stephanefschwarz commited on
Commit
a2cb119
·
verified ·
1 Parent(s): e3cba64

Upload folder using huggingface_hub

Browse files
1_Pooling/config.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "word_embedding_dimension": 768,
3
+ "pooling_mode_cls_token": false,
4
+ "pooling_mode_mean_tokens": true,
5
+ "pooling_mode_max_tokens": false,
6
+ "pooling_mode_mean_sqrt_len_tokens": false,
7
+ "pooling_mode_weightedmean_tokens": false,
8
+ "pooling_mode_lasttoken": false,
9
+ "include_prompt": true
10
+ }
README.md ADDED
@@ -0,0 +1,374 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ tags:
3
+ - sentence-transformers
4
+ - sentence-similarity
5
+ - feature-extraction
6
+ - generated_from_trainer
7
+ - dataset_size:15178
8
+ - loss:CachedMultipleNegativesSymmetricRankingLoss
9
+ base_model: google-bert/bert-base-multilingual-uncased
10
+ widget:
11
+ - source_sentence: hapvida assistencia medica sa - coleta e vida imagem centro sao
12
+ jose dos campos
13
+ sentences:
14
+ - sao jose imag
15
+ - parokia gracas
16
+ - igreja evangelica assembleia de deus - igreja evangelica assembleia de deusbairro
17
+ saramandaia
18
+ - source_sentence: banco bradesco sa - bradesco pa brumadinho mg
19
+ sentences:
20
+ - bradesco
21
+ - cdd balsas jeral
22
+ - banco bradesco sa - bradesco ag aracuai mg est unif
23
+ - source_sentence: et renovavel - edificio et renovavel
24
+ sentences:
25
+ - edificio e.t.
26
+ - lojas queroquero sa - queroquero
27
+ - parokia gracas
28
+ - source_sentence: banco bradesco sa - bradesco ag cidade de deus est unif
29
+ sentences:
30
+ - bradesco ag. cidade
31
+ - banco bradesco sa - bradesco ag prime sao cristovao est unif
32
+ - bradesco paa triunfo paa
33
+ - source_sentence: banco bradesco sa - bradesco ag caico est unif
34
+ sentences:
35
+ - banco bradesco sa - agencia empresas aracatuba urb aracatuba sp
36
+ - monsenhor condominio
37
+ - bradesco ag. caico est
38
+ pipeline_tag: sentence-similarity
39
+ library_name: sentence-transformers
40
+ ---
41
+
42
+ # SentenceTransformer based on google-bert/bert-base-multilingual-uncased
43
+
44
+ This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) on the csv dataset. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
45
+
46
+ ## Model Details
47
+
48
+ ### Model Description
49
+ - **Model Type:** Sentence Transformer
50
+ - **Base model:** [google-bert/bert-base-multilingual-uncased](https://huggingface.co/google-bert/bert-base-multilingual-uncased) <!-- at revision 7cbf9a625e29989f6b9c6c2fa68234c304f7e38f -->
51
+ - **Maximum Sequence Length:** 512 tokens
52
+ - **Output Dimensionality:** 768 dimensions
53
+ - **Similarity Function:** Cosine Similarity
54
+ - **Training Dataset:**
55
+ - csv
56
+ <!-- - **Language:** Unknown -->
57
+ <!-- - **License:** Unknown -->
58
+
59
+ ### Model Sources
60
+
61
+ - **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
62
+ - **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
63
+ - **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
64
+
65
+ ### Full Model Architecture
66
+
67
+ ```
68
+ SentenceTransformer(
69
+ (0): Transformer({'max_seq_length': 512, 'do_lower_case': False}) with Transformer model: BertModel
70
+ (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
71
+ )
72
+ ```
73
+
74
+ ## Usage
75
+
76
+ ### Direct Usage (Sentence Transformers)
77
+
78
+ First install the Sentence Transformers library:
79
+
80
+ ```bash
81
+ pip install -U sentence-transformers
82
+ ```
83
+
84
+ Then you can load this model and run inference.
85
+ ```python
86
+ from sentence_transformers import SentenceTransformer
87
+
88
+ # Download from the 🤗 Hub
89
+ model = SentenceTransformer("sentence_transformers_model_id")
90
+ # Run inference
91
+ sentences = [
92
+ 'banco bradesco sa - bradesco ag caico est unif',
93
+ 'bradesco ag. caico est',
94
+ 'banco bradesco sa - agencia empresas aracatuba urb aracatuba sp',
95
+ ]
96
+ embeddings = model.encode(sentences)
97
+ print(embeddings.shape)
98
+ # [3, 768]
99
+
100
+ # Get the similarity scores for the embeddings
101
+ similarities = model.similarity(embeddings, embeddings)
102
+ print(similarities.shape)
103
+ # [3, 3]
104
+ ```
105
+
106
+ <!--
107
+ ### Direct Usage (Transformers)
108
+
109
+ <details><summary>Click to see the direct usage in Transformers</summary>
110
+
111
+ </details>
112
+ -->
113
+
114
+ <!--
115
+ ### Downstream Usage (Sentence Transformers)
116
+
117
+ You can finetune this model on your own dataset.
118
+
119
+ <details><summary>Click to expand</summary>
120
+
121
+ </details>
122
+ -->
123
+
124
+ <!--
125
+ ### Out-of-Scope Use
126
+
127
+ *List how the model may foreseeably be misused and address what users ought not to do with the model.*
128
+ -->
129
+
130
+ <!--
131
+ ## Bias, Risks and Limitations
132
+
133
+ *What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
134
+ -->
135
+
136
+ <!--
137
+ ### Recommendations
138
+
139
+ *What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
140
+ -->
141
+
142
+ ## Training Details
143
+
144
+ ### Training Dataset
145
+
146
+ #### csv
147
+
148
+ * Dataset: csv
149
+ * Size: 15,178 training samples
150
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
151
+ * Approximate statistics based on the first 1000 samples:
152
+ | | anchor | positive | negative |
153
+ |:--------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|
154
+ | type | string | string | string |
155
+ | details | <ul><li>min: 7 tokens</li><li>mean: 16.2 tokens</li><li>max: 38 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.91 tokens</li><li>max: 11 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 17.69 tokens</li><li>max: 41 tokens</li></ul> |
156
+ * Samples:
157
+ | anchor | positive | negative |
158
+ |:------------------------------------------------|:------------------------|:-----------------------------------------------------------------------------------|
159
+ | <code>magazine luiza sa - magazine luiza</code> | <code>magazine l</code> | <code>centro espirita allan kardec - educandario euripedes creche mae luiza</code> |
160
+ | <code>magazine luiza sa - magazine luiza</code> | <code>magazine l</code> | <code>secretaria de estado de saude ses - upa 24 horas nova iguacu ii</code> |
161
+ | <code>magazine luiza sa - magazine luiza</code> | <code>magazine l</code> | <code>expresso guanabara ltda - filial n 5</code> |
162
+ * Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
163
+ ```json
164
+ {
165
+ "scale": 20.0,
166
+ "similarity_fct": "cos_sim",
167
+ "mini_batch_size": 32
168
+ }
169
+ ```
170
+
171
+ ### Evaluation Dataset
172
+
173
+ #### csv
174
+
175
+ * Dataset: csv
176
+ * Size: 10,118 evaluation samples
177
+ * Columns: <code>anchor</code>, <code>positive</code>, and <code>negative</code>
178
+ * Approximate statistics based on the first 1000 samples:
179
+ | | anchor | positive | negative |
180
+ |:--------|:----------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|:---------------------------------------------------------------------------------|
181
+ | type | string | string | string |
182
+ | details | <ul><li>min: 6 tokens</li><li>mean: 16.05 tokens</li><li>max: 35 tokens</li></ul> | <ul><li>min: 3 tokens</li><li>mean: 5.98 tokens</li><li>max: 13 tokens</li></ul> | <ul><li>min: 8 tokens</li><li>mean: 17.0 tokens</li><li>max: 41 tokens</li></ul> |
183
+ * Samples:
184
+ | anchor | positive | negative |
185
+ |:--------------------------------------------------------------|:----------------------------|:-----------------------------------------------------------------------|
186
+ | <code>banco bradesco sa - ag bela vista</code> | <code>bela bco</code> | <code>banco bradesco sa - bradesco ag senhor do bonfim est unif</code> |
187
+ | <code>banco bradesco sa - ag bela vista</code> | <code>bela bco</code> | <code>banco bradesco sa - bradesco ag teolandia</code> |
188
+ | <code>banco bradesco sa - ag corporate passo fundo rs</code> | <code>ag passo fundo</code> | <code>banco bradesco sa - bradesco ag sao jose da tapera al</code> |
189
+ * Loss: [<code>CachedMultipleNegativesSymmetricRankingLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cachedmultiplenegativessymmetricrankingloss) with these parameters:
190
+ ```json
191
+ {
192
+ "scale": 20.0,
193
+ "similarity_fct": "cos_sim",
194
+ "mini_batch_size": 32
195
+ }
196
+ ```
197
+
198
+ ### Training Hyperparameters
199
+ #### Non-Default Hyperparameters
200
+
201
+ - `num_train_epochs`: 4
202
+ - `batch_sampler`: no_duplicates
203
+
204
+ #### All Hyperparameters
205
+ <details><summary>Click to expand</summary>
206
+
207
+ - `overwrite_output_dir`: False
208
+ - `do_predict`: False
209
+ - `eval_strategy`: no
210
+ - `prediction_loss_only`: True
211
+ - `per_device_train_batch_size`: 8
212
+ - `per_device_eval_batch_size`: 8
213
+ - `per_gpu_train_batch_size`: None
214
+ - `per_gpu_eval_batch_size`: None
215
+ - `gradient_accumulation_steps`: 1
216
+ - `eval_accumulation_steps`: None
217
+ - `torch_empty_cache_steps`: None
218
+ - `learning_rate`: 5e-05
219
+ - `weight_decay`: 0.0
220
+ - `adam_beta1`: 0.9
221
+ - `adam_beta2`: 0.999
222
+ - `adam_epsilon`: 1e-08
223
+ - `max_grad_norm`: 1.0
224
+ - `num_train_epochs`: 4
225
+ - `max_steps`: -1
226
+ - `lr_scheduler_type`: linear
227
+ - `lr_scheduler_kwargs`: {}
228
+ - `warmup_ratio`: 0.0
229
+ - `warmup_steps`: 0
230
+ - `log_level`: passive
231
+ - `log_level_replica`: warning
232
+ - `log_on_each_node`: True
233
+ - `logging_nan_inf_filter`: True
234
+ - `save_safetensors`: True
235
+ - `save_on_each_node`: False
236
+ - `save_only_model`: False
237
+ - `restore_callback_states_from_checkpoint`: False
238
+ - `no_cuda`: False
239
+ - `use_cpu`: False
240
+ - `use_mps_device`: False
241
+ - `seed`: 42
242
+ - `data_seed`: None
243
+ - `jit_mode_eval`: False
244
+ - `use_ipex`: False
245
+ - `bf16`: False
246
+ - `fp16`: False
247
+ - `fp16_opt_level`: O1
248
+ - `half_precision_backend`: auto
249
+ - `bf16_full_eval`: False
250
+ - `fp16_full_eval`: False
251
+ - `tf32`: None
252
+ - `local_rank`: 0
253
+ - `ddp_backend`: None
254
+ - `tpu_num_cores`: None
255
+ - `tpu_metrics_debug`: False
256
+ - `debug`: []
257
+ - `dataloader_drop_last`: False
258
+ - `dataloader_num_workers`: 0
259
+ - `dataloader_prefetch_factor`: None
260
+ - `past_index`: -1
261
+ - `disable_tqdm`: False
262
+ - `remove_unused_columns`: True
263
+ - `label_names`: None
264
+ - `load_best_model_at_end`: False
265
+ - `ignore_data_skip`: False
266
+ - `fsdp`: []
267
+ - `fsdp_min_num_params`: 0
268
+ - `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
269
+ - `tp_size`: 0
270
+ - `fsdp_transformer_layer_cls_to_wrap`: None
271
+ - `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
272
+ - `deepspeed`: None
273
+ - `label_smoothing_factor`: 0.0
274
+ - `optim`: adamw_torch
275
+ - `optim_args`: None
276
+ - `adafactor`: False
277
+ - `group_by_length`: False
278
+ - `length_column_name`: length
279
+ - `ddp_find_unused_parameters`: None
280
+ - `ddp_bucket_cap_mb`: None
281
+ - `ddp_broadcast_buffers`: False
282
+ - `dataloader_pin_memory`: True
283
+ - `dataloader_persistent_workers`: False
284
+ - `skip_memory_metrics`: True
285
+ - `use_legacy_prediction_loop`: False
286
+ - `push_to_hub`: False
287
+ - `resume_from_checkpoint`: None
288
+ - `hub_model_id`: None
289
+ - `hub_strategy`: every_save
290
+ - `hub_private_repo`: None
291
+ - `hub_always_push`: False
292
+ - `gradient_checkpointing`: False
293
+ - `gradient_checkpointing_kwargs`: None
294
+ - `include_inputs_for_metrics`: False
295
+ - `include_for_metrics`: []
296
+ - `eval_do_concat_batches`: True
297
+ - `fp16_backend`: auto
298
+ - `push_to_hub_model_id`: None
299
+ - `push_to_hub_organization`: None
300
+ - `mp_parameters`:
301
+ - `auto_find_batch_size`: False
302
+ - `full_determinism`: False
303
+ - `torchdynamo`: None
304
+ - `ray_scope`: last
305
+ - `ddp_timeout`: 1800
306
+ - `torch_compile`: False
307
+ - `torch_compile_backend`: None
308
+ - `torch_compile_mode`: None
309
+ - `include_tokens_per_second`: False
310
+ - `include_num_input_tokens_seen`: False
311
+ - `neftune_noise_alpha`: None
312
+ - `optim_target_modules`: None
313
+ - `batch_eval_metrics`: False
314
+ - `eval_on_start`: False
315
+ - `use_liger_kernel`: False
316
+ - `eval_use_gather_object`: False
317
+ - `average_tokens_across_devices`: False
318
+ - `prompts`: None
319
+ - `batch_sampler`: no_duplicates
320
+ - `multi_dataset_batch_sampler`: proportional
321
+
322
+ </details>
323
+
324
+ ### Training Logs
325
+ | Epoch | Step | Training Loss |
326
+ |:------:|:----:|:-------------:|
327
+ | 1.0526 | 500 | 0.4032 |
328
+ | 2.1053 | 1000 | 0.1094 |
329
+ | 3.1579 | 1500 | 0.0476 |
330
+
331
+
332
+ ### Framework Versions
333
+ - Python: 3.10.13
334
+ - Sentence Transformers: 4.0.1
335
+ - Transformers: 4.51.0
336
+ - PyTorch: 2.2.1
337
+ - Accelerate: 1.6.0
338
+ - Datasets: 3.5.0
339
+ - Tokenizers: 0.21.1
340
+
341
+ ## Citation
342
+
343
+ ### BibTeX
344
+
345
+ #### Sentence Transformers
346
+ ```bibtex
347
+ @inproceedings{reimers-2019-sentence-bert,
348
+ title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
349
+ author = "Reimers, Nils and Gurevych, Iryna",
350
+ booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
351
+ month = "11",
352
+ year = "2019",
353
+ publisher = "Association for Computational Linguistics",
354
+ url = "https://arxiv.org/abs/1908.10084",
355
+ }
356
+ ```
357
+
358
+ <!--
359
+ ## Glossary
360
+
361
+ *Clearly define terms in order to be accessible across audiences.*
362
+ -->
363
+
364
+ <!--
365
+ ## Model Card Authors
366
+
367
+ *Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
368
+ -->
369
+
370
+ <!--
371
+ ## Model Card Contact
372
+
373
+ *Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
374
+ -->
config.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "architectures": [
3
+ "BertModel"
4
+ ],
5
+ "attention_probs_dropout_prob": 0.1,
6
+ "classifier_dropout": null,
7
+ "directionality": "bidi",
8
+ "hidden_act": "gelu",
9
+ "hidden_dropout_prob": 0.1,
10
+ "hidden_size": 768,
11
+ "initializer_range": 0.02,
12
+ "intermediate_size": 3072,
13
+ "layer_norm_eps": 1e-12,
14
+ "max_position_embeddings": 512,
15
+ "model_type": "bert",
16
+ "num_attention_heads": 12,
17
+ "num_hidden_layers": 12,
18
+ "pad_token_id": 0,
19
+ "pooler_fc_size": 768,
20
+ "pooler_num_attention_heads": 12,
21
+ "pooler_num_fc_layers": 3,
22
+ "pooler_size_per_head": 128,
23
+ "pooler_type": "first_token_transform",
24
+ "position_embedding_type": "absolute",
25
+ "torch_dtype": "float32",
26
+ "transformers_version": "4.51.0",
27
+ "type_vocab_size": 2,
28
+ "use_cache": true,
29
+ "vocab_size": 105879
30
+ }
config_sentence_transformers.json ADDED
@@ -0,0 +1,10 @@
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "__version__": {
3
+ "sentence_transformers": "4.0.1",
4
+ "transformers": "4.51.0",
5
+ "pytorch": "2.2.1"
6
+ },
7
+ "prompts": {},
8
+ "default_prompt_name": null,
9
+ "similarity_fn_name": "cosine"
10
+ }
model.safetensors ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ff05c4d371264ed4436d4b0c981946e2f3849a7cba90c57132ae17fe2f7995b0
3
+ size 669448040
modules.json ADDED
@@ -0,0 +1,14 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "idx": 0,
4
+ "name": "0",
5
+ "path": "",
6
+ "type": "sentence_transformers.models.Transformer"
7
+ },
8
+ {
9
+ "idx": 1,
10
+ "name": "1",
11
+ "path": "1_Pooling",
12
+ "type": "sentence_transformers.models.Pooling"
13
+ }
14
+ ]
optimizer.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:5102f9e31c62c6ef6c2104bfad66a0e23134b4f15f2ee4aa8d767e02bd3d0ef5
3
+ size 1339017786
rng_state.pth ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c625ad1a2f4f33999ce677b3113aa8be1192b62f10b8d8756d5d7fc6465d1ba5
3
+ size 14244
scheduler.pt ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:4f3c9fbd064c4fc3f89902babc228641e7c6b5f6d7f444b5ce89b65eb884f417
3
+ size 1064
sentence_bert_config.json ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ {
2
+ "max_seq_length": 512,
3
+ "do_lower_case": false
4
+ }
special_tokens_map.json ADDED
@@ -0,0 +1,7 @@
 
 
 
 
 
 
 
 
1
+ {
2
+ "cls_token": "[CLS]",
3
+ "mask_token": "[MASK]",
4
+ "pad_token": "[PAD]",
5
+ "sep_token": "[SEP]",
6
+ "unk_token": "[UNK]"
7
+ }
tokenizer.json ADDED
The diff for this file is too large to render. See raw diff
 
tokenizer_config.json ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "added_tokens_decoder": {
3
+ "0": {
4
+ "content": "[PAD]",
5
+ "lstrip": false,
6
+ "normalized": false,
7
+ "rstrip": false,
8
+ "single_word": false,
9
+ "special": true
10
+ },
11
+ "100": {
12
+ "content": "[UNK]",
13
+ "lstrip": false,
14
+ "normalized": false,
15
+ "rstrip": false,
16
+ "single_word": false,
17
+ "special": true
18
+ },
19
+ "101": {
20
+ "content": "[CLS]",
21
+ "lstrip": false,
22
+ "normalized": false,
23
+ "rstrip": false,
24
+ "single_word": false,
25
+ "special": true
26
+ },
27
+ "102": {
28
+ "content": "[SEP]",
29
+ "lstrip": false,
30
+ "normalized": false,
31
+ "rstrip": false,
32
+ "single_word": false,
33
+ "special": true
34
+ },
35
+ "103": {
36
+ "content": "[MASK]",
37
+ "lstrip": false,
38
+ "normalized": false,
39
+ "rstrip": false,
40
+ "single_word": false,
41
+ "special": true
42
+ }
43
+ },
44
+ "clean_up_tokenization_spaces": false,
45
+ "cls_token": "[CLS]",
46
+ "do_lower_case": true,
47
+ "extra_special_tokens": {},
48
+ "mask_token": "[MASK]",
49
+ "model_max_length": 512,
50
+ "pad_token": "[PAD]",
51
+ "sep_token": "[SEP]",
52
+ "strip_accents": null,
53
+ "tokenize_chinese_chars": true,
54
+ "tokenizer_class": "BertTokenizer",
55
+ "unk_token": "[UNK]"
56
+ }
trainer_state.json ADDED
@@ -0,0 +1,55 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "best_global_step": null,
3
+ "best_metric": null,
4
+ "best_model_checkpoint": null,
5
+ "epoch": 4.0,
6
+ "eval_steps": 500,
7
+ "global_step": 1900,
8
+ "is_hyper_param_search": false,
9
+ "is_local_process_zero": true,
10
+ "is_world_process_zero": true,
11
+ "log_history": [
12
+ {
13
+ "epoch": 1.0526315789473684,
14
+ "grad_norm": 4.899050235748291,
15
+ "learning_rate": 3.686842105263158e-05,
16
+ "loss": 0.4032,
17
+ "step": 500
18
+ },
19
+ {
20
+ "epoch": 2.1052631578947367,
21
+ "grad_norm": 1.965386986732483,
22
+ "learning_rate": 2.3710526315789475e-05,
23
+ "loss": 0.1094,
24
+ "step": 1000
25
+ },
26
+ {
27
+ "epoch": 3.1578947368421053,
28
+ "grad_norm": 0.382137268781662,
29
+ "learning_rate": 1.055263157894737e-05,
30
+ "loss": 0.0476,
31
+ "step": 1500
32
+ }
33
+ ],
34
+ "logging_steps": 500,
35
+ "max_steps": 1900,
36
+ "num_input_tokens_seen": 0,
37
+ "num_train_epochs": 4,
38
+ "save_steps": 500,
39
+ "stateful_callbacks": {
40
+ "TrainerControl": {
41
+ "args": {
42
+ "should_epoch_stop": false,
43
+ "should_evaluate": false,
44
+ "should_log": false,
45
+ "should_save": true,
46
+ "should_training_stop": true
47
+ },
48
+ "attributes": {}
49
+ }
50
+ },
51
+ "total_flos": 0.0,
52
+ "train_batch_size": 32,
53
+ "trial_name": null,
54
+ "trial_params": null
55
+ }
training_args.bin ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:80faf21a1d7e61ccb89a9df53e115efaaf92a4d62e6bede4037e78ae752a7a73
3
+ size 5624
vocab.txt ADDED
The diff for this file is too large to render. See raw diff