subashmourougayane commited on
Commit
f0bd346
·
verified ·
1 Parent(s): 4b341da

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +11 -19
README.md CHANGED
@@ -1,20 +1,19 @@
1
  ---
2
  base_model: mistralai/Mistral-7B-Instruct-v0.3
3
  tags:
4
- - mistral
5
- - hr
6
- - human-resources
7
- - recruitment
8
- - intent-detection
9
- - entity-extraction
10
- - merged
11
- - whisprnet
12
  license: apache-2.0
13
  ---
14
 
15
- # WhisprNet.AI Recruitment Intent & Entity Extraction (Merged Model)
16
 
17
- This is the merged version of the WhisprNet.AI recruitment intent and entity extraction model. No adapter loading required!
18
 
19
  ## Model Description
20
 
@@ -37,8 +36,8 @@ Fine-tuned Mistral-7B model for extracting intents and entities from recruitment
37
  ```python
38
  from transformers import AutoModelForCausalLM, AutoTokenizer
39
 
40
- model = AutoModelForCausalLM.from_pretrained("subashmourougayane/whisprnet.ai-recruitement-intent-entity-extraction")
41
- tokenizer = AutoTokenizer.from_pretrained("subashmourougayane/whisprnet.ai-recruitement-intent-entity-extraction")
42
 
43
  messages = [
44
  {"role": "system", "content": "Extract intent and entities from HR requests. Return JSON format."},
@@ -58,10 +57,3 @@ print(response)
58
  - **Response Time**: ~4.3 seconds average
59
  - **GPU Memory**: ~4.4GB
60
 
61
- ## Original Adapter
62
-
63
- This model was created by merging the adapter from: [subashmourougayane/whisprnet-hr-entity-extraction](https://huggingface.co/subashmourougayane/whisprnet-hr-entity-extraction)
64
-
65
- ## About WhisprNet.AI
66
-
67
- WhisprNet.AI specializes in AI-powered recruitment and HR solutions.
 
1
  ---
2
  base_model: mistralai/Mistral-7B-Instruct-v0.3
3
  tags:
4
+ - mistral
5
+ - hr
6
+ - human-resources
7
+ - recruitment
8
+ - intent-detection
9
+ - entity-extraction
10
+ - merged
 
11
  license: apache-2.0
12
  ---
13
 
14
+ # Recruitment Intent & Entity Extraction (Merged Model)
15
 
16
+ This is the merged version of the recruitment intent and entity extraction model. No adapter loading required!
17
 
18
  ## Model Description
19
 
 
36
  ```python
37
  from transformers import AutoModelForCausalLM, AutoTokenizer
38
 
39
+ model = AutoModelForCausalLM.from_pretrained("subashmourougayane/recruitement-intent-entity-extraction")
40
+ tokenizer = AutoTokenizer.from_pretrained("subashmourougayane/recruitement-intent-entity-extraction")
41
 
42
  messages = [
43
  {"role": "system", "content": "Extract intent and entities from HR requests. Return JSON format."},
 
57
  - **Response Time**: ~4.3 seconds average
58
  - **GPU Memory**: ~4.4GB
59