stephanefschwarz commited on
Commit
5415c3a
·
verified ·
1 Parent(s): 2c1a4a5

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,369 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:10000
8
+ - loss:CosineSimilarityLoss
9
+ base_model: google-bert/bert-base-multilingual-uncased
10
+ widget:
11
+ - source_sentence: banco bradesco sa - agencia empresas franca urb franca sp
12
+ sentences:
13
+ - ajensia santander
14
+ - drogal farmaseutica
15
+ - bradesco
16
+ - source_sentence: secretaria de estado da saude - ambulatorio medico de especialidades
17
+ s j dos campos
18
+ sentences:
19
+ - beneto roupas
20
+ - marx serbicos
21
+ - asessorias saude
22
+ - source_sentence: nacional lojas centro de distribuicao ltda - nba store arena curitiba
23
+ sentences:
24
+ - lojas centro
25
+ - fazenda ii
26
+ - bradesco
27
+ - source_sentence: fundo municipal dos direitos da crianca e do adolescente - fia fundo
28
+ da infancia e adolescencia
29
+ sentences:
30
+ - uniao igreja
31
+ - crianca adolessente
32
+ - crianca adolessente
33
+ - source_sentence: banco bradesco sa - pa prefeitura de guarulhos secretaria de educacao
34
+ sp
35
+ sentences:
36
+ - banco bradesco
37
+ - bradesco
38
+ - banco san
39
+ pipeline_tag: sentence-similarity
40
+ library_name: sentence-transformers
41
+ ---
42
+
43
+ # SentenceTransformer based on google-bert/bert-base-multilingual-uncased
44
+
45
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
46
+
47
+ ## Model Details
48
+
49
+ ### Model Description
50
+ - **Model Type:** Sentence Transformer
51
+ - **Base model:** [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) <!-- at revision 7cbf9a625e29989f6b9c6c2fa68234c304f7e38f -->
52
+ - **Maximum Sequence Length:** 512 tokens
53
+ - **Output Dimensionality:** 768 dimensions
54
+ - **Similarity Function:** Cosine Similarity
55
+ - **Training Dataset:**
56
+ - csv
57
+ <!-- - **Language:** Unknown -->
58
+ <!-- - **License:** Unknown -->
59
+
60
+ ### Model Sources
61
+
62
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
63
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
64
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
65
+
66
+ ### Full Model Architecture
67
+
68
+ ```
69
+ SentenceTransformer(
70
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
71
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
72
+ )
73
+ ```
74
+
75
+ ## Usage
76
+
77
+ ### Direct Usage (Sentence Transformers)
78
+
79
+ First install the Sentence Transformers library:
80
+
81
+ ```bash
82
+ pip install -U sentence-transformers
83
+ ```
84
+
85
+ Then you can load this model and run inference.
86
+ ```python
87
+ from sentence_transformers import SentenceTransformer
88
+
89
+ # Download from the 🤗 Hub
90
+ model = SentenceTransformer("sentence_transformers_model_id")
91
+ # Run inference
92
+ sentences = [
93
+ 'banco bradesco sa - pa prefeitura de guarulhos secretaria de educacao sp',
94
+ 'bradesco',
95
+ 'banco san',
96
+ ]
97
+ embeddings = model.encode(sentences)
98
+ print(embeddings.shape)
99
+ # [3, 768]
100
+
101
+ # Get the similarity scores for the embeddings
102
+ similarities = model.similarity(embeddings, embeddings)
103
+ print(similarities.shape)
104
+ # [3, 3]
105
+ ```
106
+
107
+ <!--
108
+ ### Direct Usage (Transformers)
109
+
110
+ <details><summary>Click to see the direct usage in Transformers</summary>
111
+
112
+ </details>
113
+ -->
114
+
115
+ <!--
116
+ ### Downstream Usage (Sentence Transformers)
117
+
118
+ You can finetune this model on your own dataset.
119
+
120
+ <details><summary>Click to expand</summary>
121
+
122
+ </details>
123
+ -->
124
+
125
+ <!--
126
+ ### Out-of-Scope Use
127
+
128
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
129
+ -->
130
+
131
+ <!--
132
+ ## Bias, Risks and Limitations
133
+
134
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
135
+ -->
136
+
137
+ <!--
138
+ ### Recommendations
139
+
140
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
141
+ -->
142
+
143
+ ## Training Details
144
+
145
+ ### Training Dataset
146
+
147
+ #### csv
148
+
149
+ * Dataset: csv
150
+ * Size: 10,000 training samples
151
+ * Columns: <code>sentence1</code>, <code>score</code>, and <code>sentence2</code>
152
+ * Approximate statistics based on the first 1000 samples:
153
+ | | sentence1 | score | sentence2 |
154
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|:--------------------------------------------------------------------------------|
155
+ | type | string | float | string |
156
+ | details | <ul><li>min: 8 tokens</li><li>mean: 16.11 tokens</li><li>max: 40 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.25</li><li>max: 0.66</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.4 tokens</li><li>max: 11 tokens</li></ul> |
157
+ * Samples:
158
+ | sentence1 | score | sentence2 |
159
+ |:------------------------------------------------------|:--------------------------------|:-----------------------------|
160
+ | <code>lissa z modas ltda - lissa z modas</code> | <code>0.5891740918159485</code> | <code>unib das tintas</code> |
161
+ | <code>veste sa estilo - le lis blanc beaute</code> | <code>0.6208785474300385</code> | <code>unib das tintas</code> |
162
+ | <code>lux solis energy ltda - lux solis energy</code> | <code>0.6257202327251434</code> | <code>unib das tintas</code> |
163
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
164
+ ```json
165
+ {
166
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
167
+ }
168
+ ```
169
+
170
+ ### Evaluation Dataset
171
+
172
+ #### csv
173
+
174
+ * Dataset: csv
175
+ * Size: 11,618 evaluation samples
176
+ * Columns: <code>sentence1</code>, <code>score</code>, and <code>sentence2</code>
177
+ * Approximate statistics based on the first 1000 samples:
178
+ | | sentence1 | score | sentence2 |
179
+ |:--------|:----------------------------------------------------------------------------------|:----------------------------------------------------------------|:---------------------------------------------------------------------------------|
180
+ | type | string | float | string |
181
+ | details | <ul><li>min: 8 tokens</li><li>mean: 15.89 tokens</li><li>max: 45 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.28</li><li>max: 0.72</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.18 tokens</li><li>max: 12 tokens</li></ul> |
182
+ * Samples:
183
+ | sentence1 | score | sentence2 |
184
+ |:----------------------------------------------------------------------------------------------------------------|:--------------------------------|:------------------------------------------|
185
+ | <code>ordem dos advogados do brasil seccao de sao paulo - escola superior de advocacia praia grande</code> | <code>0.2610547542572021</code> | <code>escola superior de adbocasia</code> |
186
+ | <code>ordem dos advogados do brasil seccao de sao paulo - escola superior de advocacia unidade marilia</code> | <code>0.0</code> | <code>escola superior de adbocasia</code> |
187
+ | <code>banco bradesco sa - bradesco ag prime araraquara</code> | <code>0.3069073557853699</code> | <code>banco bradesco</code> |
188
+ * Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
189
+ ```json
190
+ {
191
+ "loss_fct": "torch.nn.modules.loss.MSELoss"
192
+ }
193
+ ```
194
+
195
+ ### Training Hyperparameters
196
+ #### Non-Default Hyperparameters
197
+
198
+ - `num_train_epochs`: 4
199
+ - `batch_sampler`: no_duplicates
200
+
201
+ #### All Hyperparameters
202
+ <details><summary>Click to expand</summary>
203
+
204
+ - `overwrite_output_dir`: False
205
+ - `do_predict`: False
206
+ - `eval_strategy`: no
207
+ - `prediction_loss_only`: True
208
+ - `per_device_train_batch_size`: 8
209
+ - `per_device_eval_batch_size`: 8
210
+ - `per_gpu_train_batch_size`: None
211
+ - `per_gpu_eval_batch_size`: None
212
+ - `gradient_accumulation_steps`: 1
213
+ - `eval_accumulation_steps`: None
214
+ - `torch_empty_cache_steps`: None
215
+ - `learning_rate`: 5e-05
216
+ - `weight_decay`: 0.0
217
+ - `adam_beta1`: 0.9
218
+ - `adam_beta2`: 0.999
219
+ - `adam_epsilon`: 1e-08
220
+ - `max_grad_norm`: 1.0
221
+ - `num_train_epochs`: 4
222
+ - `max_steps`: -1
223
+ - `lr_scheduler_type`: linear
224
+ - `lr_scheduler_kwargs`: {}
225
+ - `warmup_ratio`: 0.0
226
+ - `warmup_steps`: 0
227
+ - `log_level`: passive
228
+ - `log_level_replica`: warning
229
+ - `log_on_each_node`: True
230
+ - `logging_nan_inf_filter`: True
231
+ - `save_safetensors`: True
232
+ - `save_on_each_node`: False
233
+ - `save_only_model`: False
234
+ - `restore_callback_states_from_checkpoint`: False
235
+ - `no_cuda`: False
236
+ - `use_cpu`: False
237
+ - `use_mps_device`: False
238
+ - `seed`: 42
239
+ - `data_seed`: None
240
+ - `jit_mode_eval`: False
241
+ - `use_ipex`: False
242
+ - `bf16`: False
243
+ - `fp16`: False
244
+ - `fp16_opt_level`: O1
245
+ - `half_precision_backend`: auto
246
+ - `bf16_full_eval`: False
247
+ - `fp16_full_eval`: False
248
+ - `tf32`: None
249
+ - `local_rank`: 0
250
+ - `ddp_backend`: None
251
+ - `tpu_num_cores`: None
252
+ - `tpu_metrics_debug`: False
253
+ - `debug`: []
254
+ - `dataloader_drop_last`: False
255
+ - `dataloader_num_workers`: 0
256
+ - `dataloader_prefetch_factor`: None
257
+ - `past_index`: -1
258
+ - `disable_tqdm`: False
259
+ - `remove_unused_columns`: True
260
+ - `label_names`: None
261
+ - `load_best_model_at_end`: False
262
+ - `ignore_data_skip`: False
263
+ - `fsdp`: []
264
+ - `fsdp_min_num_params`: 0
265
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
266
+ - `tp_size`: 0
267
+ - `fsdp_transformer_layer_cls_to_wrap`: None
268
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
269
+ - `deepspeed`: None
270
+ - `label_smoothing_factor`: 0.0
271
+ - `optim`: adamw_torch
272
+ - `optim_args`: None
273
+ - `adafactor`: False
274
+ - `group_by_length`: False
275
+ - `length_column_name`: length
276
+ - `ddp_find_unused_parameters`: None
277
+ - `ddp_bucket_cap_mb`: None
278
+ - `ddp_broadcast_buffers`: False
279
+ - `dataloader_pin_memory`: True
280
+ - `dataloader_persistent_workers`: False
281
+ - `skip_memory_metrics`: True
282
+ - `use_legacy_prediction_loop`: False
283
+ - `push_to_hub`: False
284
+ - `resume_from_checkpoint`: None
285
+ - `hub_model_id`: None
286
+ - `hub_strategy`: every_save
287
+ - `hub_private_repo`: None
288
+ - `hub_always_push`: False
289
+ - `gradient_checkpointing`: False
290
+ - `gradient_checkpointing_kwargs`: None
291
+ - `include_inputs_for_metrics`: False
292
+ - `include_for_metrics`: []
293
+ - `eval_do_concat_batches`: True
294
+ - `fp16_backend`: auto
295
+ - `push_to_hub_model_id`: None
296
+ - `push_to_hub_organization`: None
297
+ - `mp_parameters`:
298
+ - `auto_find_batch_size`: False
299
+ - `full_determinism`: False
300
+ - `torchdynamo`: None
301
+ - `ray_scope`: last
302
+ - `ddp_timeout`: 1800
303
+ - `torch_compile`: False
304
+ - `torch_compile_backend`: None
305
+ - `torch_compile_mode`: None
306
+ - `include_tokens_per_second`: False
307
+ - `include_num_input_tokens_seen`: False
308
+ - `neftune_noise_alpha`: None
309
+ - `optim_target_modules`: None
310
+ - `batch_eval_metrics`: False
311
+ - `eval_on_start`: False
312
+ - `use_liger_kernel`: False
313
+ - `eval_use_gather_object`: False
314
+ - `average_tokens_across_devices`: False
315
+ - `prompts`: None
316
+ - `batch_sampler`: no_duplicates
317
+ - `multi_dataset_batch_sampler`: proportional
318
+
319
+ </details>
320
+
321
+ ### Training Logs
322
+ | Epoch | Step | Training Loss |
323
+ |:------:|:----:|:-------------:|
324
+ | 3.1847 | 500 | 0.0319 |
325
+
326
+
327
+ ### Framework Versions
328
+ - Python: 3.10.13
329
+ - Sentence Transformers: 4.0.2
330
+ - Transformers: 4.51.2
331
+ - PyTorch: 2.2.1
332
+ - Accelerate: 1.6.0
333
+ - Datasets: 3.5.0
334
+ - Tokenizers: 0.21.1
335
+
336
+ ## Citation
337
+
338
+ ### BibTeX
339
+
340
+ #### Sentence Transformers
341
+ ```bibtex
342
+ @inproceedings{reimers-2019-sentence-bert,
343
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
344
+ author = "Reimers, Nils and Gurevych, Iryna",
345
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
346
+ month = "11",
347
+ year = "2019",
348
+ publisher = "Association for Computational Linguistics",
349
+ url = "https://arxiv.org/abs/1908.10084",
350
+ }
351
+ ```
352
+
353
+ <!--
354
+ ## Glossary
355
+
356
+ *Clearly define terms in order to be accessible across audiences.*
357
+ -->
358
+
359
+ <!--
360
+ ## Model Card Authors
361
+
362
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
363
+ -->
364
+
365
+ <!--
366
+ ## Model Card Contact
367
+
368
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
369
+ -->
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "pooler_fc_size": 768,
20
+ "pooler_num_attention_heads": 12,
21
+ "pooler_num_fc_layers": 3,
22
+ "pooler_size_per_head": 128,
23
+ "pooler_type": "first_token_transform",
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.2",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 105879
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.0.2",
4
+ "transformers": "4.51.2",
5
+ "pytorch": "2.2.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9e94566a734d4fc7bbacb64fd4bba5c5826beca663feb4090f0a54862e920c8b
3
+ size 669448040
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:b900ba1563ca599da55e029c8f2eed5fc48797942676b4d6bc04c4a487ec88de
3
+ size 1339017786
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:436e8e6f895ef16500e9210a0bd14de9fc3d9abc38b1b0cdddb8cfe943a1377e
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bb024edeefb71fad3a17176a29101eb8d1a137bb16be59dd88d2f3a04b2b03ec
3
+ size 1064
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
trainer_state.json ADDED
@@ -0,0 +1,41 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 4.0,
6
+ "eval_steps": 500,
7
+ "global_step": 628,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 3.1847133757961785,
14
+ "grad_norm": 0.2595694065093994,
15
+ "learning_rate": 1.0270700636942676e-05,
16
+ "loss": 0.0319,
17
+ "step": 500
18
+ }
19
+ ],
20
+ "logging_steps": 500,
21
+ "max_steps": 628,
22
+ "num_input_tokens_seen": 0,
23
+ "num_train_epochs": 4,
24
+ "save_steps": 500,
25
+ "stateful_callbacks": {
26
+ "TrainerControl": {
27
+ "args": {
28
+ "should_epoch_stop": false,
29
+ "should_evaluate": false,
30
+ "should_log": false,
31
+ "should_save": true,
32
+ "should_training_stop": true
33
+ },
34
+ "attributes": {}
35
+ }
36
+ },
37
+ "total_flos": 0.0,
38
+ "train_batch_size": 64,
39
+ "trial_name": null,
40
+ "trial_params": null
41
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:2e7fba575c859e792ea7d9cde2483e8c1089e4a14246b6961909516a4b6a72f3
3
+ size 5624
vocab.txt ADDED
The diff for this file is too large to render. See raw diff