---
tags:
- sentence-transformers
- sentence-similarity
- feature-extraction
- generated_from_trainer
- dataset_size:15178
- loss:CachedMultipleNegativesSymmetricRankingLoss
base_model: google-bert/bert-base-multilingual-uncased
widget:
- source_sentence: hapvida assistencia medica sa - coleta e vida imagem centro sao
jose dos campos
sentences:
- sao jose imag
- parokia gracas
- igreja evangelica assembleia de deus - igreja evangelica assembleia de deusbairro
saramandaia
- source_sentence: banco bradesco sa - bradesco pa brumadinho mg
sentences:
- bradesco
- cdd balsas jeral
- banco bradesco sa - bradesco ag aracuai mg est unif
- source_sentence: et renovavel - edificio et renovavel
sentences:
- edificio e.t.
- lojas queroquero sa - queroquero
- parokia gracas
- source_sentence: banco bradesco sa - bradesco ag cidade de deus est unif
sentences:
- bradesco ag. cidade
- banco bradesco sa - bradesco ag prime sao cristovao est unif
- bradesco paa triunfo paa
- source_sentence: banco bradesco sa - bradesco ag caico est unif
sentences:
- banco bradesco sa - agencia empresas aracatuba urb aracatuba sp
- monsenhor condominio
- bradesco ag. caico est
pipeline_tag: sentence-similarity
library_name: sentence-transformers
---
# SentenceTransformer based on google-bert/bert-base-multilingual-uncased
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
## Model Details
### Model Description
- **Model Type:** Sentence Transformer
- **Base model:** [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased)
- **Maximum Sequence Length:** 512 tokens
- **Output Dimensionality:** 768 dimensions
- **Similarity Function:** Cosine Similarity
- **Training Dataset:**
- csv
### Model Sources
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
### Full Model Architecture
```
SentenceTransformer(
(0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
)
```
## Usage
### Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
```bash
pip install -U sentence-transformers
```
Then you can load this model and run inference.
```python
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("sentence_transformers_model_id")
# Run inference
sentences = [
'banco bradesco sa - bradesco ag caico est unif',
'bradesco ag. caico est',
'banco bradesco sa - agencia empresas aracatuba urb aracatuba sp',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
```
## Training Details
### Training Dataset
#### csv
* Dataset: csv
* Size: 15,178 training samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
| type | string | string | string |
| details |
magazine luiza sa - magazine luiza
| magazine l
| centro espirita allan kardec - educandario euripedes creche mae luiza
|
| magazine luiza sa - magazine luiza
| magazine l
| secretaria de estado de saude ses - upa 24 horas nova iguacu ii
|
| magazine luiza sa - magazine luiza
| magazine l
| expresso guanabara ltda - filial n 5
|
* Loss: [CachedMultipleNegativesSymmetricRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32
}
```
### Evaluation Dataset
#### csv
* Dataset: csv
* Size: 10,118 evaluation samples
* Columns: anchor
, positive
, and negative
* Approximate statistics based on the first 1000 samples:
| | anchor | positive | negative |
|:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
| type | string | string | string |
| details | banco bradesco sa - ag bela vista
| bela bco
| banco bradesco sa - bradesco ag senhor do bonfim est unif
|
| banco bradesco sa - ag bela vista
| bela bco
| banco bradesco sa - bradesco ag teolandia
|
| banco bradesco sa - ag corporate passo fundo rs
| ag passo fundo
| banco bradesco sa - bradesco ag sao jose da tapera al
|
* Loss: [CachedMultipleNegativesSymmetricRankingLoss
](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
```json
{
"scale": 20.0,
"similarity_fct": "cos_sim",
"mini_batch_size": 32
}
```
### Training Hyperparameters
#### Non-Default Hyperparameters
- `num_train_epochs`: 4
- `batch_sampler`: no_duplicates
#### All Hyperparameters