base class for Ccubed causal language model (or autoregressive) outputs.
|
53 |
+
|
54 |
+
Args:
|
55 |
+
loss (`torch.FloatTensor` of shape `(1,)`, *optional*, returned when `labels` is provided):
|
56 |
+
Language modeling loss (for next-token prediction).
|
57 |
+
logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, config.vocab_size)`):
|
58 |
+
Prediction scores of the language modeling head (scores for each vocabulary token before SoftMax).
|
59 |
+
past_key_values (`tuple(tuple(torch.FloatTensor))`, *optional*, returned when `use_cache=True` is passed or when `config.use_cache=True`):
|
60 |
+
Tuple of `tuple(torch.FloatTensor)` of length `config.context_config.num_layers`, with each tuple having 2 tensors of shape
|
61 |
+
`(batch_size, num_heads, sequence_length, embed_size_per_head)`)
|
62 |
+
|
63 |
+
Contains pre-computed hidden-states (key and values in the self-attention blocks) that can be used (see
|
64 |
+
`past_key_values` input) to speed up sequential decoding.
|
65 |
+
hidden_states (`tuple(torch.FloatTensor)`, *optional*, returned when `output_hidden_states=True` is passed or when `config.output_hidden_states=True`):
|
66 |
+
Tuple of `torch.FloatTensor` (one for the output of the embeddings, if the model has an embedding layer, +
|
67 |
+
one for the output of each layer) of shape `(batch_size, sequence_length, hidden_size)`.
|
68 |
+
|
69 |
+
Hidden-states of the model at the output of each layer plus the optional initial embedding outputs.
|
70 |
+
attentions (`tuple(torch.FloatTensor)`, *optional*, returned when `output_attentions=True` is passed or when `config.output_attentions=True`):
|
71 |
+
Tuple of `torch.FloatTensor` (one for each layer) of shape `(batch_size, num_heads, sequence_length,
|
72 |
+
sequence_length)`.
|
73 |
+
|
74 |
+
Attentions weights after the attention softmax, used to compute the weighted average in the self-attention
|
75 |
+
heads.
|
76 |
+
context_hidden_states (`torch.FloatTensor`, *optional*):
|
77 |
+
A `torch.FloatTensor` of size (batch_size, sequence_length, hidden_size)`.
|
78 |
+
context_hidden_states of the model produced by the context encoder and after projecting the last hidden state.
|
79 |
+
"""
|
80 |
+
|
81 |
+
loss: Optional[torch.FloatTensor] = None
|
82 |
+
logits: torch.FloatTensor = None
|
83 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None
|
84 |
+
hidden_states: Optional[Tuple[torch.FloatTensor]] = None
|
85 |
+
attentions: Optional[Tuple[torch.FloatTensor]] = None
|
86 |
+
context_hidden_states: Optional[torch.FloatTensor] = None
|
87 |
+
|
88 |
+
|
89 |
+
class CcubedDynamicAttention(nn.Module):
|
90 |
+
"""
|
91 |
+
Attention mechanism adapted for dynamic output size based on Mistral's architecture. This attention layer computes
|
92 |
+
the output attention scores which are used to determine the pooling size dynamically.
|
93 |
+
"""
|
94 |
+
|
95 |
+
def __init__(self, config: CcubedConfig):
|
96 |
+
super().__init__()
|
97 |
+
|
98 |
+
self.config = config
|
99 |
+
self.hidden_size = config.context_config.hidden_size
|
100 |
+
self.num_heads = config.context_config.num_attention_heads
|
101 |
+
self.head_dim = getattr(config.context_config, "head_dim", self.hidden_size // self.num_heads)
|
102 |
+
self.num_key_value_heads = config.context_config.num_key_value_heads
|
103 |
+
self.num_key_value_groups = self.num_heads // self.num_key_value_heads
|
104 |
+
self.scaling = self.head_dim ** -0.5
|
105 |
+
self.attention_dropout = getattr(self.config.context_config, "attention_dropout", 0.0)
|
106 |
+
|
107 |
+
# Query, Key, Value, and Output Projections
|
108 |
+
self.q_proj = nn.Linear(self.hidden_size, self.num_heads * self.head_dim, bias=False)
|
109 |
+
self.k_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
110 |
+
self.v_proj = nn.Linear(self.hidden_size, self.num_key_value_heads * self.head_dim, bias=False)
|
111 |
+
self.o_proj = nn.Linear(self.num_heads * self.head_dim, 1, bias=False)
|
112 |
+
|
113 |
+
def forward(
|
114 |
+
self,
|
115 |
+
hidden_states: torch.Tensor,
|
116 |
+
attention_mask: Optional[torch.Tensor] = None,
|
117 |
+
output_attentions: bool = False,
|
118 |
+
):
|
119 |
+
# Get input dimensions
|
120 |
+
bsz, seq_len, hidden_size = hidden_states.size()
|
121 |
+
|
122 |
+
# Query, Key, Value projections
|
123 |
+
query_states = self.q_proj(hidden_states)
|
124 |
+
key_states = self.k_proj(hidden_states)
|
125 |
+
value_states = self.v_proj(hidden_states)
|
126 |
+
|
127 |
+
# Reshape and transpose to [batch_size, num_heads, seq_len, head_dim]
|
128 |
+
query_states = query_states.view(bsz, seq_len, self.num_heads, self.head_dim).transpose(1, 2)
|
129 |
+
key_states = key_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
130 |
+
value_states = value_states.view(bsz, seq_len, self.num_key_value_heads, self.head_dim).transpose(1, 2)
|
131 |
+
|
132 |
+
# Repeat key and value states for multi-head attention
|
133 |
+
key_states = repeat_kv(key_states, self.num_key_value_groups)
|
134 |
+
value_states = repeat_kv(value_states, self.num_key_value_groups)
|
135 |
+
|
136 |
+
# Compute attention scores
|
137 |
+
attn_weights = torch.matmul(query_states, key_states.transpose(2, 3)) / math.sqrt(self.head_dim)
|
138 |
+
|
139 |
+
# Apply softmax to get attention probabilities
|
140 |
+
attn_weights = nn.functional.softmax(attn_weights, dim=-1)
|
141 |
+
|
142 |
+
# Apply attention to values
|
143 |
+
attn_output = torch.matmul(attn_weights, value_states)
|
144 |
+
|
145 |
+
# Reshape attention output
|
146 |
+
attn_output = attn_output.transpose(1, 2).contiguous()
|
147 |
+
attn_output = attn_output.reshape(bsz, seq_len, -1)
|
148 |
+
|
149 |
+
# Project to output dimension
|
150 |
+
attn_output = self.o_proj(attn_output)
|
151 |
+
|
152 |
+
if not output_attentions:
|
153 |
+
attn_weights = None
|
154 |
+
|
155 |
+
return attn_output, attn_weights
|
156 |
+
|
157 |
+
|
158 |
+
class CcubedDynamicFlashAttention2(CcubedDynamicAttention):
|
159 |
+
def __init__(self, config: CcubedConfig):
|
160 |
+
super().__init__(config)
|
161 |
+
self.is_causal = False # Assuming non-causal attention for this context
|
162 |
+
|
163 |
+
def forward(
|
164 |
+
self,
|
165 |
+
hidden_states: torch.Tensor,
|
166 |
+
attention_mask: Optional[torch.Tensor] = None,
|
167 |
+
output_attentions: bool = False,
|
168 |
+
**kwargs: Unpack[FlashAttentionKwargs],
|
169 |
+
):
|
170 |
+
input_shape = hidden_states.shape[:-1]
|
171 |
+
hidden_shape = (*input_shape, -1, self.head_dim)
|
172 |
+
|
173 |
+
query_states = self.q_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
174 |
+
key_states = self.k_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
175 |
+
value_states = self.v_proj(hidden_states).view(hidden_shape).transpose(1, 2)
|
176 |
+
|
177 |
+
sliding_window = None
|
178 |
+
if getattr(self.config, "sliding_window", None) is not None:
|
179 |
+
sliding_window = self.config.sliding_window
|
180 |
+
|
181 |
+
attention_interface = ALL_ATTENTION_FUNCTIONS[self.config._attn_implementation]
|
182 |
+
|
183 |
+
attn_output, attn_weights = attention_interface(
|
184 |
+
self,
|
185 |
+
query_states,
|
186 |
+
key_states,
|
187 |
+
value_states,
|
188 |
+
attention_mask,
|
189 |
+
dropout=0.0 if not self.training else self.attention_dropout,
|
190 |
+
scaling=self.scaling,
|
191 |
+
sliding_window=sliding_window, # main diff with Llama
|
192 |
+
**kwargs,
|
193 |
+
)
|
194 |
+
|
195 |
+
attn_output = attn_output.reshape(*input_shape, -1).contiguous()
|
196 |
+
attn_output = self.o_proj(attn_output)
|
197 |
+
return attn_output, attn_weights
|
198 |
+
|
199 |
+
|
200 |
+
class CcubedDynamicWeightedAvgPool1d(nn.Module):
|
201 |
+
"""
|
202 |
+
A module that dynamically determines the output size based on input
|
203 |
+
and performs weighted average pooling with separate attention mechanisms
|
204 |
+
for output size estimation and weighted pooling.
|
205 |
+
"""
|
206 |
+
def __init__(self, config, output_size_min=32, output_size_max=131072):
|
207 |
+
super().__init__()
|
208 |
+
# Attention mechanism for estimating output size
|
209 |
+
self.size_estim_attn = CcubedDynamicFlashAttention2(config) # CcubedDynamicAttention(config)
|
210 |
+
# Attention mechanism for weighted pooling
|
211 |
+
self.imp_estim_attn = CcubedDynamicFlashAttention2(config) # CcubedDynamicAttention(config)
|
212 |
+
self.output_size_min = output_size_min
|
213 |
+
self.output_size_max = (
|
214 |
+
config.context_config.max_position_embeddings if config.context_config.max_position_embeddings is not None else output_size_max
|
215 |
+
)
|
216 |
+
self.scale_param = nn.Parameter(torch.tensor(0.01))
|
217 |
+
|
218 |
+
def forward(self, hidden_states, context_attention_mask=None):
|
219 |
+
"""
|
220 |
+
Args:
|
221 |
+
x: Input tensor of shape (batch_size, seq_len, hidden_size)
|
222 |
+
|
223 |
+
Returns:
|
224 |
+
Tuple[torch.Tensor, torch.Tensor, torch.Tensor]:
|
225 |
+
- pooled_output: Padded tensor of compressed sequences (batch_size, max_pooled_len, hidden_size)
|
226 |
+
- attention_mask: Binary mask indicating valid tokens (batch_size, max_pooled_len)
|
227 |
+
- dynamic_output_sizes: Dynamic output sizes for each batch (batch_size,)
|
228 |
+
"""
|
229 |
+
batch_size, seq_len, hidden_size = hidden_states.size()
|
230 |
+
device = hidden_states.device
|
231 |
+
|
232 |
+
# Estimate output size using attention mechanism
|
233 |
+
# attn_output_size: (batch_size, seq_len, 1)
|
234 |
+
attn_output_size, _ = self.size_estim_attn(hidden_states)
|
235 |
+
|
236 |
+
# Calculate dynamic output sizes for each batch item
|
237 |
+
# (batch_size, seq_len, 1) -> (batch_size, 1)
|
238 |
+
batch_attn_means = torch.sigmoid(attn_output_size).mean(dim=1)
|
239 |
+
scaled_batch_means = batch_attn_means * self.scale_param.to(batch_attn_means.dtype)
|
240 |
+
|
241 |
+
# Calculate dynamic output sizes (batch_size,)
|
242 |
+
dynamic_output_sizes = (
|
243 |
+
(scaled_batch_means * (self.output_size_max - self.output_size_min)) + self.output_size_min
|
244 |
+
).int().squeeze(-1)
|
245 |
+
|
246 |
+
max_pooled_len = dynamic_output_sizes.max().item()
|
247 |
+
|
248 |
+
# Compute attention weights for weighted pooling
|
249 |
+
# attn_output_weights: (batch_size, seq_len, 1)
|
250 |
+
attn_output_weights, _ = self.imp_estim_attn(hidden_states)
|
251 |
+
# Normalize with sigmoid function for use as weights
|
252 |
+
# attention_weights: (batch_size, seq_len)
|
253 |
+
attention_weights = torch.sigmoid(attn_output_weights).squeeze(-1)
|
254 |
+
|
255 |
+
# If context_attention_mask is provided, apply it to zero out weights for invalid tokens
|
256 |
+
if context_attention_mask is not None:
|
257 |
+
attention_weights = attention_weights * context_attention_mask
|
258 |
+
|
259 |
+
# Initialize output tensors
|
260 |
+
# pooled_output: (batch_size, max_pooled_len, hidden_size)
|
261 |
+
pooled_output = torch.zeros(
|
262 |
+
batch_size, max_pooled_len, hidden_size,
|
263 |
+
device=device, dtype=hidden_states.dtype
|
264 |
+
)
|
265 |
+
# attention_mask: (batch_size, max_pooled_len)
|
266 |
+
attention_mask = torch.zeros(
|
267 |
+
batch_size, max_pooled_len,
|
268 |
+
dtype=torch.bool, device=device
|
269 |
+
)
|
270 |
+
|
271 |
+
for batch_idx in range(batch_size):
|
272 |
+
output_size = dynamic_output_sizes[batch_idx].item()
|
273 |
+
item_input = hidden_states[batch_idx] # Shape: (seq_len, hidden_size)
|
274 |
+
item_weights = attention_weights[batch_idx] # Shape: (seq_len)
|
275 |
+
|
276 |
+
# Perform weighted pooling
|
277 |
+
pooled_values = []
|
278 |
+
batch_attn_mask = torch.zeros(output_size, dtype=torch.bool, device=device)
|
279 |
+
# Split the sequence evenly
|
280 |
+
intervals = torch.linspace(0, seq_len, steps=output_size + 1).long()
|
281 |
+
for i in range(output_size):
|
282 |
+
start = intervals[i].item()
|
283 |
+
end = intervals[i + 1].item()
|
284 |
+
chunk_input = item_input[start:end] # Shape: (chunk_size, hidden_size)
|
285 |
+
chunk_weights = item_weights[start:end] # Shape: (chunk_size)
|
286 |
+
if chunk_weights.sum() == 0:
|
287 |
+
# If the sum of weights is zero, add a zero vector
|
288 |
+
pooled_value = torch.zeros(hidden_size, device=device, dtype=hidden_states.dtype)
|
289 |
+
else:
|
290 |
+
# Calculate weighted average
|
291 |
+
weighted_input = chunk_input * chunk_weights.unsqueeze(-1) # Shape: (chunk_size, hidden_size)
|
292 |
+
pooled_value = weighted_input.sum(dim=0) / (chunk_weights.sum() + 1e-8) # Shape: (hidden_size)
|
293 |
+
batch_attn_mask[i] = True
|
294 |
+
pooled_values.append(pooled_value)
|
295 |
+
|
296 |
+
if pooled_values: # Only stack if there are values
|
297 |
+
# Convert the result to a tensor
|
298 |
+
pooled_values = torch.stack(pooled_values) # Shape: (output_size, hidden_size)
|
299 |
+
# Store the result
|
300 |
+
pooled_output[batch_idx, -output_size:] = pooled_values
|
301 |
+
attention_mask[batch_idx, -output_size:] = batch_attn_mask
|
302 |
+
|
303 |
+
return pooled_output, attention_mask, dynamic_output_sizes
|
304 |
+
|
305 |
+
|
306 |
+
class CcubedContextLanguageConnector(nn.Module):
|
307 |
+
def __init__(self, config: CcubedConfig):
|
308 |
+
super().__init__()
|
309 |
+
|
310 |
+
self.dynamic_pooling = CcubedDynamicWeightedAvgPool1d(config)
|
311 |
+
|
312 |
+
self.linear_1 = nn.Linear(
|
313 |
+
config.context_config.hidden_size,
|
314 |
+
config.text_config.hidden_size,
|
315 |
+
bias=True
|
316 |
+
)
|
317 |
+
self.act = ACT2FN[config.projector_hidden_act]
|
318 |
+
self.linear_2 = nn.Linear(
|
319 |
+
config.text_config.hidden_size,
|
320 |
+
config.text_config.hidden_size,
|
321 |
+
bias=True
|
322 |
+
)
|
323 |
+
|
324 |
+
def forward(self, context_features):
|
325 |
+
# context_features: [batch_size, seq_len, hidden_size]
|
326 |
+
# Apply dynamic adaptive average pooling with attention
|
327 |
+
pooled_output, attention_mask, dynamic_output_sizes = self.dynamic_pooling(
|
328 |
+
hidden_states=context_features
|
329 |
+
)
|
330 |
+
|
331 |
+
hidden_states = self.linear_1(pooled_output)
|
332 |
+
hidden_states = self.act(hidden_states)
|
333 |
+
hidden_states = self.linear_2(hidden_states)
|
334 |
+
|
335 |
+
return hidden_states, attention_mask
|
336 |
+
|
337 |
+
|
338 |
+
class CcubedContextTower(nn.Module):
|
339 |
+
def __init__(self, config: CcubedConfig):
|
340 |
+
super().__init__()
|
341 |
+
|
342 |
+
self.tower = AutoModelForCausalLM.from_config(
|
343 |
+
config.context_config,
|
344 |
+
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
|
345 |
+
)
|
346 |
+
self.select_layer = config.context_feature_layer
|
347 |
+
|
348 |
+
def feature_select(self, llm_outputs):
|
349 |
+
hidden_states = llm_outputs.hidden_states
|
350 |
+
return hidden_states[self.select_layer]
|
351 |
+
|
352 |
+
def forward(
|
353 |
+
self,
|
354 |
+
input_ids,
|
355 |
+
inputs_embeds,
|
356 |
+
attention_mask
|
357 |
+
):
|
358 |
+
outputs = self.tower(
|
359 |
+
input_ids=input_ids,
|
360 |
+
inputs_embeds=inputs_embeds,
|
361 |
+
attention_mask=attention_mask,
|
362 |
+
output_hidden_states=True
|
363 |
+
)
|
364 |
+
features = self.feature_select(outputs)
|
365 |
+
return features
|
366 |
+
|
367 |
+
|
368 |
+
class CcubedPreTrainedModel(PreTrainedModel):
|
369 |
+
config_class = CcubedConfig
|
370 |
+
base_model_prefix = "model"
|
371 |
+
supports_gradient_checkpointing = True
|
372 |
+
_no_split_modules = [] # ["CcubedContextLanguageConnector", "CcubedContextTower"]
|
373 |
+
_skip_keys_device_placement = ["past_key_values"]
|
374 |
+
_supports_flash_attn_2 = True
|
375 |
+
_supports_sdpa = True
|
376 |
+
_supports_cache_class = True
|
377 |
+
_supports_quantized_cache = True
|
378 |
+
_supports_static_cache = True
|
379 |
+
|
380 |
+
def _init_weights(self, module):
|
381 |
+
std = (
|
382 |
+
self.config.initializer_range
|
383 |
+
if hasattr(self.config, "initializer_range")
|
384 |
+
else self.config.text_config.initializer_range
|
385 |
+
)
|
386 |
+
if isinstance(module, nn.Linear):
|
387 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
388 |
+
if module.bias is not None:
|
389 |
+
module.bias.data.zero_()
|
390 |
+
elif isinstance(module, nn.Embedding):
|
391 |
+
module.weight.data.normal_(mean=0.0, std=std)
|
392 |
+
if module.padding_idx is not None:
|
393 |
+
module.weight.data[module.padding_idx].zero_()
|
394 |
+
|
395 |
+
|
396 |
+
class CcubedForConditionalGeneration(CcubedPreTrainedModel):
|
397 |
+
def __init__(self, config: CcubedConfig):
|
398 |
+
super().__init__(config)
|
399 |
+
self.context_tower = CcubedContextTower(config)
|
400 |
+
self.connector = CcubedContextLanguageConnector(config)
|
401 |
+
|
402 |
+
self.language_model = AutoModelForCausalLM.from_config(
|
403 |
+
config.text_config,
|
404 |
+
attn_implementation="flash_attention_2" if is_flash_attn_2_available() else "eager"
|
405 |
+
)
|
406 |
+
|
407 |
+
self.vocab_size = config.text_config.vocab_size
|
408 |
+
self.ignore_index = config.ignore_index if hasattr(config, 'ignore_index') else -100
|
409 |
+
self.start_of_context_token_id = config.start_of_context_token_id
|
410 |
+
self.end_of_context_token_id = config.end_of_context_token_id
|
411 |
+
|
412 |
+
self.post_init()
|
413 |
+
|
414 |
+
def get_input_embeddings(self):
|
415 |
+
return self.language_model.get_input_embeddings()
|
416 |
+
|
417 |
+
def get_context_input_embeddings(self):
|
418 |
+
return self.context_tower.tower.get_input_embeddings()
|
419 |
+
|
420 |
+
def set_input_embeddings(self, value):
|
421 |
+
self.language_model.set_input_embeddings(value)
|
422 |
+
|
423 |
+
def set_context_input_embeddings(self, value):
|
424 |
+
self.context_tower.tower.set_input_embeddings(value)
|
425 |
+
|
426 |
+
def get_output_embeddings(self):
|
427 |
+
return self.language_model.get_output_embeddings()
|
428 |
+
|
429 |
+
def get_context_output_embeddings(self):
|
430 |
+
return self.context_tower.tower.get_output_embeddings()
|
431 |
+
|
432 |
+
def set_output_embeddings(self, new_embeddings):
|
433 |
+
self.language_model.set_output_embeddings(new_embeddings)
|
434 |
+
|
435 |
+
def set_context_output_embeddings(self, new_embeddings):
|
436 |
+
self.context_tower.tower.set_output_embeddings(new_embeddings)
|
437 |
+
|
438 |
+
def set_decoder(self, decoder):
|
439 |
+
self.language_model.set_decoder(decoder)
|
440 |
+
|
441 |
+
def set_context_encoder(self, decoder):
|
442 |
+
self.context_tower.tower.set_decoder(decoder)
|
443 |
+
|
444 |
+
def get_decoder(self):
|
445 |
+
return self.language_model.get_decoder()
|
446 |
+
|
447 |
+
def get_context_encoder(self):
|
448 |
+
return self.context_tower.tower.get_decoder()
|
449 |
+
|
450 |
+
def tie_weights(self):
|
451 |
+
return self.language_model.tie_weights()
|
452 |
+
|
453 |
+
def context_tie_weights(self):
|
454 |
+
return self.context_tower.tower.tie_weights()
|
455 |
+
|
456 |
+
def resize_token_embeddings(self, new_num_tokens: Optional[int] = None, pad_to_multiple_of=None) -> nn.Embedding:
|
457 |
+
model_embeds = self.language_model.resize_token_embeddings(new_num_tokens, pad_to_multiple_of)
|
458 |
+
# update vocab size
|
459 |
+
self.config.text_config.vocab_size = model_embeds.num_embeddings
|
460 |
+
self.vocab_size = model_embeds.num_embeddings
|
461 |
+
return model_embeds
|
462 |
+
|
463 |
+
def _merge_context_features(
|
464 |
+
self,
|
465 |
+
context_features = None,
|
466 |
+
inputs_embeds = None,
|
467 |
+
attention_mask = None,
|
468 |
+
context_attention_mask=None,
|
469 |
+
position_ids=None,
|
470 |
+
labels=None,
|
471 |
+
):
|
472 |
+
if context_features is None:
|
473 |
+
return inputs_embeds, attention_mask, position_ids, labels
|
474 |
+
|
475 |
+
batch_size, seq_length, embed_dim = inputs_embeds.shape
|
476 |
+
context_seq_len = context_features.size(1)
|
477 |
+
|
478 |
+
# Create embeddings for begin and end of context tokens
|
479 |
+
begin_context_embed = self.get_input_embeddings()(torch.tensor(self.start_of_context_token_id, device=context_features.device))
|
480 |
+
end_context_embed = self.get_input_embeddings()(torch.tensor(self.end_of_context_token_id, device=context_features.device))
|
481 |
+
|
482 |
+
# Determine the actual lengths of context sequences (excluding padding)
|
483 |
+
if context_attention_mask is not None:
|
484 |
+
# context_attention_mask: [batch_size, context_seq_len, 1]
|
485 |
+
context_attention_mask = context_attention_mask.squeeze(-1) # [batch_size, context_seq_len]
|
486 |
+
# Sum over sequence length to get actual lengths
|
487 |
+
context_lengths = context_attention_mask.sum(dim=1).long() # [batch_size]
|
488 |
+
else:
|
489 |
+
# If no context_attention_mask is provided, assume full length
|
490 |
+
context_lengths = torch.full((batch_size,), context_seq_len, device=context_features.device, dtype=torch.long)
|
491 |
+
context_attention_mask = torch.ones(batch_size, context_seq_len, device=context_features.device, dtype=torch.long)
|
492 |
+
|
493 |
+
# Rearrange context features to include padding at the beginning
|
494 |
+
# Identify the maximum context length (excluding padding)
|
495 |
+
max_context_length = context_lengths.max().item()
|
496 |
+
# Calculate the amount of padding needed for each sample
|
497 |
+
padding_lengths = context_seq_len - context_lengths # [batch_size]
|
498 |
+
|
499 |
+
# Create new context_features with padding at the beginning
|
500 |
+
new_context_features = []
|
501 |
+
for i in range(batch_size):
|
502 |
+
padding_len = padding_lengths[i].item()
|
503 |
+
# Create padding embeddings (zeros)
|
504 |
+
padding_embed = torch.zeros(padding_len, embed_dim, device=context_features.device, dtype=context_features.dtype)
|
505 |
+
# Get actual context features (excluding padding)
|
506 |
+
actual_context = context_features[i, padding_len:context_seq_len]
|
507 |
+
# Concatenate padding, begin token, actual context, end token
|
508 |
+
sample_context = torch.cat([
|
509 |
+
padding_embed,
|
510 |
+
begin_context_embed.unsqueeze(0),
|
511 |
+
actual_context,
|
512 |
+
end_context_embed.unsqueeze(0)
|
513 |
+
], dim=0) # [context_seq_len + 2, embed_dim]
|
514 |
+
new_context_features.append(sample_context)
|
515 |
+
# Stack to create [batch_size, new_context_seq_len, embed_dim]
|
516 |
+
context_features = torch.stack(new_context_features, dim=0)
|
517 |
+
new_context_seq_len = context_features.size(1)
|
518 |
+
|
519 |
+
# Update context_attention_mask accordingly
|
520 |
+
new_context_attention_mask = []
|
521 |
+
for i in range(batch_size):
|
522 |
+
padding_len = padding_lengths[i].item()
|
523 |
+
# Create padding mask (zeros)
|
524 |
+
padding_mask = torch.zeros(padding_len, device=context_features.device, dtype=attention_mask.dtype)
|
525 |
+
# Begin and end token masks
|
526 |
+
begin_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
|
527 |
+
end_attention = torch.ones(1, device=context_features.device, dtype=attention_mask.dtype)
|
528 |
+
# Actual context attention mask (excluding padding)
|
529 |
+
actual_mask = context_attention_mask[i, padding_len:context_seq_len]
|
530 |
+
# Concatenate masks
|
531 |
+
sample_mask = torch.cat([
|
532 |
+
padding_mask,
|
533 |
+
begin_attention,
|
534 |
+
actual_mask,
|
535 |
+
end_attention
|
536 |
+
], dim=0) # [context_seq_len + 2]
|
537 |
+
new_context_attention_mask.append(sample_mask)
|
538 |
+
# Stack to create [batch_size, new_context_seq_len]
|
539 |
+
context_attention_mask = torch.stack(new_context_attention_mask, dim=0)
|
540 |
+
|
541 |
+
# Concatenate context features with input embeddings
|
542 |
+
new_inputs_embeds = torch.cat([context_features, inputs_embeds], dim=1) # [batch_size, total_seq_len, embed_dim]
|
543 |
+
|
544 |
+
# Concatenate attention masks
|
545 |
+
new_attention_mask = torch.cat([context_attention_mask, attention_mask], dim=1)
|
546 |
+
|
547 |
+
# Create new position_ids
|
548 |
+
total_seq_len = new_inputs_embeds.size(1)
|
549 |
+
new_position_ids = torch.arange(total_seq_len, device=inputs_embeds.device).unsqueeze(0).expand(batch_size, -1)
|
550 |
+
|
551 |
+
# Update labels if provided
|
552 |
+
if labels is not None:
|
553 |
+
# Create ignore labels for context (including padding and special tokens)
|
554 |
+
context_labels = torch.full((batch_size, new_context_seq_len), self.ignore_index, device=labels.device, dtype=labels.dtype)
|
555 |
+
new_labels = torch.cat([context_labels, labels], dim=1)
|
556 |
+
else:
|
557 |
+
new_labels = None
|
558 |
+
|
559 |
+
return new_inputs_embeds, new_attention_mask, new_position_ids, new_labels
|
560 |
+
|
561 |
+
|
562 |
+
@replace_return_docstrings(output_type=CcubedCausalLMOutputWithPast, config_class=_CONFIG_FOR_DOC)
|
563 |
+
def forward(
|
564 |
+
self,
|
565 |
+
context_input_ids: torch.LongTensor = None,
|
566 |
+
context_inputs_embeds: Optional[torch.FloatTensor] = None,
|
567 |
+
context_attention_mask: Optional[torch.Tensor] = None,
|
568 |
+
input_ids: torch.LongTensor = None,
|
569 |
+
inputs_embeds: Optional[torch.FloatTensor] = None,
|
570 |
+
attention_mask: Optional[torch.Tensor] = None,
|
571 |
+
position_ids: Optional[torch.LongTensor] = None,
|
572 |
+
past_key_values: Optional[List[torch.FloatTensor]] = None,
|
573 |
+
labels: Optional[torch.LongTensor] = None,
|
574 |
+
use_cache: Optional[bool] = None,
|
575 |
+
output_attentions: Optional[bool] = None,
|
576 |
+
output_hidden_states: Optional[bool] = None,
|
577 |
+
return_dict: Optional[bool] = None,
|
578 |
+
cache_position: Optional[torch.LongTensor] = None,
|
579 |
+
logits_to_keep: int = 0,
|
580 |
+
) -> Union[Tuple, CcubedCausalLMOutputWithPast]:
|
581 |
+
"""
|
582 |
+
Perform a forward pass through the Ccubed model, optionally conditioning on context input.
|
583 |
+
|
584 |
+
Args:
|
585 |
+
context_input_ids (`torch.LongTensor` of shape `(batch_size, context_sequence_length)`, *optional*):
|
586 |
+
Token IDs of the context input sequence.
|
587 |
+
context_inputs_embeds (`torch.FloatTensor` of shape `(batch_size, context_sequence_length, hidden_size)`, *optional*):
|
588 |
+
Pre-computed context embeddings. If provided, will not compute embeddings from context_input_ids.
|
589 |
+
context_attention_mask (`torch.Tensor` of shape `(batch_size, context_sequence_length)`, *optional*):
|
590 |
+
Attention mask for context input sequence.
|
591 |
+
input_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
592 |
+
Token IDs of the input sequence.
|
593 |
+
inputs_embeds (`torch.FloatTensor` of shape `(batch_size, sequence_length, hidden_size)`, *optional*):
|
594 |
+
Optionally, instead of passing `input_ids`, you can pass an embedded representation directly.
|
595 |
+
attention_mask (`torch.Tensor` of shape `(batch_size, sequence_length)`, *optional*):
|
596 |
+
Mask to avoid performing attention on padding token indices.
|
597 |
+
position_ids (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
598 |
+
Indices of positions of each input sequence token.
|
599 |
+
past_key_values (`List[torch.FloatTensor]`, *optional*):
|
600 |
+
Pre-computed hidden-states (key and value tensors) that can be used to speed up sequential decoding.
|
601 |
+
labels (`torch.LongTensor` of shape `(batch_size, sequence_length)`, *optional*):
|
602 |
+
Labels for computing the masked language modeling loss. Indices should either be in `[0, ...,
|
603 |
+
config.vocab_size]` or -100 (see `input_ids` docstring). Tokens with indices set to `-100` are ignored
|
604 |
+
(masked), the loss is only computed for the tokens with labels in `[0, ..., config.vocab_size]`.
|
605 |
+
use_cache (`bool`, *optional*):
|
606 |
+
If `True`, past key values will be used to speed up decoding.
|
607 |
+
output_attentions (`bool`, *optional*):
|
608 |
+
If `True`, return the attention tensors for each layer.
|
609 |
+
output_hidden_states (`bool`, *optional*):
|
610 |
+
If `True`, return the hidden states of all layers.
|
611 |
+
return_dict (`bool`, *optional*):
|
612 |
+
If `True`, return a `CcubedCausalLMOutputWithPast` instead of a plain tuple.
|
613 |
+
num_logits_to_keep (`int`, *optional*):
|
614 |
+
Calculate logits for the last `num_logits_to_keep` tokens. If `0`, calculate logits for all
|
615 |
+
`input_ids` (special case). Only last token logits are needed for generation, and calculating them only for that
|
616 |
+
token can save memory, which becomes pretty significant for long sequences or large vocabulary size.
|
617 |
+
|
618 |
+
Returns:
|
619 |
+
`Union[Tuple, CcubedCausalLMOutputWithPast]`: A tuple containing various model outputs or a `CcubedCausalLMOutputWithPast` instance.
|
620 |
+
The CcubedCausalLMOutputWithPast contains the following fields:
|
621 |
+
- loss (`torch.FloatTensor`, *optional*): Language modeling loss if labels provided, None otherwise.
|
622 |
+
- logits (`torch.FloatTensor` of shape `(batch_size, sequence_length, vocab_size)`): Prediction scores.
|
623 |
+
- past_key_values (`List[torch.FloatTensor]`, *optional*): Pre-computed hidden states for efficient decoding.
|
624 |
+
- hidden_states (`Tuple[torch.FloatTensor]`, *optional*): Layer hidden states if output_hidden_states=True.
|
625 |
+
- attentions (`Tuple[torch.FloatTensor]`, *optional*): Layer attention weights if output_attentions=True.
|
626 |
+
- context_hidden_states (`torch.FloatTensor`, *optional*): Final hidden states from the context tower.
|
627 |
+
"""
|
628 |
+
|
629 |
+
output_attentions = output_attentions if output_attentions is not None else self.config.output_attentions
|
630 |
+
output_hidden_states = (
|
631 |
+
output_hidden_states if output_hidden_states is not None else self.config.output_hidden_states
|
632 |
+
)
|
633 |
+
return_dict = return_dict if return_dict is not None else self.config.use_return_dict
|
634 |
+
|
635 |
+
|
636 |
+
all_inputs_none = (
|
637 |
+
input_ids is None and
|
638 |
+
inputs_embeds is None and
|
639 |
+
context_input_ids is None and
|
640 |
+
context_inputs_embeds is None
|
641 |
+
)
|
642 |
+
|
643 |
+
if all_inputs_none:
|
644 |
+
raise ValueError("You must provide either non-empty input_ids/inputs_embeds or context_input_ids/context_inputs_embeds.")
|
645 |
+
|
646 |
+
|
647 |
+
if context_input_ids is not None or context_inputs_embeds is not None:
|
648 |
+
context_features = self.context_tower(
|
649 |
+
input_ids=context_input_ids,
|
650 |
+
inputs_embeds=context_inputs_embeds,
|
651 |
+
attention_mask=context_attention_mask,
|
652 |
+
)
|
653 |
+
context_features, context_attention_mask = self.connector(
|
654 |
+
context_features=context_features
|
655 |
+
)
|
656 |
+
else:
|
657 |
+
context_features = None
|
658 |
+
context_attention_mask = None
|
659 |
+
|
660 |
+
|
661 |
+
if inputs_embeds is None and input_ids is not None:
|
662 |
+
inputs_embeds = self.get_input_embeddings()(input_ids)
|
663 |
+
|
664 |
+
if inputs_embeds is not None:
|
665 |
+
inputs_embeds, attention_mask, position_ids, labels = self._merge_context_features(
|
666 |
+
context_features=context_features,
|
667 |
+
inputs_embeds=inputs_embeds,
|
668 |
+
attention_mask=attention_mask,
|
669 |
+
context_attention_mask=context_attention_mask,
|
670 |
+
position_ids=position_ids,
|
671 |
+
labels=labels,
|
672 |
+
)
|
673 |
+
else:
|
674 |
+
inputs_embeds = context_features
|
675 |
+
attention_mask = context_attention_mask
|
676 |
+
|
677 |
+
outputs = self.language_model(
|
678 |
+
attention_mask=attention_mask,
|
679 |
+
position_ids=position_ids,
|
680 |
+
past_key_values=past_key_values,
|
681 |
+
inputs_embeds=inputs_embeds,
|
682 |
+
use_cache=use_cache,
|
683 |
+
output_attentions=output_attentions,
|
684 |
+
output_hidden_states=output_hidden_states,
|
685 |
+
return_dict=return_dict,
|
686 |
+
cache_position=cache_position,
|
687 |
+
logits_to_keep=logits_to_keep,
|
688 |
+
)
|
689 |
+
|
690 |
+
logits = outputs[0]
|
691 |
+
|
692 |
+
loss = None
|
693 |
+
if labels is not None:
|
694 |
+
shift_logits = logits[..., :-1, :].contiguous()
|
695 |
+
shift_labels = labels[..., 1:].contiguous()
|
696 |
+
loss_fct = nn.CrossEntropyLoss(ignore_index=self.ignore_index)
|
697 |
+
loss = loss_fct(shift_logits.view(-1, shift_logits.size(-1)), shift_labels.view(-1).to(shift_logits.device))
|
698 |
+
|
699 |
+
if not return_dict:
|
700 |
+
output = (logits,) + outputs[1:]
|
701 |
+
return (loss,) + output if loss is not None else output
|
702 |
+
|
703 |
+
return CcubedCausalLMOutputWithPast(
|
704 |
+
loss=loss,
|
705 |
+
logits=logits,
|
706 |
+
past_key_values=outputs.past_key_values,
|
707 |
+
hidden_states=outputs.hidden_states,
|
708 |
+
attentions=outputs.attentions,
|
709 |
+
context_hidden_states=context_features,
|
710 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|