--- license: apache-2.0 tags: - image-classification - generated_from_trainer metrics: - accuracy model-index: - name: modeversion1_m7_e4 results: [] --- # modeversion1_m7_e4 This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the sudo-s/herbier_mesuem7 dataset. It achieves the following results on the evaluation set: - Loss: 0.0902 - Accuracy: 0.9731 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 16 - eval_batch_size: 8 - seed: 42 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: linear - num_epochs: 4 - mixed_precision_training: Native AMP ### Training results | Training Loss | Epoch | Step | Validation Loss | Accuracy | |:-------------:|:-----:|:----:|:---------------:|:--------:| | 4.073 | 0.06 | 100 | 3.9370 | 0.1768 | | 3.4186 | 0.12 | 200 | 3.2721 | 0.2590 | | 2.6745 | 0.18 | 300 | 2.6465 | 0.3856 | | 2.2806 | 0.23 | 400 | 2.2600 | 0.4523 | | 1.9275 | 0.29 | 500 | 1.9653 | 0.5109 | | 1.6958 | 0.35 | 600 | 1.6815 | 0.6078 | | 1.2797 | 0.41 | 700 | 1.4514 | 0.6419 | | 1.3772 | 0.47 | 800 | 1.3212 | 0.6762 | | 1.1765 | 0.53 | 900 | 1.1476 | 0.7028 | | 1.0152 | 0.59 | 1000 | 1.0357 | 0.7313 | | 0.7861 | 0.64 | 1100 | 1.0230 | 0.7184 | | 1.0262 | 0.7 | 1200 | 0.9469 | 0.7386 | | 0.8905 | 0.76 | 1300 | 0.8184 | 0.7756 | | 0.6919 | 0.82 | 1400 | 0.8083 | 0.7711 | | 0.7494 | 0.88 | 1500 | 0.7601 | 0.7825 | | 0.5078 | 0.94 | 1600 | 0.6884 | 0.8056 | | 0.7134 | 1.0 | 1700 | 0.6311 | 0.8160 | | 0.4328 | 1.06 | 1800 | 0.5740 | 0.8252 | | 0.4971 | 1.11 | 1900 | 0.5856 | 0.8290 | | 0.5207 | 1.17 | 2000 | 0.6219 | 0.8167 | | 0.4027 | 1.23 | 2100 | 0.5703 | 0.8266 | | 0.5605 | 1.29 | 2200 | 0.5217 | 0.8372 | | 0.2723 | 1.35 | 2300 | 0.4805 | 0.8565 | | 0.401 | 1.41 | 2400 | 0.4811 | 0.8490 | | 0.3419 | 1.47 | 2500 | 0.4619 | 0.8608 | | 0.301 | 1.52 | 2600 | 0.4318 | 0.8712 | | 0.2872 | 1.58 | 2700 | 0.4698 | 0.8573 | | 0.2451 | 1.64 | 2800 | 0.4210 | 0.8729 | | 0.2211 | 1.7 | 2900 | 0.3645 | 0.8851 | | 0.3145 | 1.76 | 3000 | 0.4139 | 0.8715 | | 0.2001 | 1.82 | 3100 | 0.3605 | 0.8864 | | 0.3095 | 1.88 | 3200 | 0.4274 | 0.8675 | | 0.1915 | 1.93 | 3300 | 0.2910 | 0.9101 | | 0.2465 | 1.99 | 3400 | 0.2726 | 0.9103 | | 0.1218 | 2.05 | 3500 | 0.2742 | 0.9129 | | 0.0752 | 2.11 | 3600 | 0.2572 | 0.9183 | | 0.1067 | 2.17 | 3700 | 0.2584 | 0.9203 | | 0.0838 | 2.23 | 3800 | 0.2458 | 0.9212 | | 0.1106 | 2.29 | 3900 | 0.2412 | 0.9237 | | 0.092 | 2.34 | 4000 | 0.2232 | 0.9277 | | 0.1056 | 2.4 | 4100 | 0.2817 | 0.9077 | | 0.0696 | 2.46 | 4200 | 0.2334 | 0.9285 | | 0.0444 | 2.52 | 4300 | 0.2142 | 0.9363 | | 0.1046 | 2.58 | 4400 | 0.2036 | 0.9352 | | 0.066 | 2.64 | 4500 | 0.2115 | 0.9365 | | 0.0649 | 2.7 | 4600 | 0.1730 | 0.9448 | | 0.0513 | 2.75 | 4700 | 0.2148 | 0.9339 | | 0.0917 | 2.81 | 4800 | 0.1810 | 0.9438 | | 0.0879 | 2.87 | 4900 | 0.1971 | 0.9388 | | 0.1052 | 2.93 | 5000 | 0.1602 | 0.9508 | | 0.0362 | 2.99 | 5100 | 0.1475 | 0.9556 | | 0.041 | 3.05 | 5200 | 0.1328 | 0.9585 | | 0.0156 | 3.11 | 5300 | 0.1389 | 0.9571 | | 0.0047 | 3.17 | 5400 | 0.1224 | 0.9638 | | 0.0174 | 3.22 | 5500 | 0.1193 | 0.9651 | | 0.0087 | 3.28 | 5600 | 0.1276 | 0.9622 | | 0.0084 | 3.34 | 5700 | 0.1134 | 0.9662 | | 0.0141 | 3.4 | 5800 | 0.1239 | 0.9631 | | 0.0291 | 3.46 | 5900 | 0.1199 | 0.9645 | | 0.0049 | 3.52 | 6000 | 0.1103 | 0.9679 | | 0.0055 | 3.58 | 6100 | 0.1120 | 0.9662 | | 0.0061 | 3.63 | 6200 | 0.1071 | 0.9668 | | 0.0054 | 3.69 | 6300 | 0.1032 | 0.9697 | | 0.0041 | 3.75 | 6400 | 0.0961 | 0.9711 | | 0.0018 | 3.81 | 6500 | 0.0930 | 0.9718 | | 0.0032 | 3.87 | 6600 | 0.0918 | 0.9730 | | 0.0048 | 3.93 | 6700 | 0.0906 | 0.9732 | | 0.002 | 3.99 | 6800 | 0.0902 | 0.9731 | ### Framework versions - Transformers 4.20.1 - Pytorch 1.12.0 - Datasets 2.3.2 - Tokenizers 0.12.1