sthenno commited on
Commit
b56f1b6
·
1 Parent(s): 607611d

update(model): upload model files

Browse files
.gitattributes CHANGED
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
 
 
33
  *.zip filter=lfs diff=lfs merge=lfs -text
34
  *.zst filter=lfs diff=lfs merge=lfs -text
35
  *tfevents* filter=lfs diff=lfs merge=lfs -text
36
+ tokenizer.json filter=lfs diff=lfs merge=lfs -text
added_tokens.json ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "</tool_call>": 151658,
3
+ "<tool_call>": 151657,
4
+ "<|box_end|>": 151649,
5
+ "<|box_start|>": 151648,
6
+ "<|endoftext|>": 151643,
7
+ "<|file_sep|>": 151664,
8
+ "<|fim_middle|>": 151660,
9
+ "<|fim_pad|>": 151662,
10
+ "<|fim_prefix|>": 151659,
11
+ "<|fim_suffix|>": 151661,
12
+ "<|im_end|>": 151645,
13
+ "<|im_start|>": 151644,
14
+ "<|image_pad|>": 151655,
15
+ "<|object_ref_end|>": 151647,
16
+ "<|object_ref_start|>": 151646,
17
+ "<|quad_end|>": 151651,
18
+ "<|quad_start|>": 151650,
19
+ "<|repo_name|>": 151663,
20
+ "<|video_pad|>": 151656,
21
+ "<|vision_end|>": 151653,
22
+ "<|vision_pad|>": 151654,
23
+ "<|vision_start|>": 151652
24
+ }
config.json ADDED
@@ -0,0 +1,29 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "_name_or_path": "/home/ubuntu/tmp/models/miscii-1020",
3
+ "architectures": [
4
+ "Qwen2ForCausalLM"
5
+ ],
6
+ "attention_dropout": 0.0,
7
+ "bos_token_id": 151643,
8
+ "eos_token_id": 151643,
9
+ "hidden_act": "silu",
10
+ "hidden_size": 5120,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 13824,
13
+ "max_position_embeddings": 131072,
14
+ "max_window_layers": 48,
15
+ "model_type": "qwen2",
16
+ "num_attention_heads": 40,
17
+ "num_hidden_layers": 48,
18
+ "num_key_value_heads": 8,
19
+ "rms_norm_eps": 1e-05,
20
+ "rope_scaling": null,
21
+ "rope_theta": 1000000.0,
22
+ "sliding_window": null,
23
+ "tie_word_embeddings": false,
24
+ "torch_dtype": "bfloat16",
25
+ "transformers_version": "4.45.2",
26
+ "use_cache": false,
27
+ "use_sliding_window": false,
28
+ "vocab_size": 152064
29
+ }
generation_config.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "bos_token_id": 151643,
3
+ "do_sample": true,
4
+ "eos_token_id": [
5
+ 151645,
6
+ 151643
7
+ ],
8
+ "pad_token_id": 151643,
9
+ "repetition_penalty": 1.05,
10
+ "temperature": 0.7,
11
+ "top_k": 20,
12
+ "top_p": 0.8,
13
+ "transformers_version": "4.45.2"
14
+ }
latest ADDED
@@ -0,0 +1 @@
 
 
1
+ global_step200
merges.txt ADDED
The diff for this file is too large to render. See raw diff
 
model-00001-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9183753e63f25c19e6700c8ba6a5fd4ea410ffa3807195183fb27008db2ecc6f
3
+ size 4986211280
model-00002-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:09c4e9be9995380c50afbd53f747eaa33a791b656f50fb3dc5bc3ad2b9ce7bf3
3
+ size 4954847344
model-00003-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a9255c1d0be4a588cd7bf80da5b6a0cf2b0c7c3ca60e6809dc30225b5e0b6d8a
3
+ size 4954847392
model-00004-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6149234cf3c69703135b733b5c4c613c60519c69eb1a7043237a71e24b1f14db
3
+ size 4954847392
model-00005-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:95bdb2c07658d669080414e47a664dd9469721fae9a24a976a14890f1e863105
3
+ size 4954847392
model-00006-of-00006.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b82b556ba22a7550b9338055f2aee8d3b26621e059c87734f02631a1da59e41e
3
+ size 4734533160
model.safetensors.index.json ADDED
@@ -0,0 +1,586 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "metadata": {
3
+ "total_size": 29540067328
4
+ },
5
+ "weight_map": {
6
+ "lm_head.weight": "model-00006-of-00006.safetensors",
7
+ "model.embed_tokens.weight": "model-00001-of-00006.safetensors",
8
+ "model.layers.0.input_layernorm.weight": "model-00001-of-00006.safetensors",
9
+ "model.layers.0.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
10
+ "model.layers.0.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
11
+ "model.layers.0.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
12
+ "model.layers.0.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
13
+ "model.layers.0.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
14
+ "model.layers.0.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
15
+ "model.layers.0.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
16
+ "model.layers.0.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
17
+ "model.layers.0.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
18
+ "model.layers.0.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
19
+ "model.layers.0.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
20
+ "model.layers.1.input_layernorm.weight": "model-00001-of-00006.safetensors",
21
+ "model.layers.1.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
22
+ "model.layers.1.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
23
+ "model.layers.1.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
24
+ "model.layers.1.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
25
+ "model.layers.1.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
26
+ "model.layers.1.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
27
+ "model.layers.1.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
28
+ "model.layers.1.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
29
+ "model.layers.1.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
30
+ "model.layers.1.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
31
+ "model.layers.1.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
32
+ "model.layers.10.input_layernorm.weight": "model-00002-of-00006.safetensors",
33
+ "model.layers.10.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
34
+ "model.layers.10.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
35
+ "model.layers.10.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
36
+ "model.layers.10.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
37
+ "model.layers.10.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
38
+ "model.layers.10.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
39
+ "model.layers.10.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
40
+ "model.layers.10.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
41
+ "model.layers.10.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
42
+ "model.layers.10.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
43
+ "model.layers.10.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
44
+ "model.layers.11.input_layernorm.weight": "model-00002-of-00006.safetensors",
45
+ "model.layers.11.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
46
+ "model.layers.11.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
47
+ "model.layers.11.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
48
+ "model.layers.11.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
49
+ "model.layers.11.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
50
+ "model.layers.11.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
51
+ "model.layers.11.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
52
+ "model.layers.11.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
53
+ "model.layers.11.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
54
+ "model.layers.11.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
55
+ "model.layers.11.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
56
+ "model.layers.12.input_layernorm.weight": "model-00002-of-00006.safetensors",
57
+ "model.layers.12.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
58
+ "model.layers.12.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
59
+ "model.layers.12.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
60
+ "model.layers.12.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
61
+ "model.layers.12.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
62
+ "model.layers.12.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
63
+ "model.layers.12.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
64
+ "model.layers.12.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
65
+ "model.layers.12.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
66
+ "model.layers.12.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
67
+ "model.layers.12.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
68
+ "model.layers.13.input_layernorm.weight": "model-00002-of-00006.safetensors",
69
+ "model.layers.13.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
70
+ "model.layers.13.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
71
+ "model.layers.13.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
72
+ "model.layers.13.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
73
+ "model.layers.13.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
74
+ "model.layers.13.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
75
+ "model.layers.13.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
76
+ "model.layers.13.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
77
+ "model.layers.13.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
78
+ "model.layers.13.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
79
+ "model.layers.13.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
80
+ "model.layers.14.input_layernorm.weight": "model-00002-of-00006.safetensors",
81
+ "model.layers.14.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
82
+ "model.layers.14.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
83
+ "model.layers.14.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
84
+ "model.layers.14.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
85
+ "model.layers.14.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
86
+ "model.layers.14.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
87
+ "model.layers.14.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
88
+ "model.layers.14.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
89
+ "model.layers.14.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
90
+ "model.layers.14.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
91
+ "model.layers.14.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
92
+ "model.layers.15.input_layernorm.weight": "model-00003-of-00006.safetensors",
93
+ "model.layers.15.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
94
+ "model.layers.15.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
95
+ "model.layers.15.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
96
+ "model.layers.15.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
97
+ "model.layers.15.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
98
+ "model.layers.15.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
99
+ "model.layers.15.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
100
+ "model.layers.15.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
101
+ "model.layers.15.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
102
+ "model.layers.15.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
103
+ "model.layers.15.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
104
+ "model.layers.16.input_layernorm.weight": "model-00003-of-00006.safetensors",
105
+ "model.layers.16.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
106
+ "model.layers.16.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
107
+ "model.layers.16.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
108
+ "model.layers.16.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
109
+ "model.layers.16.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
110
+ "model.layers.16.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
111
+ "model.layers.16.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
112
+ "model.layers.16.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
113
+ "model.layers.16.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
114
+ "model.layers.16.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
115
+ "model.layers.16.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
116
+ "model.layers.17.input_layernorm.weight": "model-00003-of-00006.safetensors",
117
+ "model.layers.17.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
118
+ "model.layers.17.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
119
+ "model.layers.17.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
120
+ "model.layers.17.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
121
+ "model.layers.17.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
122
+ "model.layers.17.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
123
+ "model.layers.17.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
124
+ "model.layers.17.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
125
+ "model.layers.17.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
126
+ "model.layers.17.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
127
+ "model.layers.17.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
128
+ "model.layers.18.input_layernorm.weight": "model-00003-of-00006.safetensors",
129
+ "model.layers.18.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
130
+ "model.layers.18.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
131
+ "model.layers.18.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
132
+ "model.layers.18.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
133
+ "model.layers.18.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
134
+ "model.layers.18.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
135
+ "model.layers.18.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
136
+ "model.layers.18.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
137
+ "model.layers.18.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
138
+ "model.layers.18.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
139
+ "model.layers.18.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
140
+ "model.layers.19.input_layernorm.weight": "model-00003-of-00006.safetensors",
141
+ "model.layers.19.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
142
+ "model.layers.19.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
143
+ "model.layers.19.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
144
+ "model.layers.19.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
145
+ "model.layers.19.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
146
+ "model.layers.19.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
147
+ "model.layers.19.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
148
+ "model.layers.19.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
149
+ "model.layers.19.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
150
+ "model.layers.19.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
151
+ "model.layers.19.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
152
+ "model.layers.2.input_layernorm.weight": "model-00001-of-00006.safetensors",
153
+ "model.layers.2.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
154
+ "model.layers.2.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
155
+ "model.layers.2.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
156
+ "model.layers.2.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
157
+ "model.layers.2.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
158
+ "model.layers.2.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
159
+ "model.layers.2.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
160
+ "model.layers.2.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
161
+ "model.layers.2.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
162
+ "model.layers.2.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
163
+ "model.layers.2.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
164
+ "model.layers.20.input_layernorm.weight": "model-00003-of-00006.safetensors",
165
+ "model.layers.20.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
166
+ "model.layers.20.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
167
+ "model.layers.20.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
168
+ "model.layers.20.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
169
+ "model.layers.20.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
170
+ "model.layers.20.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
171
+ "model.layers.20.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
172
+ "model.layers.20.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
173
+ "model.layers.20.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
174
+ "model.layers.20.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
175
+ "model.layers.20.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
176
+ "model.layers.21.input_layernorm.weight": "model-00003-of-00006.safetensors",
177
+ "model.layers.21.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
178
+ "model.layers.21.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
179
+ "model.layers.21.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
180
+ "model.layers.21.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
181
+ "model.layers.21.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
182
+ "model.layers.21.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
183
+ "model.layers.21.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
184
+ "model.layers.21.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
185
+ "model.layers.21.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
186
+ "model.layers.21.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
187
+ "model.layers.21.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
188
+ "model.layers.22.input_layernorm.weight": "model-00003-of-00006.safetensors",
189
+ "model.layers.22.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
190
+ "model.layers.22.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
191
+ "model.layers.22.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
192
+ "model.layers.22.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
193
+ "model.layers.22.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
194
+ "model.layers.22.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
195
+ "model.layers.22.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
196
+ "model.layers.22.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
197
+ "model.layers.22.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
198
+ "model.layers.22.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
199
+ "model.layers.22.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
200
+ "model.layers.23.input_layernorm.weight": "model-00003-of-00006.safetensors",
201
+ "model.layers.23.mlp.down_proj.weight": "model-00003-of-00006.safetensors",
202
+ "model.layers.23.mlp.gate_proj.weight": "model-00003-of-00006.safetensors",
203
+ "model.layers.23.mlp.up_proj.weight": "model-00003-of-00006.safetensors",
204
+ "model.layers.23.post_attention_layernorm.weight": "model-00003-of-00006.safetensors",
205
+ "model.layers.23.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
206
+ "model.layers.23.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
207
+ "model.layers.23.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
208
+ "model.layers.23.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
209
+ "model.layers.23.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
210
+ "model.layers.23.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
211
+ "model.layers.23.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
212
+ "model.layers.24.input_layernorm.weight": "model-00004-of-00006.safetensors",
213
+ "model.layers.24.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
214
+ "model.layers.24.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
215
+ "model.layers.24.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
216
+ "model.layers.24.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
217
+ "model.layers.24.self_attn.k_proj.bias": "model-00003-of-00006.safetensors",
218
+ "model.layers.24.self_attn.k_proj.weight": "model-00003-of-00006.safetensors",
219
+ "model.layers.24.self_attn.o_proj.weight": "model-00003-of-00006.safetensors",
220
+ "model.layers.24.self_attn.q_proj.bias": "model-00003-of-00006.safetensors",
221
+ "model.layers.24.self_attn.q_proj.weight": "model-00003-of-00006.safetensors",
222
+ "model.layers.24.self_attn.v_proj.bias": "model-00003-of-00006.safetensors",
223
+ "model.layers.24.self_attn.v_proj.weight": "model-00003-of-00006.safetensors",
224
+ "model.layers.25.input_layernorm.weight": "model-00004-of-00006.safetensors",
225
+ "model.layers.25.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
226
+ "model.layers.25.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
227
+ "model.layers.25.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
228
+ "model.layers.25.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
229
+ "model.layers.25.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
230
+ "model.layers.25.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
231
+ "model.layers.25.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
232
+ "model.layers.25.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
233
+ "model.layers.25.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
234
+ "model.layers.25.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
235
+ "model.layers.25.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
236
+ "model.layers.26.input_layernorm.weight": "model-00004-of-00006.safetensors",
237
+ "model.layers.26.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
238
+ "model.layers.26.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
239
+ "model.layers.26.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
240
+ "model.layers.26.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
241
+ "model.layers.26.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
242
+ "model.layers.26.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
243
+ "model.layers.26.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
244
+ "model.layers.26.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
245
+ "model.layers.26.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
246
+ "model.layers.26.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
247
+ "model.layers.26.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
248
+ "model.layers.27.input_layernorm.weight": "model-00004-of-00006.safetensors",
249
+ "model.layers.27.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
250
+ "model.layers.27.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
251
+ "model.layers.27.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
252
+ "model.layers.27.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
253
+ "model.layers.27.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
254
+ "model.layers.27.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
255
+ "model.layers.27.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
256
+ "model.layers.27.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
257
+ "model.layers.27.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
258
+ "model.layers.27.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
259
+ "model.layers.27.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
260
+ "model.layers.28.input_layernorm.weight": "model-00004-of-00006.safetensors",
261
+ "model.layers.28.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
262
+ "model.layers.28.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
263
+ "model.layers.28.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
264
+ "model.layers.28.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
265
+ "model.layers.28.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
266
+ "model.layers.28.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
267
+ "model.layers.28.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
268
+ "model.layers.28.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
269
+ "model.layers.28.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
270
+ "model.layers.28.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
271
+ "model.layers.28.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
272
+ "model.layers.29.input_layernorm.weight": "model-00004-of-00006.safetensors",
273
+ "model.layers.29.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
274
+ "model.layers.29.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
275
+ "model.layers.29.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
276
+ "model.layers.29.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
277
+ "model.layers.29.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
278
+ "model.layers.29.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
279
+ "model.layers.29.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
280
+ "model.layers.29.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
281
+ "model.layers.29.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
282
+ "model.layers.29.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
283
+ "model.layers.29.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
284
+ "model.layers.3.input_layernorm.weight": "model-00001-of-00006.safetensors",
285
+ "model.layers.3.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
286
+ "model.layers.3.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
287
+ "model.layers.3.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
288
+ "model.layers.3.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
289
+ "model.layers.3.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
290
+ "model.layers.3.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
291
+ "model.layers.3.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
292
+ "model.layers.3.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
293
+ "model.layers.3.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
294
+ "model.layers.3.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
295
+ "model.layers.3.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
296
+ "model.layers.30.input_layernorm.weight": "model-00004-of-00006.safetensors",
297
+ "model.layers.30.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
298
+ "model.layers.30.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
299
+ "model.layers.30.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
300
+ "model.layers.30.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
301
+ "model.layers.30.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
302
+ "model.layers.30.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
303
+ "model.layers.30.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
304
+ "model.layers.30.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
305
+ "model.layers.30.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
306
+ "model.layers.30.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
307
+ "model.layers.30.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
308
+ "model.layers.31.input_layernorm.weight": "model-00004-of-00006.safetensors",
309
+ "model.layers.31.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
310
+ "model.layers.31.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
311
+ "model.layers.31.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
312
+ "model.layers.31.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
313
+ "model.layers.31.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
314
+ "model.layers.31.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
315
+ "model.layers.31.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
316
+ "model.layers.31.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
317
+ "model.layers.31.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
318
+ "model.layers.31.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
319
+ "model.layers.31.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
320
+ "model.layers.32.input_layernorm.weight": "model-00004-of-00006.safetensors",
321
+ "model.layers.32.mlp.down_proj.weight": "model-00004-of-00006.safetensors",
322
+ "model.layers.32.mlp.gate_proj.weight": "model-00004-of-00006.safetensors",
323
+ "model.layers.32.mlp.up_proj.weight": "model-00004-of-00006.safetensors",
324
+ "model.layers.32.post_attention_layernorm.weight": "model-00004-of-00006.safetensors",
325
+ "model.layers.32.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
326
+ "model.layers.32.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
327
+ "model.layers.32.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
328
+ "model.layers.32.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
329
+ "model.layers.32.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
330
+ "model.layers.32.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
331
+ "model.layers.32.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
332
+ "model.layers.33.input_layernorm.weight": "model-00005-of-00006.safetensors",
333
+ "model.layers.33.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
334
+ "model.layers.33.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
335
+ "model.layers.33.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
336
+ "model.layers.33.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
337
+ "model.layers.33.self_attn.k_proj.bias": "model-00004-of-00006.safetensors",
338
+ "model.layers.33.self_attn.k_proj.weight": "model-00004-of-00006.safetensors",
339
+ "model.layers.33.self_attn.o_proj.weight": "model-00004-of-00006.safetensors",
340
+ "model.layers.33.self_attn.q_proj.bias": "model-00004-of-00006.safetensors",
341
+ "model.layers.33.self_attn.q_proj.weight": "model-00004-of-00006.safetensors",
342
+ "model.layers.33.self_attn.v_proj.bias": "model-00004-of-00006.safetensors",
343
+ "model.layers.33.self_attn.v_proj.weight": "model-00004-of-00006.safetensors",
344
+ "model.layers.34.input_layernorm.weight": "model-00005-of-00006.safetensors",
345
+ "model.layers.34.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
346
+ "model.layers.34.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
347
+ "model.layers.34.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
348
+ "model.layers.34.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
349
+ "model.layers.34.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
350
+ "model.layers.34.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
351
+ "model.layers.34.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
352
+ "model.layers.34.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
353
+ "model.layers.34.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
354
+ "model.layers.34.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
355
+ "model.layers.34.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
356
+ "model.layers.35.input_layernorm.weight": "model-00005-of-00006.safetensors",
357
+ "model.layers.35.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
358
+ "model.layers.35.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
359
+ "model.layers.35.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
360
+ "model.layers.35.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
361
+ "model.layers.35.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
362
+ "model.layers.35.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
363
+ "model.layers.35.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
364
+ "model.layers.35.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
365
+ "model.layers.35.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
366
+ "model.layers.35.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
367
+ "model.layers.35.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
368
+ "model.layers.36.input_layernorm.weight": "model-00005-of-00006.safetensors",
369
+ "model.layers.36.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
370
+ "model.layers.36.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
371
+ "model.layers.36.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
372
+ "model.layers.36.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
373
+ "model.layers.36.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
374
+ "model.layers.36.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
375
+ "model.layers.36.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
376
+ "model.layers.36.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
377
+ "model.layers.36.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
378
+ "model.layers.36.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
379
+ "model.layers.36.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
380
+ "model.layers.37.input_layernorm.weight": "model-00005-of-00006.safetensors",
381
+ "model.layers.37.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
382
+ "model.layers.37.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
383
+ "model.layers.37.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
384
+ "model.layers.37.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
385
+ "model.layers.37.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
386
+ "model.layers.37.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
387
+ "model.layers.37.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
388
+ "model.layers.37.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
389
+ "model.layers.37.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
390
+ "model.layers.37.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
391
+ "model.layers.37.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
392
+ "model.layers.38.input_layernorm.weight": "model-00005-of-00006.safetensors",
393
+ "model.layers.38.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
394
+ "model.layers.38.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
395
+ "model.layers.38.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
396
+ "model.layers.38.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
397
+ "model.layers.38.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
398
+ "model.layers.38.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
399
+ "model.layers.38.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
400
+ "model.layers.38.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
401
+ "model.layers.38.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
402
+ "model.layers.38.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
403
+ "model.layers.38.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
404
+ "model.layers.39.input_layernorm.weight": "model-00005-of-00006.safetensors",
405
+ "model.layers.39.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
406
+ "model.layers.39.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
407
+ "model.layers.39.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
408
+ "model.layers.39.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
409
+ "model.layers.39.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
410
+ "model.layers.39.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
411
+ "model.layers.39.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
412
+ "model.layers.39.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
413
+ "model.layers.39.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
414
+ "model.layers.39.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
415
+ "model.layers.39.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
416
+ "model.layers.4.input_layernorm.weight": "model-00001-of-00006.safetensors",
417
+ "model.layers.4.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
418
+ "model.layers.4.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
419
+ "model.layers.4.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
420
+ "model.layers.4.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
421
+ "model.layers.4.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
422
+ "model.layers.4.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
423
+ "model.layers.4.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
424
+ "model.layers.4.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
425
+ "model.layers.4.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
426
+ "model.layers.4.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
427
+ "model.layers.4.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
428
+ "model.layers.40.input_layernorm.weight": "model-00005-of-00006.safetensors",
429
+ "model.layers.40.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
430
+ "model.layers.40.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
431
+ "model.layers.40.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
432
+ "model.layers.40.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
433
+ "model.layers.40.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
434
+ "model.layers.40.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
435
+ "model.layers.40.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
436
+ "model.layers.40.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
437
+ "model.layers.40.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
438
+ "model.layers.40.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
439
+ "model.layers.40.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
440
+ "model.layers.41.input_layernorm.weight": "model-00005-of-00006.safetensors",
441
+ "model.layers.41.mlp.down_proj.weight": "model-00005-of-00006.safetensors",
442
+ "model.layers.41.mlp.gate_proj.weight": "model-00005-of-00006.safetensors",
443
+ "model.layers.41.mlp.up_proj.weight": "model-00005-of-00006.safetensors",
444
+ "model.layers.41.post_attention_layernorm.weight": "model-00005-of-00006.safetensors",
445
+ "model.layers.41.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
446
+ "model.layers.41.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
447
+ "model.layers.41.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
448
+ "model.layers.41.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
449
+ "model.layers.41.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
450
+ "model.layers.41.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
451
+ "model.layers.41.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
452
+ "model.layers.42.input_layernorm.weight": "model-00006-of-00006.safetensors",
453
+ "model.layers.42.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
454
+ "model.layers.42.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
455
+ "model.layers.42.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
456
+ "model.layers.42.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
457
+ "model.layers.42.self_attn.k_proj.bias": "model-00005-of-00006.safetensors",
458
+ "model.layers.42.self_attn.k_proj.weight": "model-00005-of-00006.safetensors",
459
+ "model.layers.42.self_attn.o_proj.weight": "model-00005-of-00006.safetensors",
460
+ "model.layers.42.self_attn.q_proj.bias": "model-00005-of-00006.safetensors",
461
+ "model.layers.42.self_attn.q_proj.weight": "model-00005-of-00006.safetensors",
462
+ "model.layers.42.self_attn.v_proj.bias": "model-00005-of-00006.safetensors",
463
+ "model.layers.42.self_attn.v_proj.weight": "model-00005-of-00006.safetensors",
464
+ "model.layers.43.input_layernorm.weight": "model-00006-of-00006.safetensors",
465
+ "model.layers.43.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
466
+ "model.layers.43.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
467
+ "model.layers.43.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
468
+ "model.layers.43.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
469
+ "model.layers.43.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
470
+ "model.layers.43.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
471
+ "model.layers.43.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
472
+ "model.layers.43.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
473
+ "model.layers.43.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
474
+ "model.layers.43.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
475
+ "model.layers.43.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
476
+ "model.layers.44.input_layernorm.weight": "model-00006-of-00006.safetensors",
477
+ "model.layers.44.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
478
+ "model.layers.44.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
479
+ "model.layers.44.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
480
+ "model.layers.44.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
481
+ "model.layers.44.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
482
+ "model.layers.44.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
483
+ "model.layers.44.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
484
+ "model.layers.44.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
485
+ "model.layers.44.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
486
+ "model.layers.44.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
487
+ "model.layers.44.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
488
+ "model.layers.45.input_layernorm.weight": "model-00006-of-00006.safetensors",
489
+ "model.layers.45.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
490
+ "model.layers.45.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
491
+ "model.layers.45.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
492
+ "model.layers.45.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
493
+ "model.layers.45.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
494
+ "model.layers.45.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
495
+ "model.layers.45.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
496
+ "model.layers.45.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
497
+ "model.layers.45.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
498
+ "model.layers.45.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
499
+ "model.layers.45.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
500
+ "model.layers.46.input_layernorm.weight": "model-00006-of-00006.safetensors",
501
+ "model.layers.46.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
502
+ "model.layers.46.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
503
+ "model.layers.46.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
504
+ "model.layers.46.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
505
+ "model.layers.46.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
506
+ "model.layers.46.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
507
+ "model.layers.46.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
508
+ "model.layers.46.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
509
+ "model.layers.46.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
510
+ "model.layers.46.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
511
+ "model.layers.46.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
512
+ "model.layers.47.input_layernorm.weight": "model-00006-of-00006.safetensors",
513
+ "model.layers.47.mlp.down_proj.weight": "model-00006-of-00006.safetensors",
514
+ "model.layers.47.mlp.gate_proj.weight": "model-00006-of-00006.safetensors",
515
+ "model.layers.47.mlp.up_proj.weight": "model-00006-of-00006.safetensors",
516
+ "model.layers.47.post_attention_layernorm.weight": "model-00006-of-00006.safetensors",
517
+ "model.layers.47.self_attn.k_proj.bias": "model-00006-of-00006.safetensors",
518
+ "model.layers.47.self_attn.k_proj.weight": "model-00006-of-00006.safetensors",
519
+ "model.layers.47.self_attn.o_proj.weight": "model-00006-of-00006.safetensors",
520
+ "model.layers.47.self_attn.q_proj.bias": "model-00006-of-00006.safetensors",
521
+ "model.layers.47.self_attn.q_proj.weight": "model-00006-of-00006.safetensors",
522
+ "model.layers.47.self_attn.v_proj.bias": "model-00006-of-00006.safetensors",
523
+ "model.layers.47.self_attn.v_proj.weight": "model-00006-of-00006.safetensors",
524
+ "model.layers.5.input_layernorm.weight": "model-00001-of-00006.safetensors",
525
+ "model.layers.5.mlp.down_proj.weight": "model-00001-of-00006.safetensors",
526
+ "model.layers.5.mlp.gate_proj.weight": "model-00001-of-00006.safetensors",
527
+ "model.layers.5.mlp.up_proj.weight": "model-00001-of-00006.safetensors",
528
+ "model.layers.5.post_attention_layernorm.weight": "model-00001-of-00006.safetensors",
529
+ "model.layers.5.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
530
+ "model.layers.5.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
531
+ "model.layers.5.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
532
+ "model.layers.5.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
533
+ "model.layers.5.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
534
+ "model.layers.5.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
535
+ "model.layers.5.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
536
+ "model.layers.6.input_layernorm.weight": "model-00002-of-00006.safetensors",
537
+ "model.layers.6.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
538
+ "model.layers.6.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
539
+ "model.layers.6.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
540
+ "model.layers.6.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
541
+ "model.layers.6.self_attn.k_proj.bias": "model-00001-of-00006.safetensors",
542
+ "model.layers.6.self_attn.k_proj.weight": "model-00001-of-00006.safetensors",
543
+ "model.layers.6.self_attn.o_proj.weight": "model-00001-of-00006.safetensors",
544
+ "model.layers.6.self_attn.q_proj.bias": "model-00001-of-00006.safetensors",
545
+ "model.layers.6.self_attn.q_proj.weight": "model-00001-of-00006.safetensors",
546
+ "model.layers.6.self_attn.v_proj.bias": "model-00001-of-00006.safetensors",
547
+ "model.layers.6.self_attn.v_proj.weight": "model-00001-of-00006.safetensors",
548
+ "model.layers.7.input_layernorm.weight": "model-00002-of-00006.safetensors",
549
+ "model.layers.7.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
550
+ "model.layers.7.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
551
+ "model.layers.7.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
552
+ "model.layers.7.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
553
+ "model.layers.7.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
554
+ "model.layers.7.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
555
+ "model.layers.7.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
556
+ "model.layers.7.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
557
+ "model.layers.7.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
558
+ "model.layers.7.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
559
+ "model.layers.7.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
560
+ "model.layers.8.input_layernorm.weight": "model-00002-of-00006.safetensors",
561
+ "model.layers.8.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
562
+ "model.layers.8.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
563
+ "model.layers.8.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
564
+ "model.layers.8.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
565
+ "model.layers.8.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
566
+ "model.layers.8.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
567
+ "model.layers.8.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
568
+ "model.layers.8.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
569
+ "model.layers.8.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
570
+ "model.layers.8.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
571
+ "model.layers.8.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
572
+ "model.layers.9.input_layernorm.weight": "model-00002-of-00006.safetensors",
573
+ "model.layers.9.mlp.down_proj.weight": "model-00002-of-00006.safetensors",
574
+ "model.layers.9.mlp.gate_proj.weight": "model-00002-of-00006.safetensors",
575
+ "model.layers.9.mlp.up_proj.weight": "model-00002-of-00006.safetensors",
576
+ "model.layers.9.post_attention_layernorm.weight": "model-00002-of-00006.safetensors",
577
+ "model.layers.9.self_attn.k_proj.bias": "model-00002-of-00006.safetensors",
578
+ "model.layers.9.self_attn.k_proj.weight": "model-00002-of-00006.safetensors",
579
+ "model.layers.9.self_attn.o_proj.weight": "model-00002-of-00006.safetensors",
580
+ "model.layers.9.self_attn.q_proj.bias": "model-00002-of-00006.safetensors",
581
+ "model.layers.9.self_attn.q_proj.weight": "model-00002-of-00006.safetensors",
582
+ "model.layers.9.self_attn.v_proj.bias": "model-00002-of-00006.safetensors",
583
+ "model.layers.9.self_attn.v_proj.weight": "model-00002-of-00006.safetensors",
584
+ "model.norm.weight": "model-00006-of-00006.safetensors"
585
+ }
586
+ }
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a6a0b68eaec22cca2bac88b142045afc24655b66cff2f1a585b6118f787a9d82
3
+ size 1064
special_tokens_map.json ADDED
@@ -0,0 +1,31 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "additional_special_tokens": [
3
+ "<|im_start|>",
4
+ "<|im_end|>",
5
+ "<|object_ref_start|>",
6
+ "<|object_ref_end|>",
7
+ "<|box_start|>",
8
+ "<|box_end|>",
9
+ "<|quad_start|>",
10
+ "<|quad_end|>",
11
+ "<|vision_start|>",
12
+ "<|vision_end|>",
13
+ "<|vision_pad|>",
14
+ "<|image_pad|>",
15
+ "<|video_pad|>"
16
+ ],
17
+ "eos_token": {
18
+ "content": "<|im_end|>",
19
+ "lstrip": false,
20
+ "normalized": false,
21
+ "rstrip": false,
22
+ "single_word": false
23
+ },
24
+ "pad_token": {
25
+ "content": "<|endoftext|>",
26
+ "lstrip": false,
27
+ "normalized": false,
28
+ "rstrip": false,
29
+ "single_word": false
30
+ }
31
+ }
tokenizer.json ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c5ae00e602b8860cbd784ba82a8aa14e8feecec692e7076590d014d7b7fdafa
3
+ size 11421896
tokenizer_config.json ADDED
@@ -0,0 +1,208 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "add_bos_token": false,
3
+ "add_prefix_space": false,
4
+ "added_tokens_decoder": {
5
+ "151643": {
6
+ "content": "<|endoftext|>",
7
+ "lstrip": false,
8
+ "normalized": false,
9
+ "rstrip": false,
10
+ "single_word": false,
11
+ "special": true
12
+ },
13
+ "151644": {
14
+ "content": "<|im_start|>",
15
+ "lstrip": false,
16
+ "normalized": false,
17
+ "rstrip": false,
18
+ "single_word": false,
19
+ "special": true
20
+ },
21
+ "151645": {
22
+ "content": "<|im_end|>",
23
+ "lstrip": false,
24
+ "normalized": false,
25
+ "rstrip": false,
26
+ "single_word": false,
27
+ "special": true
28
+ },
29
+ "151646": {
30
+ "content": "<|object_ref_start|>",
31
+ "lstrip": false,
32
+ "normalized": false,
33
+ "rstrip": false,
34
+ "single_word": false,
35
+ "special": true
36
+ },
37
+ "151647": {
38
+ "content": "<|object_ref_end|>",
39
+ "lstrip": false,
40
+ "normalized": false,
41
+ "rstrip": false,
42
+ "single_word": false,
43
+ "special": true
44
+ },
45
+ "151648": {
46
+ "content": "<|box_start|>",
47
+ "lstrip": false,
48
+ "normalized": false,
49
+ "rstrip": false,
50
+ "single_word": false,
51
+ "special": true
52
+ },
53
+ "151649": {
54
+ "content": "<|box_end|>",
55
+ "lstrip": false,
56
+ "normalized": false,
57
+ "rstrip": false,
58
+ "single_word": false,
59
+ "special": true
60
+ },
61
+ "151650": {
62
+ "content": "<|quad_start|>",
63
+ "lstrip": false,
64
+ "normalized": false,
65
+ "rstrip": false,
66
+ "single_word": false,
67
+ "special": true
68
+ },
69
+ "151651": {
70
+ "content": "<|quad_end|>",
71
+ "lstrip": false,
72
+ "normalized": false,
73
+ "rstrip": false,
74
+ "single_word": false,
75
+ "special": true
76
+ },
77
+ "151652": {
78
+ "content": "<|vision_start|>",
79
+ "lstrip": false,
80
+ "normalized": false,
81
+ "rstrip": false,
82
+ "single_word": false,
83
+ "special": true
84
+ },
85
+ "151653": {
86
+ "content": "<|vision_end|>",
87
+ "lstrip": false,
88
+ "normalized": false,
89
+ "rstrip": false,
90
+ "single_word": false,
91
+ "special": true
92
+ },
93
+ "151654": {
94
+ "content": "<|vision_pad|>",
95
+ "lstrip": false,
96
+ "normalized": false,
97
+ "rstrip": false,
98
+ "single_word": false,
99
+ "special": true
100
+ },
101
+ "151655": {
102
+ "content": "<|image_pad|>",
103
+ "lstrip": false,
104
+ "normalized": false,
105
+ "rstrip": false,
106
+ "single_word": false,
107
+ "special": true
108
+ },
109
+ "151656": {
110
+ "content": "<|video_pad|>",
111
+ "lstrip": false,
112
+ "normalized": false,
113
+ "rstrip": false,
114
+ "single_word": false,
115
+ "special": true
116
+ },
117
+ "151657": {
118
+ "content": "<tool_call>",
119
+ "lstrip": false,
120
+ "normalized": false,
121
+ "rstrip": false,
122
+ "single_word": false,
123
+ "special": false
124
+ },
125
+ "151658": {
126
+ "content": "</tool_call>",
127
+ "lstrip": false,
128
+ "normalized": false,
129
+ "rstrip": false,
130
+ "single_word": false,
131
+ "special": false
132
+ },
133
+ "151659": {
134
+ "content": "<|fim_prefix|>",
135
+ "lstrip": false,
136
+ "normalized": false,
137
+ "rstrip": false,
138
+ "single_word": false,
139
+ "special": false
140
+ },
141
+ "151660": {
142
+ "content": "<|fim_middle|>",
143
+ "lstrip": false,
144
+ "normalized": false,
145
+ "rstrip": false,
146
+ "single_word": false,
147
+ "special": false
148
+ },
149
+ "151661": {
150
+ "content": "<|fim_suffix|>",
151
+ "lstrip": false,
152
+ "normalized": false,
153
+ "rstrip": false,
154
+ "single_word": false,
155
+ "special": false
156
+ },
157
+ "151662": {
158
+ "content": "<|fim_pad|>",
159
+ "lstrip": false,
160
+ "normalized": false,
161
+ "rstrip": false,
162
+ "single_word": false,
163
+ "special": false
164
+ },
165
+ "151663": {
166
+ "content": "<|repo_name|>",
167
+ "lstrip": false,
168
+ "normalized": false,
169
+ "rstrip": false,
170
+ "single_word": false,
171
+ "special": false
172
+ },
173
+ "151664": {
174
+ "content": "<|file_sep|>",
175
+ "lstrip": false,
176
+ "normalized": false,
177
+ "rstrip": false,
178
+ "single_word": false,
179
+ "special": false
180
+ }
181
+ },
182
+ "additional_special_tokens": [
183
+ "<|im_start|>",
184
+ "<|im_end|>",
185
+ "<|object_ref_start|>",
186
+ "<|object_ref_end|>",
187
+ "<|box_start|>",
188
+ "<|box_end|>",
189
+ "<|quad_start|>",
190
+ "<|quad_end|>",
191
+ "<|vision_start|>",
192
+ "<|vision_end|>",
193
+ "<|vision_pad|>",
194
+ "<|image_pad|>",
195
+ "<|video_pad|>"
196
+ ],
197
+ "bos_token": null,
198
+ "chat_template": "{%- if tools %}\n {{- '<|im_start|>system\\n' }}\n {%- if messages[0]['role'] == 'system' %}\n {{- messages[0]['content'] }}\n {%- else %}\n {{- 'You are Qwen, created by Alibaba Cloud. You are a helpful assistant.' }}\n {%- endif %}\n {{- \"\\n\\n# Tools\\n\\nYou may call one or more functions to assist with the user query.\\n\\nYou are provided with function signatures within <tools></tools> XML tags:\\n<tools>\" }}\n {%- for tool in tools %}\n {{- \"\\n\" }}\n {{- tool | tojson }}\n {%- endfor %}\n {{- \"\\n</tools>\\n\\nFor each function call, return a json object with function name and arguments within <tool_call></tool_call> XML tags:\\n<tool_call>\\n{\\\"name\\\": <function-name>, \\\"arguments\\\": <args-json-object>}\\n</tool_call><|im_end|>\\n\" }}\n{%- else %}\n {%- if messages[0]['role'] == 'system' %}\n {{- '<|im_start|>system\\n' + messages[0]['content'] + '<|im_end|>\\n' }}\n {%- else %}\n {{- '<|im_start|>system\\nYou are Qwen, created by Alibaba Cloud. You are a helpful assistant.<|im_end|>\\n' }}\n {%- endif %}\n{%- endif %}\n{%- for message in messages %}\n {%- if (message.role == \"user\") or (message.role == \"system\" and not loop.first) or (message.role == \"assistant\" and not message.tool_calls) %}\n {{- '<|im_start|>' + message.role + '\\n' + message.content + '<|im_end|>' + '\\n' }}\n {%- elif message.role == \"assistant\" %}\n {{- '<|im_start|>' + message.role }}\n {%- if message.content %}\n {{- '\\n' + message.content }}\n {%- endif %}\n {%- for tool_call in message.tool_calls %}\n {%- if tool_call.function is defined %}\n {%- set tool_call = tool_call.function %}\n {%- endif %}\n {{- '\\n<tool_call>\\n{\"name\": \"' }}\n {{- tool_call.name }}\n {{- '\", \"arguments\": ' }}\n {{- tool_call.arguments | tojson }}\n {{- '}\\n</tool_call>' }}\n {%- endfor %}\n {{- '<|im_end|>\\n' }}\n {%- elif message.role == \"tool\" %}\n {%- if (loop.index0 == 0) or (messages[loop.index0 - 1].role != \"tool\") %}\n {{- '<|im_start|>user' }}\n {%- endif %}\n {{- '\\n<tool_response>\\n' }}\n {{- message.content }}\n {{- '\\n</tool_response>' }}\n {%- if loop.last or (messages[loop.index0 + 1].role != \"tool\") %}\n {{- '<|im_end|>\\n' }}\n {%- endif %}\n {%- endif %}\n{%- endfor %}\n{%- if add_generation_prompt %}\n {{- '<|im_start|>assistant\\n' }}\n{%- endif %}\n",
199
+ "clean_up_tokenization_spaces": false,
200
+ "eos_token": "<|im_end|>",
201
+ "errors": "replace",
202
+ "model_max_length": 131072,
203
+ "pad_token": "<|endoftext|>",
204
+ "padding_side": "right",
205
+ "split_special_tokens": false,
206
+ "tokenizer_class": "Qwen2Tokenizer",
207
+ "unk_token": null
208
+ }
trainer_state.json ADDED
@@ -0,0 +1,1449 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_metric": null,
3
+ "best_model_checkpoint": null,
4
+ "epoch": 0.5667729365922777,
5
+ "eval_steps": 100,
6
+ "global_step": 200,
7
+ "is_hyper_param_search": false,
8
+ "is_local_process_zero": true,
9
+ "is_world_process_zero": true,
10
+ "log_history": [
11
+ {
12
+ "epoch": 0.0028338646829613886,
13
+ "grad_norm": 2.486575126647949,
14
+ "learning_rate": 2.7777777777777776e-07,
15
+ "loss": 1.0529,
16
+ "step": 1
17
+ },
18
+ {
19
+ "epoch": 0.005667729365922777,
20
+ "grad_norm": 2.4581711292266846,
21
+ "learning_rate": 5.555555555555555e-07,
22
+ "loss": 1.0667,
23
+ "step": 2
24
+ },
25
+ {
26
+ "epoch": 0.008501594048884165,
27
+ "grad_norm": 2.5839550495147705,
28
+ "learning_rate": 8.333333333333333e-07,
29
+ "loss": 1.0656,
30
+ "step": 3
31
+ },
32
+ {
33
+ "epoch": 0.011335458731845554,
34
+ "grad_norm": 2.298288345336914,
35
+ "learning_rate": 1.111111111111111e-06,
36
+ "loss": 0.9865,
37
+ "step": 4
38
+ },
39
+ {
40
+ "epoch": 0.014169323414806943,
41
+ "grad_norm": 2.297114372253418,
42
+ "learning_rate": 1.3888888888888892e-06,
43
+ "loss": 1.0597,
44
+ "step": 5
45
+ },
46
+ {
47
+ "epoch": 0.01700318809776833,
48
+ "grad_norm": 2.0391056537628174,
49
+ "learning_rate": 1.6666666666666667e-06,
50
+ "loss": 0.9876,
51
+ "step": 6
52
+ },
53
+ {
54
+ "epoch": 0.01983705278072972,
55
+ "grad_norm": 2.1765682697296143,
56
+ "learning_rate": 1.944444444444445e-06,
57
+ "loss": 1.0235,
58
+ "step": 7
59
+ },
60
+ {
61
+ "epoch": 0.02267091746369111,
62
+ "grad_norm": 2.067063331604004,
63
+ "learning_rate": 2.222222222222222e-06,
64
+ "loss": 1.0371,
65
+ "step": 8
66
+ },
67
+ {
68
+ "epoch": 0.025504782146652496,
69
+ "grad_norm": 1.8456134796142578,
70
+ "learning_rate": 2.5e-06,
71
+ "loss": 1.0335,
72
+ "step": 9
73
+ },
74
+ {
75
+ "epoch": 0.028338646829613887,
76
+ "grad_norm": 1.2864792346954346,
77
+ "learning_rate": 2.7777777777777783e-06,
78
+ "loss": 0.9882,
79
+ "step": 10
80
+ },
81
+ {
82
+ "epoch": 0.031172511512575274,
83
+ "grad_norm": 1.3451131582260132,
84
+ "learning_rate": 3.055555555555556e-06,
85
+ "loss": 0.9992,
86
+ "step": 11
87
+ },
88
+ {
89
+ "epoch": 0.03400637619553666,
90
+ "grad_norm": 1.248445749282837,
91
+ "learning_rate": 3.3333333333333333e-06,
92
+ "loss": 0.9167,
93
+ "step": 12
94
+ },
95
+ {
96
+ "epoch": 0.03684024087849805,
97
+ "grad_norm": 1.7280871868133545,
98
+ "learning_rate": 3.6111111111111115e-06,
99
+ "loss": 0.9863,
100
+ "step": 13
101
+ },
102
+ {
103
+ "epoch": 0.03967410556145944,
104
+ "grad_norm": 1.7836530208587646,
105
+ "learning_rate": 3.88888888888889e-06,
106
+ "loss": 0.9955,
107
+ "step": 14
108
+ },
109
+ {
110
+ "epoch": 0.04250797024442083,
111
+ "grad_norm": 2.057832717895508,
112
+ "learning_rate": 4.166666666666667e-06,
113
+ "loss": 0.9774,
114
+ "step": 15
115
+ },
116
+ {
117
+ "epoch": 0.04534183492738222,
118
+ "grad_norm": 1.7875008583068848,
119
+ "learning_rate": 4.444444444444444e-06,
120
+ "loss": 0.9283,
121
+ "step": 16
122
+ },
123
+ {
124
+ "epoch": 0.048175699610343604,
125
+ "grad_norm": 1.7444796562194824,
126
+ "learning_rate": 4.722222222222222e-06,
127
+ "loss": 0.9814,
128
+ "step": 17
129
+ },
130
+ {
131
+ "epoch": 0.05100956429330499,
132
+ "grad_norm": 1.3500471115112305,
133
+ "learning_rate": 5e-06,
134
+ "loss": 0.9782,
135
+ "step": 18
136
+ },
137
+ {
138
+ "epoch": 0.053843428976266386,
139
+ "grad_norm": 1.2453361749649048,
140
+ "learning_rate": 5.2777777777777785e-06,
141
+ "loss": 0.9214,
142
+ "step": 19
143
+ },
144
+ {
145
+ "epoch": 0.05667729365922777,
146
+ "grad_norm": 1.424530029296875,
147
+ "learning_rate": 5.555555555555557e-06,
148
+ "loss": 0.9823,
149
+ "step": 20
150
+ },
151
+ {
152
+ "epoch": 0.05951115834218916,
153
+ "grad_norm": 1.41603422164917,
154
+ "learning_rate": 5.833333333333334e-06,
155
+ "loss": 0.985,
156
+ "step": 21
157
+ },
158
+ {
159
+ "epoch": 0.06234502302515055,
160
+ "grad_norm": 1.4645209312438965,
161
+ "learning_rate": 6.111111111111112e-06,
162
+ "loss": 0.9969,
163
+ "step": 22
164
+ },
165
+ {
166
+ "epoch": 0.06517888770811193,
167
+ "grad_norm": 1.3437155485153198,
168
+ "learning_rate": 6.3888888888888885e-06,
169
+ "loss": 0.9882,
170
+ "step": 23
171
+ },
172
+ {
173
+ "epoch": 0.06801275239107332,
174
+ "grad_norm": 1.1282659769058228,
175
+ "learning_rate": 6.666666666666667e-06,
176
+ "loss": 0.8876,
177
+ "step": 24
178
+ },
179
+ {
180
+ "epoch": 0.07084661707403471,
181
+ "grad_norm": 1.1051347255706787,
182
+ "learning_rate": 6.944444444444445e-06,
183
+ "loss": 0.9013,
184
+ "step": 25
185
+ },
186
+ {
187
+ "epoch": 0.0736804817569961,
188
+ "grad_norm": 1.0878770351409912,
189
+ "learning_rate": 7.222222222222223e-06,
190
+ "loss": 0.9114,
191
+ "step": 26
192
+ },
193
+ {
194
+ "epoch": 0.0765143464399575,
195
+ "grad_norm": 1.218088984489441,
196
+ "learning_rate": 7.500000000000001e-06,
197
+ "loss": 0.9036,
198
+ "step": 27
199
+ },
200
+ {
201
+ "epoch": 0.07934821112291889,
202
+ "grad_norm": 1.1867142915725708,
203
+ "learning_rate": 7.77777777777778e-06,
204
+ "loss": 0.9659,
205
+ "step": 28
206
+ },
207
+ {
208
+ "epoch": 0.08218207580588027,
209
+ "grad_norm": 1.1344166994094849,
210
+ "learning_rate": 8.055555555555557e-06,
211
+ "loss": 0.8968,
212
+ "step": 29
213
+ },
214
+ {
215
+ "epoch": 0.08501594048884166,
216
+ "grad_norm": 1.1566065549850464,
217
+ "learning_rate": 8.333333333333334e-06,
218
+ "loss": 0.9501,
219
+ "step": 30
220
+ },
221
+ {
222
+ "epoch": 0.08784980517180305,
223
+ "grad_norm": 1.0742772817611694,
224
+ "learning_rate": 8.611111111111112e-06,
225
+ "loss": 0.9461,
226
+ "step": 31
227
+ },
228
+ {
229
+ "epoch": 0.09068366985476443,
230
+ "grad_norm": 1.0392136573791504,
231
+ "learning_rate": 8.888888888888888e-06,
232
+ "loss": 0.9687,
233
+ "step": 32
234
+ },
235
+ {
236
+ "epoch": 0.09351753453772582,
237
+ "grad_norm": 1.1021109819412231,
238
+ "learning_rate": 9.166666666666666e-06,
239
+ "loss": 0.9009,
240
+ "step": 33
241
+ },
242
+ {
243
+ "epoch": 0.09635139922068721,
244
+ "grad_norm": 1.0842477083206177,
245
+ "learning_rate": 9.444444444444445e-06,
246
+ "loss": 0.895,
247
+ "step": 34
248
+ },
249
+ {
250
+ "epoch": 0.0991852639036486,
251
+ "grad_norm": 1.0577669143676758,
252
+ "learning_rate": 9.722222222222223e-06,
253
+ "loss": 0.8946,
254
+ "step": 35
255
+ },
256
+ {
257
+ "epoch": 0.10201912858660998,
258
+ "grad_norm": 1.0416364669799805,
259
+ "learning_rate": 1e-05,
260
+ "loss": 0.9236,
261
+ "step": 36
262
+ },
263
+ {
264
+ "epoch": 0.10485299326957138,
265
+ "grad_norm": 1.0574793815612793,
266
+ "learning_rate": 9.999944704978835e-06,
267
+ "loss": 0.9648,
268
+ "step": 37
269
+ },
270
+ {
271
+ "epoch": 0.10768685795253277,
272
+ "grad_norm": 1.0903434753417969,
273
+ "learning_rate": 9.999778821138357e-06,
274
+ "loss": 0.9307,
275
+ "step": 38
276
+ },
277
+ {
278
+ "epoch": 0.11052072263549416,
279
+ "grad_norm": 0.9352409839630127,
280
+ "learning_rate": 9.999502352147583e-06,
281
+ "loss": 0.9106,
282
+ "step": 39
283
+ },
284
+ {
285
+ "epoch": 0.11335458731845555,
286
+ "grad_norm": 1.027969479560852,
287
+ "learning_rate": 9.999115304121459e-06,
288
+ "loss": 0.8888,
289
+ "step": 40
290
+ },
291
+ {
292
+ "epoch": 0.11618845200141693,
293
+ "grad_norm": 1.0393131971359253,
294
+ "learning_rate": 9.998617685620715e-06,
295
+ "loss": 0.9014,
296
+ "step": 41
297
+ },
298
+ {
299
+ "epoch": 0.11902231668437832,
300
+ "grad_norm": 1.1002625226974487,
301
+ "learning_rate": 9.998009507651683e-06,
302
+ "loss": 0.9128,
303
+ "step": 42
304
+ },
305
+ {
306
+ "epoch": 0.12185618136733971,
307
+ "grad_norm": 1.0595248937606812,
308
+ "learning_rate": 9.997290783666048e-06,
309
+ "loss": 0.9469,
310
+ "step": 43
311
+ },
312
+ {
313
+ "epoch": 0.1246900460503011,
314
+ "grad_norm": 1.0755085945129395,
315
+ "learning_rate": 9.996461529560553e-06,
316
+ "loss": 0.9286,
317
+ "step": 44
318
+ },
319
+ {
320
+ "epoch": 0.1275239107332625,
321
+ "grad_norm": 0.9834471344947815,
322
+ "learning_rate": 9.995521763676645e-06,
323
+ "loss": 0.8902,
324
+ "step": 45
325
+ },
326
+ {
327
+ "epoch": 0.13035777541622387,
328
+ "grad_norm": 1.0345213413238525,
329
+ "learning_rate": 9.994471506800078e-06,
330
+ "loss": 0.8559,
331
+ "step": 46
332
+ },
333
+ {
334
+ "epoch": 0.13319164009918527,
335
+ "grad_norm": 1.0277979373931885,
336
+ "learning_rate": 9.993310782160439e-06,
337
+ "loss": 0.9472,
338
+ "step": 47
339
+ },
340
+ {
341
+ "epoch": 0.13602550478214664,
342
+ "grad_norm": 0.962760865688324,
343
+ "learning_rate": 9.992039615430648e-06,
344
+ "loss": 0.9425,
345
+ "step": 48
346
+ },
347
+ {
348
+ "epoch": 0.13885936946510805,
349
+ "grad_norm": 1.0316935777664185,
350
+ "learning_rate": 9.99065803472638e-06,
351
+ "loss": 0.9338,
352
+ "step": 49
353
+ },
354
+ {
355
+ "epoch": 0.14169323414806942,
356
+ "grad_norm": 1.1116628646850586,
357
+ "learning_rate": 9.989166070605447e-06,
358
+ "loss": 0.9371,
359
+ "step": 50
360
+ },
361
+ {
362
+ "epoch": 0.14452709883103082,
363
+ "grad_norm": 1.0028659105300903,
364
+ "learning_rate": 9.98756375606713e-06,
365
+ "loss": 0.8205,
366
+ "step": 51
367
+ },
368
+ {
369
+ "epoch": 0.1473609635139922,
370
+ "grad_norm": 1.0096858739852905,
371
+ "learning_rate": 9.985851126551428e-06,
372
+ "loss": 0.8863,
373
+ "step": 52
374
+ },
375
+ {
376
+ "epoch": 0.1501948281969536,
377
+ "grad_norm": 1.0067119598388672,
378
+ "learning_rate": 9.9840282199383e-06,
379
+ "loss": 0.9361,
380
+ "step": 53
381
+ },
382
+ {
383
+ "epoch": 0.153028692879915,
384
+ "grad_norm": 1.023996114730835,
385
+ "learning_rate": 9.982095076546806e-06,
386
+ "loss": 0.9736,
387
+ "step": 54
388
+ },
389
+ {
390
+ "epoch": 0.15586255756287637,
391
+ "grad_norm": 0.9850320219993591,
392
+ "learning_rate": 9.980051739134235e-06,
393
+ "loss": 0.9236,
394
+ "step": 55
395
+ },
396
+ {
397
+ "epoch": 0.15869642224583777,
398
+ "grad_norm": 1.018527626991272,
399
+ "learning_rate": 9.977898252895133e-06,
400
+ "loss": 0.9624,
401
+ "step": 56
402
+ },
403
+ {
404
+ "epoch": 0.16153028692879914,
405
+ "grad_norm": 1.0214104652404785,
406
+ "learning_rate": 9.975634665460333e-06,
407
+ "loss": 0.857,
408
+ "step": 57
409
+ },
410
+ {
411
+ "epoch": 0.16436415161176055,
412
+ "grad_norm": 0.9879529476165771,
413
+ "learning_rate": 9.973261026895878e-06,
414
+ "loss": 0.9545,
415
+ "step": 58
416
+ },
417
+ {
418
+ "epoch": 0.16719801629472192,
419
+ "grad_norm": 0.9842500686645508,
420
+ "learning_rate": 9.970777389701927e-06,
421
+ "loss": 0.8898,
422
+ "step": 59
423
+ },
424
+ {
425
+ "epoch": 0.17003188097768332,
426
+ "grad_norm": 0.9597482085227966,
427
+ "learning_rate": 9.968183808811586e-06,
428
+ "loss": 0.8952,
429
+ "step": 60
430
+ },
431
+ {
432
+ "epoch": 0.1728657456606447,
433
+ "grad_norm": 1.0947015285491943,
434
+ "learning_rate": 9.965480341589702e-06,
435
+ "loss": 0.8581,
436
+ "step": 61
437
+ },
438
+ {
439
+ "epoch": 0.1756996103436061,
440
+ "grad_norm": 0.9779541492462158,
441
+ "learning_rate": 9.962667047831585e-06,
442
+ "loss": 0.8468,
443
+ "step": 62
444
+ },
445
+ {
446
+ "epoch": 0.1785334750265675,
447
+ "grad_norm": 1.0208027362823486,
448
+ "learning_rate": 9.95974398976169e-06,
449
+ "loss": 0.908,
450
+ "step": 63
451
+ },
452
+ {
453
+ "epoch": 0.18136733970952887,
454
+ "grad_norm": 0.9829966425895691,
455
+ "learning_rate": 9.95671123203224e-06,
456
+ "loss": 0.9061,
457
+ "step": 64
458
+ },
459
+ {
460
+ "epoch": 0.18420120439249027,
461
+ "grad_norm": 0.9826564192771912,
462
+ "learning_rate": 9.953568841721796e-06,
463
+ "loss": 0.9308,
464
+ "step": 65
465
+ },
466
+ {
467
+ "epoch": 0.18703506907545164,
468
+ "grad_norm": 0.9291039109230042,
469
+ "learning_rate": 9.950316888333775e-06,
470
+ "loss": 0.8721,
471
+ "step": 66
472
+ },
473
+ {
474
+ "epoch": 0.18986893375841304,
475
+ "grad_norm": 0.9490424394607544,
476
+ "learning_rate": 9.946955443794908e-06,
477
+ "loss": 0.946,
478
+ "step": 67
479
+ },
480
+ {
481
+ "epoch": 0.19270279844137442,
482
+ "grad_norm": 0.9768699407577515,
483
+ "learning_rate": 9.943484582453653e-06,
484
+ "loss": 0.8699,
485
+ "step": 68
486
+ },
487
+ {
488
+ "epoch": 0.19553666312433582,
489
+ "grad_norm": 1.0207207202911377,
490
+ "learning_rate": 9.939904381078553e-06,
491
+ "loss": 0.8805,
492
+ "step": 69
493
+ },
494
+ {
495
+ "epoch": 0.1983705278072972,
496
+ "grad_norm": 1.0188122987747192,
497
+ "learning_rate": 9.93621491885653e-06,
498
+ "loss": 0.9053,
499
+ "step": 70
500
+ },
501
+ {
502
+ "epoch": 0.2012043924902586,
503
+ "grad_norm": 1.0252068042755127,
504
+ "learning_rate": 9.932416277391144e-06,
505
+ "loss": 0.9141,
506
+ "step": 71
507
+ },
508
+ {
509
+ "epoch": 0.20403825717321997,
510
+ "grad_norm": 0.9930822253227234,
511
+ "learning_rate": 9.928508540700775e-06,
512
+ "loss": 0.8769,
513
+ "step": 72
514
+ },
515
+ {
516
+ "epoch": 0.20687212185618137,
517
+ "grad_norm": 1.0115156173706055,
518
+ "learning_rate": 9.924491795216777e-06,
519
+ "loss": 0.9164,
520
+ "step": 73
521
+ },
522
+ {
523
+ "epoch": 0.20970598653914277,
524
+ "grad_norm": 0.9986709952354431,
525
+ "learning_rate": 9.920366129781564e-06,
526
+ "loss": 0.9349,
527
+ "step": 74
528
+ },
529
+ {
530
+ "epoch": 0.21253985122210414,
531
+ "grad_norm": 0.9701442718505859,
532
+ "learning_rate": 9.916131635646635e-06,
533
+ "loss": 0.8684,
534
+ "step": 75
535
+ },
536
+ {
537
+ "epoch": 0.21537371590506554,
538
+ "grad_norm": 0.9770874977111816,
539
+ "learning_rate": 9.91178840647057e-06,
540
+ "loss": 0.9249,
541
+ "step": 76
542
+ },
543
+ {
544
+ "epoch": 0.21820758058802692,
545
+ "grad_norm": 0.9752293229103088,
546
+ "learning_rate": 9.907336538316946e-06,
547
+ "loss": 0.9223,
548
+ "step": 77
549
+ },
550
+ {
551
+ "epoch": 0.22104144527098832,
552
+ "grad_norm": 0.9840958714485168,
553
+ "learning_rate": 9.902776129652223e-06,
554
+ "loss": 0.9321,
555
+ "step": 78
556
+ },
557
+ {
558
+ "epoch": 0.2238753099539497,
559
+ "grad_norm": 0.9433968663215637,
560
+ "learning_rate": 9.898107281343557e-06,
561
+ "loss": 0.8707,
562
+ "step": 79
563
+ },
564
+ {
565
+ "epoch": 0.2267091746369111,
566
+ "grad_norm": 0.9404139518737793,
567
+ "learning_rate": 9.893330096656576e-06,
568
+ "loss": 0.8317,
569
+ "step": 80
570
+ },
571
+ {
572
+ "epoch": 0.22954303931987247,
573
+ "grad_norm": 0.9778679609298706,
574
+ "learning_rate": 9.888444681253087e-06,
575
+ "loss": 0.8908,
576
+ "step": 81
577
+ },
578
+ {
579
+ "epoch": 0.23237690400283387,
580
+ "grad_norm": 0.9795246124267578,
581
+ "learning_rate": 9.883451143188753e-06,
582
+ "loss": 0.8897,
583
+ "step": 82
584
+ },
585
+ {
586
+ "epoch": 0.23521076868579524,
587
+ "grad_norm": 1.029739260673523,
588
+ "learning_rate": 9.878349592910694e-06,
589
+ "loss": 0.9031,
590
+ "step": 83
591
+ },
592
+ {
593
+ "epoch": 0.23804463336875664,
594
+ "grad_norm": 0.9465979933738708,
595
+ "learning_rate": 9.873140143255035e-06,
596
+ "loss": 0.9104,
597
+ "step": 84
598
+ },
599
+ {
600
+ "epoch": 0.24087849805171804,
601
+ "grad_norm": 1.032097339630127,
602
+ "learning_rate": 9.867822909444435e-06,
603
+ "loss": 0.8579,
604
+ "step": 85
605
+ },
606
+ {
607
+ "epoch": 0.24371236273467942,
608
+ "grad_norm": 0.9364420771598816,
609
+ "learning_rate": 9.862398009085511e-06,
610
+ "loss": 0.9317,
611
+ "step": 86
612
+ },
613
+ {
614
+ "epoch": 0.24654622741764082,
615
+ "grad_norm": 0.9894245862960815,
616
+ "learning_rate": 9.856865562166256e-06,
617
+ "loss": 0.8944,
618
+ "step": 87
619
+ },
620
+ {
621
+ "epoch": 0.2493800921006022,
622
+ "grad_norm": 0.9810971617698669,
623
+ "learning_rate": 9.851225691053382e-06,
624
+ "loss": 0.8175,
625
+ "step": 88
626
+ },
627
+ {
628
+ "epoch": 0.25221395678356356,
629
+ "grad_norm": 1.3583261966705322,
630
+ "learning_rate": 9.8454785204896e-06,
631
+ "loss": 0.9031,
632
+ "step": 89
633
+ },
634
+ {
635
+ "epoch": 0.255047821466525,
636
+ "grad_norm": 1.0423613786697388,
637
+ "learning_rate": 9.83962417759088e-06,
638
+ "loss": 0.9194,
639
+ "step": 90
640
+ },
641
+ {
642
+ "epoch": 0.25788168614948637,
643
+ "grad_norm": 0.9881994128227234,
644
+ "learning_rate": 9.833662791843628e-06,
645
+ "loss": 0.9088,
646
+ "step": 91
647
+ },
648
+ {
649
+ "epoch": 0.26071555083244774,
650
+ "grad_norm": 0.937030017375946,
651
+ "learning_rate": 9.827594495101824e-06,
652
+ "loss": 0.9086,
653
+ "step": 92
654
+ },
655
+ {
656
+ "epoch": 0.2635494155154091,
657
+ "grad_norm": 1.018686056137085,
658
+ "learning_rate": 9.821419421584108e-06,
659
+ "loss": 0.9539,
660
+ "step": 93
661
+ },
662
+ {
663
+ "epoch": 0.26638328019837054,
664
+ "grad_norm": 0.9911724925041199,
665
+ "learning_rate": 9.815137707870806e-06,
666
+ "loss": 0.9241,
667
+ "step": 94
668
+ },
669
+ {
670
+ "epoch": 0.2692171448813319,
671
+ "grad_norm": 1.02268385887146,
672
+ "learning_rate": 9.808749492900917e-06,
673
+ "loss": 0.8745,
674
+ "step": 95
675
+ },
676
+ {
677
+ "epoch": 0.2720510095642933,
678
+ "grad_norm": 0.9069863557815552,
679
+ "learning_rate": 9.802254917969033e-06,
680
+ "loss": 0.8907,
681
+ "step": 96
682
+ },
683
+ {
684
+ "epoch": 0.2748848742472547,
685
+ "grad_norm": 1.0000213384628296,
686
+ "learning_rate": 9.795654126722218e-06,
687
+ "loss": 0.9076,
688
+ "step": 97
689
+ },
690
+ {
691
+ "epoch": 0.2777187389302161,
692
+ "grad_norm": 1.0041557550430298,
693
+ "learning_rate": 9.788947265156828e-06,
694
+ "loss": 0.9173,
695
+ "step": 98
696
+ },
697
+ {
698
+ "epoch": 0.28055260361317746,
699
+ "grad_norm": 1.1171513795852661,
700
+ "learning_rate": 9.782134481615282e-06,
701
+ "loss": 0.9812,
702
+ "step": 99
703
+ },
704
+ {
705
+ "epoch": 0.28338646829613884,
706
+ "grad_norm": 0.9173958897590637,
707
+ "learning_rate": 9.775215926782788e-06,
708
+ "loss": 0.9067,
709
+ "step": 100
710
+ },
711
+ {
712
+ "epoch": 0.28338646829613884,
713
+ "eval_loss": 0.8711490631103516,
714
+ "eval_runtime": 110.273,
715
+ "eval_samples_per_second": 21.556,
716
+ "eval_steps_per_second": 1.351,
717
+ "step": 100
718
+ },
719
+ {
720
+ "epoch": 0.28622033297910027,
721
+ "grad_norm": 0.9922642111778259,
722
+ "learning_rate": 9.768191753683997e-06,
723
+ "loss": 0.8987,
724
+ "step": 101
725
+ },
726
+ {
727
+ "epoch": 0.28905419766206164,
728
+ "grad_norm": 0.9484046697616577,
729
+ "learning_rate": 9.761062117679632e-06,
730
+ "loss": 0.8885,
731
+ "step": 102
732
+ },
733
+ {
734
+ "epoch": 0.291888062345023,
735
+ "grad_norm": 1.0182386636734009,
736
+ "learning_rate": 9.75382717646304e-06,
737
+ "loss": 0.9161,
738
+ "step": 103
739
+ },
740
+ {
741
+ "epoch": 0.2947219270279844,
742
+ "grad_norm": 0.9028820395469666,
743
+ "learning_rate": 9.746487090056712e-06,
744
+ "loss": 0.858,
745
+ "step": 104
746
+ },
747
+ {
748
+ "epoch": 0.2975557917109458,
749
+ "grad_norm": 0.9766146540641785,
750
+ "learning_rate": 9.739042020808746e-06,
751
+ "loss": 0.8162,
752
+ "step": 105
753
+ },
754
+ {
755
+ "epoch": 0.3003896563939072,
756
+ "grad_norm": 0.987703263759613,
757
+ "learning_rate": 9.73149213338924e-06,
758
+ "loss": 0.9206,
759
+ "step": 106
760
+ },
761
+ {
762
+ "epoch": 0.30322352107686856,
763
+ "grad_norm": 0.9521070718765259,
764
+ "learning_rate": 9.72383759478667e-06,
765
+ "loss": 0.9204,
766
+ "step": 107
767
+ },
768
+ {
769
+ "epoch": 0.30605738575983,
770
+ "grad_norm": 0.9196562767028809,
771
+ "learning_rate": 9.71607857430419e-06,
772
+ "loss": 0.9306,
773
+ "step": 108
774
+ },
775
+ {
776
+ "epoch": 0.30889125044279137,
777
+ "grad_norm": 0.9661755561828613,
778
+ "learning_rate": 9.708215243555875e-06,
779
+ "loss": 0.9194,
780
+ "step": 109
781
+ },
782
+ {
783
+ "epoch": 0.31172511512575274,
784
+ "grad_norm": 0.9685959815979004,
785
+ "learning_rate": 9.700247776462944e-06,
786
+ "loss": 0.8837,
787
+ "step": 110
788
+ },
789
+ {
790
+ "epoch": 0.3145589798087141,
791
+ "grad_norm": 0.9824734926223755,
792
+ "learning_rate": 9.6921763492499e-06,
793
+ "loss": 0.8726,
794
+ "step": 111
795
+ },
796
+ {
797
+ "epoch": 0.31739284449167554,
798
+ "grad_norm": 1.0415219068527222,
799
+ "learning_rate": 9.68400114044064e-06,
800
+ "loss": 0.9027,
801
+ "step": 112
802
+ },
803
+ {
804
+ "epoch": 0.3202267091746369,
805
+ "grad_norm": 0.9248819351196289,
806
+ "learning_rate": 9.6757223308545e-06,
807
+ "loss": 0.8779,
808
+ "step": 113
809
+ },
810
+ {
811
+ "epoch": 0.3230605738575983,
812
+ "grad_norm": 0.9205273985862732,
813
+ "learning_rate": 9.667340103602263e-06,
814
+ "loss": 0.9192,
815
+ "step": 114
816
+ },
817
+ {
818
+ "epoch": 0.32589443854055966,
819
+ "grad_norm": 0.9548845291137695,
820
+ "learning_rate": 9.658854644082099e-06,
821
+ "loss": 0.8706,
822
+ "step": 115
823
+ },
824
+ {
825
+ "epoch": 0.3287283032235211,
826
+ "grad_norm": 1.0803402662277222,
827
+ "learning_rate": 9.650266139975474e-06,
828
+ "loss": 0.8442,
829
+ "step": 116
830
+ },
831
+ {
832
+ "epoch": 0.33156216790648246,
833
+ "grad_norm": 1.0031402111053467,
834
+ "learning_rate": 9.641574781242999e-06,
835
+ "loss": 0.8932,
836
+ "step": 117
837
+ },
838
+ {
839
+ "epoch": 0.33439603258944384,
840
+ "grad_norm": 0.8850711584091187,
841
+ "learning_rate": 9.632780760120217e-06,
842
+ "loss": 0.8238,
843
+ "step": 118
844
+ },
845
+ {
846
+ "epoch": 0.33722989727240527,
847
+ "grad_norm": 0.9834924936294556,
848
+ "learning_rate": 9.62388427111336e-06,
849
+ "loss": 0.9185,
850
+ "step": 119
851
+ },
852
+ {
853
+ "epoch": 0.34006376195536664,
854
+ "grad_norm": 0.9972984194755554,
855
+ "learning_rate": 9.614885510995047e-06,
856
+ "loss": 0.8748,
857
+ "step": 120
858
+ },
859
+ {
860
+ "epoch": 0.342897626638328,
861
+ "grad_norm": 0.9789429903030396,
862
+ "learning_rate": 9.605784678799934e-06,
863
+ "loss": 0.9251,
864
+ "step": 121
865
+ },
866
+ {
867
+ "epoch": 0.3457314913212894,
868
+ "grad_norm": 0.9524829387664795,
869
+ "learning_rate": 9.596581975820304e-06,
870
+ "loss": 0.8858,
871
+ "step": 122
872
+ },
873
+ {
874
+ "epoch": 0.3485653560042508,
875
+ "grad_norm": 0.9904320240020752,
876
+ "learning_rate": 9.587277605601617e-06,
877
+ "loss": 0.9763,
878
+ "step": 123
879
+ },
880
+ {
881
+ "epoch": 0.3513992206872122,
882
+ "grad_norm": 0.9940752387046814,
883
+ "learning_rate": 9.577871773938013e-06,
884
+ "loss": 0.8892,
885
+ "step": 124
886
+ },
887
+ {
888
+ "epoch": 0.35423308537017356,
889
+ "grad_norm": 0.9502999186515808,
890
+ "learning_rate": 9.568364688867757e-06,
891
+ "loss": 0.8565,
892
+ "step": 125
893
+ },
894
+ {
895
+ "epoch": 0.357066950053135,
896
+ "grad_norm": 1.0443921089172363,
897
+ "learning_rate": 9.558756560668637e-06,
898
+ "loss": 0.9438,
899
+ "step": 126
900
+ },
901
+ {
902
+ "epoch": 0.35990081473609636,
903
+ "grad_norm": 0.9201401472091675,
904
+ "learning_rate": 9.549047601853313e-06,
905
+ "loss": 0.8816,
906
+ "step": 127
907
+ },
908
+ {
909
+ "epoch": 0.36273467941905774,
910
+ "grad_norm": 0.9527130722999573,
911
+ "learning_rate": 9.539238027164618e-06,
912
+ "loss": 0.8877,
913
+ "step": 128
914
+ },
915
+ {
916
+ "epoch": 0.3655685441020191,
917
+ "grad_norm": 0.9892840385437012,
918
+ "learning_rate": 9.52932805357081e-06,
919
+ "loss": 0.8589,
920
+ "step": 129
921
+ },
922
+ {
923
+ "epoch": 0.36840240878498054,
924
+ "grad_norm": 0.8773977160453796,
925
+ "learning_rate": 9.519317900260769e-06,
926
+ "loss": 0.8819,
927
+ "step": 130
928
+ },
929
+ {
930
+ "epoch": 0.3712362734679419,
931
+ "grad_norm": 0.9664667248725891,
932
+ "learning_rate": 9.509207788639148e-06,
933
+ "loss": 0.8913,
934
+ "step": 131
935
+ },
936
+ {
937
+ "epoch": 0.3740701381509033,
938
+ "grad_norm": 0.9697229266166687,
939
+ "learning_rate": 9.498997942321484e-06,
940
+ "loss": 0.9421,
941
+ "step": 132
942
+ },
943
+ {
944
+ "epoch": 0.37690400283386466,
945
+ "grad_norm": 0.9921510815620422,
946
+ "learning_rate": 9.488688587129243e-06,
947
+ "loss": 0.9171,
948
+ "step": 133
949
+ },
950
+ {
951
+ "epoch": 0.3797378675168261,
952
+ "grad_norm": 0.9424541592597961,
953
+ "learning_rate": 9.47827995108483e-06,
954
+ "loss": 0.8913,
955
+ "step": 134
956
+ },
957
+ {
958
+ "epoch": 0.38257173219978746,
959
+ "grad_norm": 0.9468593597412109,
960
+ "learning_rate": 9.467772264406545e-06,
961
+ "loss": 0.9035,
962
+ "step": 135
963
+ },
964
+ {
965
+ "epoch": 0.38540559688274884,
966
+ "grad_norm": 0.9279436469078064,
967
+ "learning_rate": 9.457165759503492e-06,
968
+ "loss": 0.8352,
969
+ "step": 136
970
+ },
971
+ {
972
+ "epoch": 0.38823946156571026,
973
+ "grad_norm": 0.9004291892051697,
974
+ "learning_rate": 9.446460670970436e-06,
975
+ "loss": 0.9033,
976
+ "step": 137
977
+ },
978
+ {
979
+ "epoch": 0.39107332624867164,
980
+ "grad_norm": 0.9809132218360901,
981
+ "learning_rate": 9.435657235582616e-06,
982
+ "loss": 0.8699,
983
+ "step": 138
984
+ },
985
+ {
986
+ "epoch": 0.393907190931633,
987
+ "grad_norm": 0.94579017162323,
988
+ "learning_rate": 9.424755692290507e-06,
989
+ "loss": 0.8883,
990
+ "step": 139
991
+ },
992
+ {
993
+ "epoch": 0.3967410556145944,
994
+ "grad_norm": 0.9461862444877625,
995
+ "learning_rate": 9.413756282214538e-06,
996
+ "loss": 0.9009,
997
+ "step": 140
998
+ },
999
+ {
1000
+ "epoch": 0.3995749202975558,
1001
+ "grad_norm": 1.2299482822418213,
1002
+ "learning_rate": 9.402659248639749e-06,
1003
+ "loss": 0.827,
1004
+ "step": 141
1005
+ },
1006
+ {
1007
+ "epoch": 0.4024087849805172,
1008
+ "grad_norm": 0.9449498653411865,
1009
+ "learning_rate": 9.391464837010428e-06,
1010
+ "loss": 0.8574,
1011
+ "step": 142
1012
+ },
1013
+ {
1014
+ "epoch": 0.40524264966347856,
1015
+ "grad_norm": 0.9360131025314331,
1016
+ "learning_rate": 9.380173294924661e-06,
1017
+ "loss": 0.8715,
1018
+ "step": 143
1019
+ },
1020
+ {
1021
+ "epoch": 0.40807651434643993,
1022
+ "grad_norm": 1.9693893194198608,
1023
+ "learning_rate": 9.368784872128877e-06,
1024
+ "loss": 0.8388,
1025
+ "step": 144
1026
+ },
1027
+ {
1028
+ "epoch": 0.41091037902940136,
1029
+ "grad_norm": 0.9797636270523071,
1030
+ "learning_rate": 9.357299820512305e-06,
1031
+ "loss": 0.8761,
1032
+ "step": 145
1033
+ },
1034
+ {
1035
+ "epoch": 0.41374424371236274,
1036
+ "grad_norm": 0.9161531925201416,
1037
+ "learning_rate": 9.345718394101412e-06,
1038
+ "loss": 0.8625,
1039
+ "step": 146
1040
+ },
1041
+ {
1042
+ "epoch": 0.4165781083953241,
1043
+ "grad_norm": 0.9349712133407593,
1044
+ "learning_rate": 9.334040849054288e-06,
1045
+ "loss": 0.9152,
1046
+ "step": 147
1047
+ },
1048
+ {
1049
+ "epoch": 0.41941197307828554,
1050
+ "grad_norm": 0.9681140184402466,
1051
+ "learning_rate": 9.322267443654974e-06,
1052
+ "loss": 0.9204,
1053
+ "step": 148
1054
+ },
1055
+ {
1056
+ "epoch": 0.4222458377612469,
1057
+ "grad_norm": 0.9043005108833313,
1058
+ "learning_rate": 9.310398438307747e-06,
1059
+ "loss": 0.8562,
1060
+ "step": 149
1061
+ },
1062
+ {
1063
+ "epoch": 0.4250797024442083,
1064
+ "grad_norm": 0.970501184463501,
1065
+ "learning_rate": 9.29843409553137e-06,
1066
+ "loss": 0.8587,
1067
+ "step": 150
1068
+ },
1069
+ {
1070
+ "epoch": 0.42791356712716966,
1071
+ "grad_norm": 0.9835172295570374,
1072
+ "learning_rate": 9.286374679953278e-06,
1073
+ "loss": 0.8605,
1074
+ "step": 151
1075
+ },
1076
+ {
1077
+ "epoch": 0.4307474318101311,
1078
+ "grad_norm": 0.9757922291755676,
1079
+ "learning_rate": 9.274220458303727e-06,
1080
+ "loss": 0.9081,
1081
+ "step": 152
1082
+ },
1083
+ {
1084
+ "epoch": 0.43358129649309246,
1085
+ "grad_norm": 0.988153874874115,
1086
+ "learning_rate": 9.261971699409893e-06,
1087
+ "loss": 0.8824,
1088
+ "step": 153
1089
+ },
1090
+ {
1091
+ "epoch": 0.43641516117605383,
1092
+ "grad_norm": 0.8909916281700134,
1093
+ "learning_rate": 9.249628674189928e-06,
1094
+ "loss": 0.9167,
1095
+ "step": 154
1096
+ },
1097
+ {
1098
+ "epoch": 0.4392490258590152,
1099
+ "grad_norm": 1.0242557525634766,
1100
+ "learning_rate": 9.237191655646972e-06,
1101
+ "loss": 0.8599,
1102
+ "step": 155
1103
+ },
1104
+ {
1105
+ "epoch": 0.44208289054197664,
1106
+ "grad_norm": 0.9305148720741272,
1107
+ "learning_rate": 9.224660918863104e-06,
1108
+ "loss": 0.852,
1109
+ "step": 156
1110
+ },
1111
+ {
1112
+ "epoch": 0.444916755224938,
1113
+ "grad_norm": 0.9896242022514343,
1114
+ "learning_rate": 9.212036740993265e-06,
1115
+ "loss": 0.8922,
1116
+ "step": 157
1117
+ },
1118
+ {
1119
+ "epoch": 0.4477506199078994,
1120
+ "grad_norm": 0.9332566261291504,
1121
+ "learning_rate": 9.199319401259132e-06,
1122
+ "loss": 0.9058,
1123
+ "step": 158
1124
+ },
1125
+ {
1126
+ "epoch": 0.4505844845908608,
1127
+ "grad_norm": 1.0046119689941406,
1128
+ "learning_rate": 9.186509180942928e-06,
1129
+ "loss": 0.8837,
1130
+ "step": 159
1131
+ },
1132
+ {
1133
+ "epoch": 0.4534183492738222,
1134
+ "grad_norm": 0.9911741018295288,
1135
+ "learning_rate": 9.173606363381218e-06,
1136
+ "loss": 0.8802,
1137
+ "step": 160
1138
+ },
1139
+ {
1140
+ "epoch": 0.45625221395678356,
1141
+ "grad_norm": 0.9198329448699951,
1142
+ "learning_rate": 9.16061123395863e-06,
1143
+ "loss": 0.8211,
1144
+ "step": 161
1145
+ },
1146
+ {
1147
+ "epoch": 0.45908607863974493,
1148
+ "grad_norm": 0.9350652694702148,
1149
+ "learning_rate": 9.147524080101543e-06,
1150
+ "loss": 0.8814,
1151
+ "step": 162
1152
+ },
1153
+ {
1154
+ "epoch": 0.46191994332270636,
1155
+ "grad_norm": 0.9083648324012756,
1156
+ "learning_rate": 9.134345191271742e-06,
1157
+ "loss": 0.9003,
1158
+ "step": 163
1159
+ },
1160
+ {
1161
+ "epoch": 0.46475380800566773,
1162
+ "grad_norm": 0.9515282511711121,
1163
+ "learning_rate": 9.121074858959997e-06,
1164
+ "loss": 0.8874,
1165
+ "step": 164
1166
+ },
1167
+ {
1168
+ "epoch": 0.4675876726886291,
1169
+ "grad_norm": 0.9363572597503662,
1170
+ "learning_rate": 9.107713376679634e-06,
1171
+ "loss": 0.9413,
1172
+ "step": 165
1173
+ },
1174
+ {
1175
+ "epoch": 0.4704215373715905,
1176
+ "grad_norm": 1.0453206300735474,
1177
+ "learning_rate": 9.094261039960028e-06,
1178
+ "loss": 0.9106,
1179
+ "step": 166
1180
+ },
1181
+ {
1182
+ "epoch": 0.4732554020545519,
1183
+ "grad_norm": 0.9409400224685669,
1184
+ "learning_rate": 9.08071814634008e-06,
1185
+ "loss": 0.843,
1186
+ "step": 167
1187
+ },
1188
+ {
1189
+ "epoch": 0.4760892667375133,
1190
+ "grad_norm": 0.9143967628479004,
1191
+ "learning_rate": 9.067084995361623e-06,
1192
+ "loss": 0.8242,
1193
+ "step": 168
1194
+ },
1195
+ {
1196
+ "epoch": 0.47892313142047466,
1197
+ "grad_norm": 0.9733567237854004,
1198
+ "learning_rate": 9.053361888562807e-06,
1199
+ "loss": 0.8825,
1200
+ "step": 169
1201
+ },
1202
+ {
1203
+ "epoch": 0.4817569961034361,
1204
+ "grad_norm": 0.933316707611084,
1205
+ "learning_rate": 9.039549129471423e-06,
1206
+ "loss": 0.8492,
1207
+ "step": 170
1208
+ },
1209
+ {
1210
+ "epoch": 0.48459086078639746,
1211
+ "grad_norm": 0.9519788026809692,
1212
+ "learning_rate": 9.025647023598196e-06,
1213
+ "loss": 0.8757,
1214
+ "step": 171
1215
+ },
1216
+ {
1217
+ "epoch": 0.48742472546935883,
1218
+ "grad_norm": 0.9824965000152588,
1219
+ "learning_rate": 9.011655878430018e-06,
1220
+ "loss": 0.8628,
1221
+ "step": 172
1222
+ },
1223
+ {
1224
+ "epoch": 0.4902585901523202,
1225
+ "grad_norm": 0.9327204823493958,
1226
+ "learning_rate": 8.99757600342316e-06,
1227
+ "loss": 0.8765,
1228
+ "step": 173
1229
+ },
1230
+ {
1231
+ "epoch": 0.49309245483528164,
1232
+ "grad_norm": 0.9332249164581299,
1233
+ "learning_rate": 8.983407709996415e-06,
1234
+ "loss": 0.88,
1235
+ "step": 174
1236
+ },
1237
+ {
1238
+ "epoch": 0.495926319518243,
1239
+ "grad_norm": 0.9456924796104431,
1240
+ "learning_rate": 8.969151311524215e-06,
1241
+ "loss": 0.9361,
1242
+ "step": 175
1243
+ },
1244
+ {
1245
+ "epoch": 0.4987601842012044,
1246
+ "grad_norm": 0.936154842376709,
1247
+ "learning_rate": 8.954807123329703e-06,
1248
+ "loss": 0.8749,
1249
+ "step": 176
1250
+ },
1251
+ {
1252
+ "epoch": 0.5015940488841658,
1253
+ "grad_norm": 0.923202395439148,
1254
+ "learning_rate": 8.940375462677758e-06,
1255
+ "loss": 0.9378,
1256
+ "step": 177
1257
+ },
1258
+ {
1259
+ "epoch": 0.5044279135671271,
1260
+ "grad_norm": 0.9998725652694702,
1261
+ "learning_rate": 8.92585664876797e-06,
1262
+ "loss": 0.9264,
1263
+ "step": 178
1264
+ },
1265
+ {
1266
+ "epoch": 0.5072617782500886,
1267
+ "grad_norm": 0.917499303817749,
1268
+ "learning_rate": 8.911251002727588e-06,
1269
+ "loss": 0.8517,
1270
+ "step": 179
1271
+ },
1272
+ {
1273
+ "epoch": 0.51009564293305,
1274
+ "grad_norm": 0.8643101453781128,
1275
+ "learning_rate": 8.896558847604414e-06,
1276
+ "loss": 0.8069,
1277
+ "step": 180
1278
+ },
1279
+ {
1280
+ "epoch": 0.5129295076160113,
1281
+ "grad_norm": 0.9328122138977051,
1282
+ "learning_rate": 8.881780508359661e-06,
1283
+ "loss": 0.941,
1284
+ "step": 181
1285
+ },
1286
+ {
1287
+ "epoch": 0.5157633722989727,
1288
+ "grad_norm": 0.9767406582832336,
1289
+ "learning_rate": 8.86691631186076e-06,
1290
+ "loss": 0.875,
1291
+ "step": 182
1292
+ },
1293
+ {
1294
+ "epoch": 0.5185972369819342,
1295
+ "grad_norm": 0.9218102693557739,
1296
+ "learning_rate": 8.851966586874138e-06,
1297
+ "loss": 0.8271,
1298
+ "step": 183
1299
+ },
1300
+ {
1301
+ "epoch": 0.5214311016648955,
1302
+ "grad_norm": 0.9587806463241577,
1303
+ "learning_rate": 8.836931664057935e-06,
1304
+ "loss": 0.8999,
1305
+ "step": 184
1306
+ },
1307
+ {
1308
+ "epoch": 0.5242649663478569,
1309
+ "grad_norm": 0.9345144629478455,
1310
+ "learning_rate": 8.821811875954705e-06,
1311
+ "loss": 0.8953,
1312
+ "step": 185
1313
+ },
1314
+ {
1315
+ "epoch": 0.5270988310308182,
1316
+ "grad_norm": 0.9228772521018982,
1317
+ "learning_rate": 8.806607556984045e-06,
1318
+ "loss": 0.8564,
1319
+ "step": 186
1320
+ },
1321
+ {
1322
+ "epoch": 0.5299326957137797,
1323
+ "grad_norm": 0.9359504580497742,
1324
+ "learning_rate": 8.791319043435213e-06,
1325
+ "loss": 0.7903,
1326
+ "step": 187
1327
+ },
1328
+ {
1329
+ "epoch": 0.5327665603967411,
1330
+ "grad_norm": 0.9229147434234619,
1331
+ "learning_rate": 8.775946673459682e-06,
1332
+ "loss": 0.8668,
1333
+ "step": 188
1334
+ },
1335
+ {
1336
+ "epoch": 0.5356004250797024,
1337
+ "grad_norm": 0.9776359796524048,
1338
+ "learning_rate": 8.76049078706366e-06,
1339
+ "loss": 0.9419,
1340
+ "step": 189
1341
+ },
1342
+ {
1343
+ "epoch": 0.5384342897626638,
1344
+ "grad_norm": 0.8932283520698547,
1345
+ "learning_rate": 8.744951726100572e-06,
1346
+ "loss": 0.8628,
1347
+ "step": 190
1348
+ },
1349
+ {
1350
+ "epoch": 0.5412681544456253,
1351
+ "grad_norm": 0.9139344096183777,
1352
+ "learning_rate": 8.729329834263503e-06,
1353
+ "loss": 0.805,
1354
+ "step": 191
1355
+ },
1356
+ {
1357
+ "epoch": 0.5441020191285866,
1358
+ "grad_norm": 0.9210391640663147,
1359
+ "learning_rate": 8.713625457077585e-06,
1360
+ "loss": 0.8818,
1361
+ "step": 192
1362
+ },
1363
+ {
1364
+ "epoch": 0.546935883811548,
1365
+ "grad_norm": 0.9402296543121338,
1366
+ "learning_rate": 8.697838941892371e-06,
1367
+ "loss": 0.9034,
1368
+ "step": 193
1369
+ },
1370
+ {
1371
+ "epoch": 0.5497697484945094,
1372
+ "grad_norm": 1.0865598917007446,
1373
+ "learning_rate": 8.681970637874131e-06,
1374
+ "loss": 0.8896,
1375
+ "step": 194
1376
+ },
1377
+ {
1378
+ "epoch": 0.5526036131774708,
1379
+ "grad_norm": 0.9529604315757751,
1380
+ "learning_rate": 8.666020895998154e-06,
1381
+ "loss": 0.9213,
1382
+ "step": 195
1383
+ },
1384
+ {
1385
+ "epoch": 0.5554374778604322,
1386
+ "grad_norm": 0.9938436150550842,
1387
+ "learning_rate": 8.64999006904096e-06,
1388
+ "loss": 0.9068,
1389
+ "step": 196
1390
+ },
1391
+ {
1392
+ "epoch": 0.5582713425433935,
1393
+ "grad_norm": 0.9383383989334106,
1394
+ "learning_rate": 8.63387851157252e-06,
1395
+ "loss": 0.8667,
1396
+ "step": 197
1397
+ },
1398
+ {
1399
+ "epoch": 0.5611052072263549,
1400
+ "grad_norm": 0.9018294811248779,
1401
+ "learning_rate": 8.617686579948396e-06,
1402
+ "loss": 0.8427,
1403
+ "step": 198
1404
+ },
1405
+ {
1406
+ "epoch": 0.5639390719093164,
1407
+ "grad_norm": 0.9647362232208252,
1408
+ "learning_rate": 8.60141463230187e-06,
1409
+ "loss": 0.8754,
1410
+ "step": 199
1411
+ },
1412
+ {
1413
+ "epoch": 0.5667729365922777,
1414
+ "grad_norm": 0.9192838668823242,
1415
+ "learning_rate": 8.585063028536015e-06,
1416
+ "loss": 0.9108,
1417
+ "step": 200
1418
+ },
1419
+ {
1420
+ "epoch": 0.5667729365922777,
1421
+ "eval_loss": 0.8534573316574097,
1422
+ "eval_runtime": 42.1386,
1423
+ "eval_samples_per_second": 56.409,
1424
+ "eval_steps_per_second": 3.536,
1425
+ "step": 200
1426
+ }
1427
+ ],
1428
+ "logging_steps": 1,
1429
+ "max_steps": 704,
1430
+ "num_input_tokens_seen": 0,
1431
+ "num_train_epochs": 2,
1432
+ "save_steps": 100,
1433
+ "stateful_callbacks": {
1434
+ "TrainerControl": {
1435
+ "args": {
1436
+ "should_epoch_stop": false,
1437
+ "should_evaluate": false,
1438
+ "should_log": false,
1439
+ "should_save": true,
1440
+ "should_training_stop": false
1441
+ },
1442
+ "attributes": {}
1443
+ }
1444
+ },
1445
+ "total_flos": 2.0197637094501253e+18,
1446
+ "train_batch_size": 2,
1447
+ "trial_name": null,
1448
+ "trial_params": null
1449
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:8d244f5d1a7b24dd489d79b460c6594031202dd37ec1c9f1d7702364087fdc32
3
+ size 6712
vocab.json ADDED
The diff for this file is too large to render. See raw diff
 
zero_to_fp32.py ADDED
@@ -0,0 +1,604 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ #!/usr/bin/env python
2
+
3
+ # Copyright (c) Microsoft Corporation.
4
+ # SPDX-License-Identifier: Apache-2.0
5
+
6
+ # DeepSpeed Team
7
+
8
+ # This script extracts fp32 consolidated weights from a zero 1, 2 and 3 DeepSpeed checkpoints. It gets
9
+ # copied into the top level checkpoint dir, so the user can easily do the conversion at any point in
10
+ # the future. Once extracted, the weights don't require DeepSpeed and can be used in any
11
+ # application.
12
+ #
13
+ # example: python zero_to_fp32.py . pytorch_model.bin
14
+
15
+ import argparse
16
+ import torch
17
+ import glob
18
+ import math
19
+ import os
20
+ import re
21
+ from collections import OrderedDict
22
+ from dataclasses import dataclass
23
+
24
+ # while this script doesn't use deepspeed to recover data, since the checkpoints are pickled with
25
+ # DeepSpeed data structures it has to be available in the current python environment.
26
+ from deepspeed.utils import logger
27
+ from deepspeed.checkpoint.constants import (DS_VERSION, OPTIMIZER_STATE_DICT, SINGLE_PARTITION_OF_FP32_GROUPS,
28
+ FP32_FLAT_GROUPS, ZERO_STAGE, PARTITION_COUNT, PARAM_SHAPES, BUFFER_NAMES,
29
+ FROZEN_PARAM_SHAPES, FROZEN_PARAM_FRAGMENTS)
30
+
31
+
32
+ @dataclass
33
+ class zero_model_state:
34
+ buffers: dict()
35
+ param_shapes: dict()
36
+ shared_params: list
37
+ ds_version: int
38
+ frozen_param_shapes: dict()
39
+ frozen_param_fragments: dict()
40
+
41
+
42
+ debug = 0
43
+
44
+ # load to cpu
45
+ device = torch.device('cpu')
46
+
47
+
48
+ def atoi(text):
49
+ return int(text) if text.isdigit() else text
50
+
51
+
52
+ def natural_keys(text):
53
+ '''
54
+ alist.sort(key=natural_keys) sorts in human order
55
+ http://nedbatchelder.com/blog/200712/human_sorting.html
56
+ (See Toothy's implementation in the comments)
57
+ '''
58
+ return [atoi(c) for c in re.split(r'(\d+)', text)]
59
+
60
+
61
+ def get_model_state_file(checkpoint_dir, zero_stage):
62
+ if not os.path.isdir(checkpoint_dir):
63
+ raise FileNotFoundError(f"Directory '{checkpoint_dir}' doesn't exist")
64
+
65
+ # there should be only one file
66
+ if zero_stage <= 2:
67
+ file = os.path.join(checkpoint_dir, "mp_rank_00_model_states.pt")
68
+ elif zero_stage == 3:
69
+ file = os.path.join(checkpoint_dir, "zero_pp_rank_0_mp_rank_00_model_states.pt")
70
+
71
+ if not os.path.exists(file):
72
+ raise FileNotFoundError(f"can't find model states file at '{file}'")
73
+
74
+ return file
75
+
76
+
77
+ def get_checkpoint_files(checkpoint_dir, glob_pattern):
78
+ # XXX: need to test that this simple glob rule works for multi-node setup too
79
+ ckpt_files = sorted(glob.glob(os.path.join(checkpoint_dir, glob_pattern)), key=natural_keys)
80
+
81
+ if len(ckpt_files) == 0:
82
+ raise FileNotFoundError(f"can't find {glob_pattern} files in directory '{checkpoint_dir}'")
83
+
84
+ return ckpt_files
85
+
86
+
87
+ def get_optim_files(checkpoint_dir):
88
+ return get_checkpoint_files(checkpoint_dir, "*_optim_states.pt")
89
+
90
+
91
+ def get_model_state_files(checkpoint_dir):
92
+ return get_checkpoint_files(checkpoint_dir, "*_model_states.pt")
93
+
94
+
95
+ def parse_model_states(files):
96
+ zero_model_states = []
97
+ for file in files:
98
+ state_dict = torch.load(file, map_location=device)
99
+
100
+ if BUFFER_NAMES not in state_dict:
101
+ raise ValueError(f"{file} is not a model state checkpoint")
102
+ buffer_names = state_dict[BUFFER_NAMES]
103
+ if debug:
104
+ print("Found buffers:", buffer_names)
105
+
106
+ # recover just the buffers while restoring them to fp32 if they were saved in fp16
107
+ buffers = {k: v.float() for k, v in state_dict["module"].items() if k in buffer_names}
108
+ param_shapes = state_dict[PARAM_SHAPES]
109
+
110
+ # collect parameters that are included in param_shapes
111
+ param_names = []
112
+ for s in param_shapes:
113
+ for name in s.keys():
114
+ param_names.append(name)
115
+
116
+ # update with frozen parameters
117
+ frozen_param_shapes = state_dict.get(FROZEN_PARAM_SHAPES, None)
118
+ if frozen_param_shapes is not None:
119
+ if debug:
120
+ print(f"Found frozen_param_shapes: {frozen_param_shapes}")
121
+ param_names += list(frozen_param_shapes.keys())
122
+
123
+ # handle shared params
124
+ shared_params = [[k, v] for k, v in state_dict["shared_params"].items()]
125
+
126
+ ds_version = state_dict.get(DS_VERSION, None)
127
+
128
+ frozen_param_fragments = state_dict.get(FROZEN_PARAM_FRAGMENTS, None)
129
+
130
+ z_model_state = zero_model_state(buffers=buffers,
131
+ param_shapes=param_shapes,
132
+ shared_params=shared_params,
133
+ ds_version=ds_version,
134
+ frozen_param_shapes=frozen_param_shapes,
135
+ frozen_param_fragments=frozen_param_fragments)
136
+ zero_model_states.append(z_model_state)
137
+
138
+ return zero_model_states
139
+
140
+
141
+ def parse_optim_states(files, ds_checkpoint_dir):
142
+
143
+ total_files = len(files)
144
+ state_dicts = []
145
+ for f in files:
146
+ state_dict = torch.load(f, map_location=device)
147
+ # immediately discard the potentially huge 2 optimizer states as we only care for fp32 master weights
148
+ # and also handle the case where it was already removed by another helper script
149
+ state_dict["optimizer_state_dict"].pop("optimizer_state_dict", None)
150
+ state_dicts.append(state_dict)
151
+
152
+ if not ZERO_STAGE in state_dicts[0][OPTIMIZER_STATE_DICT]:
153
+ raise ValueError(f"{files[0]} is not a zero checkpoint")
154
+ zero_stage = state_dicts[0][OPTIMIZER_STATE_DICT][ZERO_STAGE]
155
+ world_size = state_dicts[0][OPTIMIZER_STATE_DICT][PARTITION_COUNT]
156
+
157
+ # For ZeRO-2 each param group can have different partition_count as data parallelism for expert
158
+ # parameters can be different from data parallelism for non-expert parameters. So we can just
159
+ # use the max of the partition_count to get the dp world_size.
160
+
161
+ if type(world_size) is list:
162
+ world_size = max(world_size)
163
+
164
+ if world_size != total_files:
165
+ raise ValueError(
166
+ f"Expected {world_size} of '*_optim_states.pt' under '{ds_checkpoint_dir}' but found {total_files} files. "
167
+ "Possibly due to an overwrite of an old checkpoint, or a checkpoint didn't get saved by one or more processes."
168
+ )
169
+
170
+ # the groups are named differently in each stage
171
+ if zero_stage <= 2:
172
+ fp32_groups_key = SINGLE_PARTITION_OF_FP32_GROUPS
173
+ elif zero_stage == 3:
174
+ fp32_groups_key = FP32_FLAT_GROUPS
175
+ else:
176
+ raise ValueError(f"unknown zero stage {zero_stage}")
177
+
178
+ if zero_stage <= 2:
179
+ fp32_flat_groups = [state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key] for i in range(len(state_dicts))]
180
+ elif zero_stage == 3:
181
+ # if there is more than one param group, there will be multiple flattened tensors - one
182
+ # flattened tensor per group - for simplicity merge them into a single tensor
183
+ #
184
+ # XXX: could make the script more memory efficient for when there are multiple groups - it
185
+ # will require matching the sub-lists of param_shapes for each param group flattened tensor
186
+
187
+ fp32_flat_groups = [
188
+ torch.cat(state_dicts[i][OPTIMIZER_STATE_DICT][fp32_groups_key], 0) for i in range(len(state_dicts))
189
+ ]
190
+
191
+ return zero_stage, world_size, fp32_flat_groups
192
+
193
+
194
+ def _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters):
195
+ """
196
+ Returns fp32 state_dict reconstructed from ds checkpoint
197
+
198
+ Args:
199
+ - ``ds_checkpoint_dir``: path to the deepspeed checkpoint folder (where the optimizer files are)
200
+
201
+ """
202
+ print(f"Processing zero checkpoint '{ds_checkpoint_dir}'")
203
+
204
+ optim_files = get_optim_files(ds_checkpoint_dir)
205
+ zero_stage, world_size, fp32_flat_groups = parse_optim_states(optim_files, ds_checkpoint_dir)
206
+ print(f"Detected checkpoint of type zero stage {zero_stage}, world_size: {world_size}")
207
+
208
+ model_files = get_model_state_files(ds_checkpoint_dir)
209
+
210
+ zero_model_states = parse_model_states(model_files)
211
+ print(f'Parsing checkpoint created by deepspeed=={zero_model_states[0].ds_version}')
212
+
213
+ if zero_stage <= 2:
214
+ return _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
215
+ exclude_frozen_parameters)
216
+ elif zero_stage == 3:
217
+ return _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
218
+ exclude_frozen_parameters)
219
+
220
+
221
+ def _zero2_merge_frozen_params(state_dict, zero_model_states):
222
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
223
+ return
224
+
225
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
226
+ frozen_param_fragments = zero_model_states[0].frozen_param_fragments
227
+
228
+ if debug:
229
+ num_elem = sum(s.numel() for s in frozen_param_shapes.values())
230
+ print(f'rank 0: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
231
+
232
+ wanted_params = len(frozen_param_shapes)
233
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
234
+ avail_numel = sum([p.numel() for p in frozen_param_fragments.values()])
235
+ print(f'Frozen params: Have {avail_numel} numels to process.')
236
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
237
+
238
+ total_params = 0
239
+ total_numel = 0
240
+ for name, shape in frozen_param_shapes.items():
241
+ total_params += 1
242
+ unpartitioned_numel = shape.numel()
243
+ total_numel += unpartitioned_numel
244
+
245
+ state_dict[name] = frozen_param_fragments[name]
246
+
247
+ if debug:
248
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
249
+
250
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
251
+
252
+
253
+ def _has_callable(obj, fn):
254
+ attr = getattr(obj, fn, None)
255
+ return callable(attr)
256
+
257
+
258
+ def _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
259
+ param_shapes = zero_model_states[0].param_shapes
260
+
261
+ # Reconstruction protocol:
262
+ #
263
+ # XXX: document this
264
+
265
+ if debug:
266
+ for i in range(world_size):
267
+ for j in range(len(fp32_flat_groups[0])):
268
+ print(f"{FP32_FLAT_GROUPS}[{i}][{j}].shape={fp32_flat_groups[i][j].shape}")
269
+
270
+ # XXX: memory usage doubles here (zero2)
271
+ num_param_groups = len(fp32_flat_groups[0])
272
+ merged_single_partition_of_fp32_groups = []
273
+ for i in range(num_param_groups):
274
+ merged_partitions = [sd[i] for sd in fp32_flat_groups]
275
+ full_single_fp32_vector = torch.cat(merged_partitions, 0)
276
+ merged_single_partition_of_fp32_groups.append(full_single_fp32_vector)
277
+ avail_numel = sum(
278
+ [full_single_fp32_vector.numel() for full_single_fp32_vector in merged_single_partition_of_fp32_groups])
279
+
280
+ if debug:
281
+ wanted_params = sum([len(shapes) for shapes in param_shapes])
282
+ wanted_numel = sum([sum(shape.numel() for shape in shapes.values()) for shapes in param_shapes])
283
+ # not asserting if there is a mismatch due to possible padding
284
+ print(f"Have {avail_numel} numels to process.")
285
+ print(f"Need {wanted_numel} numels in {wanted_params} params.")
286
+
287
+ # params
288
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
289
+ # out-of-core computing solution
290
+ total_numel = 0
291
+ total_params = 0
292
+ for shapes, full_single_fp32_vector in zip(param_shapes, merged_single_partition_of_fp32_groups):
293
+ offset = 0
294
+ avail_numel = full_single_fp32_vector.numel()
295
+ for name, shape in shapes.items():
296
+
297
+ unpartitioned_numel = shape.numel() if _has_callable(shape, 'numel') else math.prod(shape)
298
+ total_numel += unpartitioned_numel
299
+ total_params += 1
300
+
301
+ if debug:
302
+ print(f"{name} full shape: {shape} unpartitioned numel {unpartitioned_numel} ")
303
+ state_dict[name] = full_single_fp32_vector.narrow(0, offset, unpartitioned_numel).view(shape)
304
+ offset += unpartitioned_numel
305
+
306
+ # Z2 started to align to 2*world_size to improve nccl performance. Therefore both offset and
307
+ # avail_numel can differ by anywhere between 0..2*world_size. Due to two unrelated complex
308
+ # paddings performed in the code it's almost impossible to predict the exact numbers w/o the
309
+ # live optimizer object, so we are checking that the numbers are within the right range
310
+ align_to = 2 * world_size
311
+
312
+ def zero2_align(x):
313
+ return align_to * math.ceil(x / align_to)
314
+
315
+ if debug:
316
+ print(f"original offset={offset}, avail_numel={avail_numel}")
317
+
318
+ offset = zero2_align(offset)
319
+ avail_numel = zero2_align(avail_numel)
320
+
321
+ if debug:
322
+ print(f"aligned offset={offset}, avail_numel={avail_numel}")
323
+
324
+ # Sanity check
325
+ if offset != avail_numel:
326
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
327
+
328
+ print(f"Reconstructed fp32 state dict with {total_params} params {total_numel} elements")
329
+
330
+
331
+ def _get_fp32_state_dict_from_zero2_checkpoint(world_size, fp32_flat_groups, zero_model_states,
332
+ exclude_frozen_parameters):
333
+ state_dict = OrderedDict()
334
+
335
+ # buffers
336
+ buffers = zero_model_states[0].buffers
337
+ state_dict.update(buffers)
338
+ if debug:
339
+ print(f"added {len(buffers)} buffers")
340
+
341
+ if not exclude_frozen_parameters:
342
+ _zero2_merge_frozen_params(state_dict, zero_model_states)
343
+
344
+ _zero2_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
345
+
346
+ # recover shared parameters
347
+ for pair in zero_model_states[0].shared_params:
348
+ if pair[1] in state_dict:
349
+ state_dict[pair[0]] = state_dict[pair[1]]
350
+
351
+ return state_dict
352
+
353
+
354
+ def zero3_partitioned_param_info(unpartitioned_numel, world_size):
355
+ remainder = unpartitioned_numel % world_size
356
+ padding_numel = (world_size - remainder) if remainder else 0
357
+ partitioned_numel = math.ceil(unpartitioned_numel / world_size)
358
+ return partitioned_numel, padding_numel
359
+
360
+
361
+ def _zero3_merge_frozen_params(state_dict, world_size, zero_model_states):
362
+ if zero_model_states[0].frozen_param_shapes is None or len(zero_model_states[0].frozen_param_shapes) == 0:
363
+ return
364
+
365
+ if debug:
366
+ for i in range(world_size):
367
+ num_elem = sum(s.numel() for s in zero_model_states[i].frozen_param_fragments.values())
368
+ print(f'rank {i}: {FROZEN_PARAM_SHAPES}.numel = {num_elem}')
369
+
370
+ frozen_param_shapes = zero_model_states[0].frozen_param_shapes
371
+ wanted_params = len(frozen_param_shapes)
372
+ wanted_numel = sum(s.numel() for s in frozen_param_shapes.values())
373
+ avail_numel = sum([p.numel() for p in zero_model_states[0].frozen_param_fragments.values()]) * world_size
374
+ print(f'Frozen params: Have {avail_numel} numels to process.')
375
+ print(f'Frozen params: Need {wanted_numel} numels in {wanted_params} params')
376
+
377
+ total_params = 0
378
+ total_numel = 0
379
+ for name, shape in zero_model_states[0].frozen_param_shapes.items():
380
+ total_params += 1
381
+ unpartitioned_numel = shape.numel()
382
+ total_numel += unpartitioned_numel
383
+
384
+ param_frags = tuple(model_state.frozen_param_fragments[name] for model_state in zero_model_states)
385
+ state_dict[name] = torch.cat(param_frags, 0).narrow(0, 0, unpartitioned_numel).view(shape)
386
+
387
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
388
+
389
+ if debug:
390
+ print(
391
+ f"Frozen params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
392
+ )
393
+
394
+ print(f"Reconstructed Frozen fp32 state dict with {total_params} params {total_numel} elements")
395
+
396
+
397
+ def _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states):
398
+ param_shapes = zero_model_states[0].param_shapes
399
+ avail_numel = fp32_flat_groups[0].numel() * world_size
400
+ # Reconstruction protocol: For zero3 we need to zip the partitions together at boundary of each
401
+ # param, re-consolidating each param, while dealing with padding if any
402
+
403
+ # merge list of dicts, preserving order
404
+ param_shapes = {k: v for d in param_shapes for k, v in d.items()}
405
+
406
+ if debug:
407
+ for i in range(world_size):
408
+ print(f"{FP32_FLAT_GROUPS}[{i}].shape={fp32_flat_groups[i].shape}")
409
+
410
+ wanted_params = len(param_shapes)
411
+ wanted_numel = sum(shape.numel() for shape in param_shapes.values())
412
+ # not asserting if there is a mismatch due to possible padding
413
+ avail_numel = fp32_flat_groups[0].numel() * world_size
414
+ print(f"Trainable params: Have {avail_numel} numels to process.")
415
+ print(f"Trainable params: Need {wanted_numel} numels in {wanted_params} params.")
416
+
417
+ # params
418
+ # XXX: for huge models that can't fit into the host's RAM we will have to recode this to support
419
+ # out-of-core computing solution
420
+ offset = 0
421
+ total_numel = 0
422
+ total_params = 0
423
+ for name, shape in param_shapes.items():
424
+
425
+ unpartitioned_numel = shape.numel()
426
+ total_numel += unpartitioned_numel
427
+ total_params += 1
428
+
429
+ partitioned_numel, partitioned_padding_numel = zero3_partitioned_param_info(unpartitioned_numel, world_size)
430
+
431
+ if debug:
432
+ print(
433
+ f"Trainable params: {total_params} {name} full shape: {shape} partition0 numel={partitioned_numel} partitioned_padding_numel={partitioned_padding_numel}"
434
+ )
435
+
436
+ # XXX: memory usage doubles here
437
+ state_dict[name] = torch.cat(
438
+ tuple(fp32_flat_groups[i].narrow(0, offset, partitioned_numel) for i in range(world_size)),
439
+ 0).narrow(0, 0, unpartitioned_numel).view(shape)
440
+ offset += partitioned_numel
441
+
442
+ offset *= world_size
443
+
444
+ # Sanity check
445
+ if offset != avail_numel:
446
+ raise ValueError(f"consumed {offset} numels out of {avail_numel} - something is wrong")
447
+
448
+ print(f"Reconstructed Trainable fp32 state dict with {total_params} params {total_numel} elements")
449
+
450
+
451
+ def _get_fp32_state_dict_from_zero3_checkpoint(world_size, fp32_flat_groups, zero_model_states,
452
+ exclude_frozen_parameters):
453
+ state_dict = OrderedDict()
454
+
455
+ # buffers
456
+ buffers = zero_model_states[0].buffers
457
+ state_dict.update(buffers)
458
+ if debug:
459
+ print(f"added {len(buffers)} buffers")
460
+
461
+ if not exclude_frozen_parameters:
462
+ _zero3_merge_frozen_params(state_dict, world_size, zero_model_states)
463
+
464
+ _zero3_merge_trainable_params(state_dict, world_size, fp32_flat_groups, zero_model_states)
465
+
466
+ # recover shared parameters
467
+ for pair in zero_model_states[0].shared_params:
468
+ if pair[1] in state_dict:
469
+ state_dict[pair[0]] = state_dict[pair[1]]
470
+
471
+ return state_dict
472
+
473
+
474
+ def get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag=None, exclude_frozen_parameters=False):
475
+ """
476
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated state_dict that can be loaded with
477
+ ``load_state_dict()`` and used for training without DeepSpeed or shared with others, for example
478
+ via a model hub.
479
+
480
+ Args:
481
+ - ``checkpoint_dir``: path to the desired checkpoint folder
482
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in 'latest' file. e.g., ``global_step14``
483
+ - ``exclude_frozen_parameters``: exclude frozen parameters
484
+
485
+ Returns:
486
+ - pytorch ``state_dict``
487
+
488
+ Note: this approach may not work if your application doesn't have sufficient free CPU memory and
489
+ you may need to use the offline approach using the ``zero_to_fp32.py`` script that is saved with
490
+ the checkpoint.
491
+
492
+ A typical usage might be ::
493
+
494
+ from deepspeed.utils.zero_to_fp32 import get_fp32_state_dict_from_zero_checkpoint
495
+ # do the training and checkpoint saving
496
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir) # already on cpu
497
+ model = model.cpu() # move to cpu
498
+ model.load_state_dict(state_dict)
499
+ # submit to model hub or save the model to share with others
500
+
501
+ In this example the ``model`` will no longer be usable in the deepspeed context of the same
502
+ application. i.e. you will need to re-initialize the deepspeed engine, since
503
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
504
+
505
+ If you want it all done for you, use ``load_state_dict_from_zero_checkpoint`` instead.
506
+
507
+ """
508
+ if tag is None:
509
+ latest_path = os.path.join(checkpoint_dir, 'latest')
510
+ if os.path.isfile(latest_path):
511
+ with open(latest_path, 'r') as fd:
512
+ tag = fd.read().strip()
513
+ else:
514
+ raise ValueError(f"Unable to find 'latest' file at {latest_path}")
515
+
516
+ ds_checkpoint_dir = os.path.join(checkpoint_dir, tag)
517
+
518
+ if not os.path.isdir(ds_checkpoint_dir):
519
+ raise FileNotFoundError(f"Directory '{ds_checkpoint_dir}' doesn't exist")
520
+
521
+ return _get_fp32_state_dict_from_zero_checkpoint(ds_checkpoint_dir, exclude_frozen_parameters)
522
+
523
+
524
+ def convert_zero_checkpoint_to_fp32_state_dict(checkpoint_dir, output_file, tag=None, exclude_frozen_parameters=False):
525
+ """
526
+ Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict`` file that can be
527
+ loaded with ``torch.load(file)`` + ``load_state_dict()`` and used for training without DeepSpeed.
528
+
529
+ Args:
530
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
531
+ - ``output_file``: path to the pytorch fp32 state_dict output file (e.g. path/pytorch_model.bin)
532
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
533
+ - ``exclude_frozen_parameters``: exclude frozen parameters
534
+ """
535
+
536
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag, exclude_frozen_parameters)
537
+ print(f"Saving fp32 state dict to {output_file}")
538
+ torch.save(state_dict, output_file)
539
+
540
+
541
+ def load_state_dict_from_zero_checkpoint(model, checkpoint_dir, tag=None):
542
+ """
543
+ 1. Put the provided model to cpu
544
+ 2. Convert ZeRO 2 or 3 checkpoint into a single fp32 consolidated ``state_dict``
545
+ 3. Load it into the provided model
546
+
547
+ Args:
548
+ - ``model``: the model object to update
549
+ - ``checkpoint_dir``: path to the desired checkpoint folder. (one that contains the tag-folder, like ``global_step14``)
550
+ - ``tag``: checkpoint tag used as a unique identifier for checkpoint. If not provided will attempt to load tag in the file named ``latest`` in the checkpoint folder, e.g., ``global_step14``
551
+
552
+ Returns:
553
+ - ``model`: modified model
554
+
555
+ Make sure you have plenty of CPU memory available before you call this function. If you don't
556
+ have enough use the ``zero_to_fp32.py`` utility to do the conversion. You will find it
557
+ conveniently placed for you in the checkpoint folder.
558
+
559
+ A typical usage might be ::
560
+
561
+ from deepspeed.utils.zero_to_fp32 import load_state_dict_from_zero_checkpoint
562
+ model = load_state_dict_from_zero_checkpoint(trainer.model, checkpoint_dir)
563
+ # submit to model hub or save the model to share with others
564
+
565
+ Note, that once this was run, the ``model`` will no longer be usable in the deepspeed context
566
+ of the same application. i.e. you will need to re-initialize the deepspeed engine, since
567
+ ``model.load_state_dict(state_dict)`` will remove all the deepspeed magic from it.
568
+
569
+ """
570
+ logger.info(f"Extracting fp32 weights")
571
+ state_dict = get_fp32_state_dict_from_zero_checkpoint(checkpoint_dir, tag)
572
+
573
+ logger.info(f"Overwriting model with fp32 weights")
574
+ model = model.cpu()
575
+ model.load_state_dict(state_dict, strict=False)
576
+
577
+ return model
578
+
579
+
580
+ if __name__ == "__main__":
581
+
582
+ parser = argparse.ArgumentParser()
583
+ parser.add_argument("checkpoint_dir",
584
+ type=str,
585
+ help="path to the desired checkpoint folder, e.g., path/checkpoint-12")
586
+ parser.add_argument(
587
+ "output_file",
588
+ type=str,
589
+ help="path to the pytorch fp32 state_dict output file (e.g. path/checkpoint-12/pytorch_model.bin)")
590
+ parser.add_argument("-t",
591
+ "--tag",
592
+ type=str,
593
+ default=None,
594
+ help="checkpoint tag used as a unique identifier for checkpoint. e.g., global_step1")
595
+ parser.add_argument("--exclude_frozen_parameters", action='store_true', help="exclude frozen parameters")
596
+ parser.add_argument("-d", "--debug", action='store_true', help="enable debug")
597
+ args = parser.parse_args()
598
+
599
+ debug = args.debug
600
+
601
+ convert_zero_checkpoint_to_fp32_state_dict(args.checkpoint_dir,
602
+ args.output_file,
603
+ tag=args.tag,
604
+ exclude_frozen_parameters=args.exclude_frozen_parameters)