File size: 2,035 Bytes
2b6b51f
240f9c5
2b6b51f
 
 
 
 
 
240f9c5
 
2b6b51f
 
 
91c4ed8
cc131bf
2b6b51f
 
ea78613
91c4ed8
2b6b51f
 
 
240f9c5
cc131bf
2b6b51f
91c4ed8
 
49fc585
91c4ed8
 
 
240f9c5
91c4ed8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4aa1e1e
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
---
base_model: meta-llama/Meta-Llama-3.1-8B
language:
- en
license: apache-2.0
tags:
- text-generation-inference
- transformers
- torch
- trl
- unsloth
- llama
- gguf
datasets:
- student-abdullah/BigPharma_Generic_Q-A_Format_Augemented_Dataset
---

# Star Marked
# Uploaded model

- **Developed by:** student-abdullah
- **License:** apache-2.0
- **Finetuned from model:** meta-llama/Meta-Llama-3.1-8B
- **Created on:** 23rd September, 2024

---
# Acknowledgement
<img src="https://raw.githubusercontent.com/unslothai/unsloth/main/images/unsloth%20made%20with%20love.png" width="200"/>

---
# Model Description
This model is fine-tuned from the meta-llama/Meta-Llama-3.1-8B base model to enhance its capabilities in generating relevant and accurate responses related to generic medications under the PMBJP scheme. The fine-tuning process included the following hyperparameters:

- Fine Tuning Template: Llama 3.1 Q&A
- Max Tokens: 512
- LoRA Alpha: 10
- LoRA Rank (r): 128
- Learning rate: 2e-4
- Gradient Accumulation Steps: 32
- Batch Size: 2
- Qunatization: 8 bits

---
# Model Quantitative Performace
- Training Quantitative Loss: 0.2087 (at final 150th epoch)

---
# Limitations
- Token Limitations: With a max token limit of 512, the model might not handle very long queries or contexts effectively.
- Training Data Limitations: The model’s performance is contingent on the quality and coverage of the fine-tuning dataset, which may affect its generalizability to different contexts or medications not covered in the dataset.
- Potential Biases: As with any model fine-tuned on specific data, there may be biases based on the dataset used for training.

---
# Model Performace Evaluation:
- Evaluation on 1000 Questions based on dataset (to evaluate the finetuned knowledge base)
- Correct Responses: %
- Incorrect Responses: %

<p align="center">
  <img src="" width="20%" style="display:inline-block;"/>
  <img src="" width="35%" style="display:inline-block;"/>
  <img src="" width="35%" style="display:inline-block;"/>
</p>