---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:10000
- loss:CosineSimilarityLoss
widget:
- source_sentence: banco bradesco sa - agencia empresas franca urb franca sp
sentences:
- ajensia santander
- drogal farmaseutica
- bradesco
- source_sentence: secretaria de estado da saude - ambulatorio medico de especialidades
s j dos campos
sentences:
- beneto roupas
- marx serbicos
- asessorias saude
- source_sentence: nacional lojas centro de distribuicao ltda - nba store arena curitiba
sentences:
- lojas centro
- fazenda ii
- bradesco
- source_sentence: fundo municipal dos direitos da crianca e do adolescente - fia fundo
da infancia e adolescencia
sentences:
- uniao igreja
- crianca adolessente
- crianca adolessente
- source_sentence: banco bradesco sa - pa prefeitura de guarulhos secretaria de educacao
sp
sentences:
- banco bradesco
- bradesco
- banco san
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer
This is a [sentence-transformers](https://www.SBERT.net) model trained on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'banco bradesco sa - pa prefeitura de guarulhos secretaria de educacao sp',
'bradesco',
'banco san',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 10,000 training samples
* Columns: sentence1
, score
, and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | score | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|:--------------------------------------------------------------------------------|
| type | string | float | string |
| details |
lissa z modas ltda - lissa z modas
| 0.4108259081840515
| unib das tintas
|
| veste sa estilo - le lis blanc beaute
| 0.3791214525699615
| unib das tintas
|
| lux solis energy ltda - lux solis energy
| 0.3742797672748565
| unib das tintas
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Evaluation Dataset
#### csv
* Dataset: csv
* Size: 11,618 evaluation samples
* Columns: sentence1
, score
, and sentence2
* Approximate statistics based on the first 1000 samples:
| | sentence1 | score | sentence2 |
|:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | float | string |
| details | ordem dos advogados do brasil seccao de sao paulo - escola superior de advocacia praia grande
| 0.7389452457427979
| escola superior de adbocasia
|
| ordem dos advogados do brasil seccao de sao paulo - escola superior de advocacia unidade marilia
| 1.0
| escola superior de adbocasia
|
| banco bradesco sa - bradesco ag prime araraquara
| 0.6930926442146301
| banco bradesco
|
* Loss: [CosineSimilarityLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
```json
{
"loss_fct": "torch.nn.modules.loss.MSELoss"
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `num_train_epochs`: 4
- `batch_sampler`: no_duplicates
#### All Hyperparameters