--- license: apache-2.0 library_name: peft tags: - axolotl - generated_from_trainer base_model: mistralai/Mistral-7B-v0.1 model-index: - name: isafpr-mistral-lora-templatefree results: [] --- [Built with Axolotl](https://github.com/OpenAccess-AI-Collective/axolotl)
See axolotl config axolotl version: `0.4.1` ```yaml base_model: mistralai/Mistral-7B-v0.1 model_type: MistralForCausalLM tokenizer_type: LlamaTokenizer load_in_8bit: true load_in_4bit: false strict: false data_seed: 42 seed: 42 datasets: - path: data/templatefree_isaf_press_releases_ft_train.jsonl type: input_output dataset_prepared_path: val_set_size: 0.1 output_dir: ./outputs/mistral/lora-out-templatefree hub_model_id: strickvl/isafpr-mistral-lora-templatefree sequence_len: 2048 sample_packing: true pad_to_sequence_len: true adapter: lora lora_model_dir: lora_r: 32 lora_alpha: 16 lora_dropout: 0.05 lora_target_linear: true lora_fan_in_fan_out: lora_target_modules: - gate_proj - down_proj - up_proj - q_proj - v_proj - k_proj - o_proj wandb_project: isaf_pr_ft wandb_entity: strickvl wandb_watch: wandb_name: wandb_log_model: gradient_accumulation_steps: 4 micro_batch_size: 2 num_epochs: 4 optimizer: adamw_bnb_8bit lr_scheduler: cosine learning_rate: 0.0002 train_on_inputs: false group_by_length: false bf16: auto fp16: tf32: false gradient_checkpointing: true early_stopping_patience: resume_from_checkpoint: local_rank: logging_steps: 1 xformers_attention: flash_attention: true loss_watchdog_threshold: 5.0 loss_watchdog_patience: 3 warmup_steps: 10 evals_per_epoch: 4 eval_table_size: eval_max_new_tokens: 128 saves_per_epoch: 1 debug: deepspeed: weight_decay: 0.0 fsdp: fsdp_config: special_tokens: bos_token: "" eos_token: "" ```

# isafpr-mistral-lora-templatefree This model is a fine-tuned version of [mistralai/Mistral-7B-v0.1](https://huggingface.co/mistralai/Mistral-7B-v0.1) on the None dataset. It achieves the following results on the evaluation set: - Loss: 0.0288 ## Model description More information needed ## Intended uses & limitations More information needed ## Training and evaluation data More information needed ## Training procedure ### Training hyperparameters The following hyperparameters were used during training: - learning_rate: 0.0002 - train_batch_size: 2 - eval_batch_size: 2 - seed: 42 - distributed_type: multi-GPU - num_devices: 2 - gradient_accumulation_steps: 4 - total_train_batch_size: 16 - total_eval_batch_size: 4 - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 - lr_scheduler_type: cosine - lr_scheduler_warmup_steps: 10 - num_epochs: 4 ### Training results | Training Loss | Epoch | Step | Validation Loss | |:-------------:|:------:|:----:|:---------------:| | 1.5339 | 0.0131 | 1 | 1.5408 | | 0.0671 | 0.2492 | 19 | 0.0549 | | 0.037 | 0.4984 | 38 | 0.0406 | | 0.0424 | 0.7475 | 57 | 0.0361 | | 0.035 | 0.9967 | 76 | 0.0351 | | 0.0322 | 1.2295 | 95 | 0.0336 | | 0.0247 | 1.4787 | 114 | 0.0314 | | 0.0229 | 1.7279 | 133 | 0.0313 | | 0.0241 | 1.9770 | 152 | 0.0299 | | 0.0222 | 2.2098 | 171 | 0.0307 | | 0.0183 | 2.4590 | 190 | 0.0296 | | 0.0205 | 2.7082 | 209 | 0.0291 | | 0.0153 | 2.9574 | 228 | 0.0281 | | 0.0162 | 3.1902 | 247 | 0.0286 | | 0.0126 | 3.4393 | 266 | 0.0290 | | 0.0147 | 3.6885 | 285 | 0.0287 | | 0.0157 | 3.9377 | 304 | 0.0288 | ### Framework versions - PEFT 0.11.1 - Transformers 4.41.1 - Pytorch 2.3.0+cu121 - Datasets 2.19.1 - Tokenizers 0.19.1