File size: 24,113 Bytes
5aa271d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
2023-10-23 18:19:41,179 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,180 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 18:19:41,181 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,181 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-23 18:19:41,181 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,181 Train:  1214 sentences
2023-10-23 18:19:41,181         (train_with_dev=False, train_with_test=False)
2023-10-23 18:19:41,181 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,181 Training Params:
2023-10-23 18:19:41,181  - learning_rate: "3e-05" 
2023-10-23 18:19:41,181  - mini_batch_size: "8"
2023-10-23 18:19:41,181  - max_epochs: "10"
2023-10-23 18:19:41,181  - shuffle: "True"
2023-10-23 18:19:41,181 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,181 Plugins:
2023-10-23 18:19:41,181  - TensorboardLogger
2023-10-23 18:19:41,181  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 18:19:41,181 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,181 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 18:19:41,181  - metric: "('micro avg', 'f1-score')"
2023-10-23 18:19:41,181 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,182 Computation:
2023-10-23 18:19:41,182  - compute on device: cuda:0
2023-10-23 18:19:41,182  - embedding storage: none
2023-10-23 18:19:41,182 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,182 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs8-wsFalse-e10-lr3e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-23 18:19:41,182 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,182 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:41,182 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 18:19:41,949 epoch 1 - iter 15/152 - loss 3.11385143 - time (sec): 0.77 - samples/sec: 3973.24 - lr: 0.000003 - momentum: 0.000000
2023-10-23 18:19:42,708 epoch 1 - iter 30/152 - loss 2.66819735 - time (sec): 1.53 - samples/sec: 3873.24 - lr: 0.000006 - momentum: 0.000000
2023-10-23 18:19:43,469 epoch 1 - iter 45/152 - loss 2.03026616 - time (sec): 2.29 - samples/sec: 3895.80 - lr: 0.000009 - momentum: 0.000000
2023-10-23 18:19:44,229 epoch 1 - iter 60/152 - loss 1.70709060 - time (sec): 3.05 - samples/sec: 3932.94 - lr: 0.000012 - momentum: 0.000000
2023-10-23 18:19:44,983 epoch 1 - iter 75/152 - loss 1.46041251 - time (sec): 3.80 - samples/sec: 3963.43 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:19:45,749 epoch 1 - iter 90/152 - loss 1.28362004 - time (sec): 4.57 - samples/sec: 3980.01 - lr: 0.000018 - momentum: 0.000000
2023-10-23 18:19:46,529 epoch 1 - iter 105/152 - loss 1.14421153 - time (sec): 5.35 - samples/sec: 3984.53 - lr: 0.000021 - momentum: 0.000000
2023-10-23 18:19:47,287 epoch 1 - iter 120/152 - loss 1.04230113 - time (sec): 6.10 - samples/sec: 3989.91 - lr: 0.000023 - momentum: 0.000000
2023-10-23 18:19:48,056 epoch 1 - iter 135/152 - loss 0.94143217 - time (sec): 6.87 - samples/sec: 4014.79 - lr: 0.000026 - momentum: 0.000000
2023-10-23 18:19:48,811 epoch 1 - iter 150/152 - loss 0.87310563 - time (sec): 7.63 - samples/sec: 4009.45 - lr: 0.000029 - momentum: 0.000000
2023-10-23 18:19:48,918 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:48,918 EPOCH 1 done: loss 0.8644 - lr: 0.000029
2023-10-23 18:19:49,725 DEV : loss 0.19825053215026855 - f1-score (micro avg)  0.5945
2023-10-23 18:19:49,733 saving best model
2023-10-23 18:19:50,168 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:50,956 epoch 2 - iter 15/152 - loss 0.20761390 - time (sec): 0.79 - samples/sec: 3941.37 - lr: 0.000030 - momentum: 0.000000
2023-10-23 18:19:51,725 epoch 2 - iter 30/152 - loss 0.17537014 - time (sec): 1.56 - samples/sec: 4053.34 - lr: 0.000029 - momentum: 0.000000
2023-10-23 18:19:52,510 epoch 2 - iter 45/152 - loss 0.16433025 - time (sec): 2.34 - samples/sec: 3933.86 - lr: 0.000029 - momentum: 0.000000
2023-10-23 18:19:53,280 epoch 2 - iter 60/152 - loss 0.16227219 - time (sec): 3.11 - samples/sec: 3925.61 - lr: 0.000029 - momentum: 0.000000
2023-10-23 18:19:54,051 epoch 2 - iter 75/152 - loss 0.15897537 - time (sec): 3.88 - samples/sec: 3896.99 - lr: 0.000028 - momentum: 0.000000
2023-10-23 18:19:54,821 epoch 2 - iter 90/152 - loss 0.15189330 - time (sec): 4.65 - samples/sec: 3916.47 - lr: 0.000028 - momentum: 0.000000
2023-10-23 18:19:55,588 epoch 2 - iter 105/152 - loss 0.15322637 - time (sec): 5.42 - samples/sec: 3864.70 - lr: 0.000028 - momentum: 0.000000
2023-10-23 18:19:56,352 epoch 2 - iter 120/152 - loss 0.15144396 - time (sec): 6.18 - samples/sec: 3911.47 - lr: 0.000027 - momentum: 0.000000
2023-10-23 18:19:57,182 epoch 2 - iter 135/152 - loss 0.14911332 - time (sec): 7.01 - samples/sec: 3892.71 - lr: 0.000027 - momentum: 0.000000
2023-10-23 18:19:57,954 epoch 2 - iter 150/152 - loss 0.14321232 - time (sec): 7.78 - samples/sec: 3934.72 - lr: 0.000027 - momentum: 0.000000
2023-10-23 18:19:58,052 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:58,052 EPOCH 2 done: loss 0.1424 - lr: 0.000027
2023-10-23 18:19:58,905 DEV : loss 0.14702850580215454 - f1-score (micro avg)  0.7924
2023-10-23 18:19:58,913 saving best model
2023-10-23 18:19:59,472 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:00,334 epoch 3 - iter 15/152 - loss 0.06391830 - time (sec): 0.86 - samples/sec: 3370.68 - lr: 0.000026 - momentum: 0.000000
2023-10-23 18:20:01,135 epoch 3 - iter 30/152 - loss 0.06920391 - time (sec): 1.66 - samples/sec: 3759.95 - lr: 0.000026 - momentum: 0.000000
2023-10-23 18:20:01,975 epoch 3 - iter 45/152 - loss 0.08444799 - time (sec): 2.50 - samples/sec: 3780.32 - lr: 0.000026 - momentum: 0.000000
2023-10-23 18:20:02,847 epoch 3 - iter 60/152 - loss 0.08218897 - time (sec): 3.37 - samples/sec: 3685.87 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:20:03,565 epoch 3 - iter 75/152 - loss 0.07841224 - time (sec): 4.09 - samples/sec: 3839.98 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:20:04,310 epoch 3 - iter 90/152 - loss 0.07548322 - time (sec): 4.84 - samples/sec: 3852.36 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:20:05,182 epoch 3 - iter 105/152 - loss 0.07717780 - time (sec): 5.71 - samples/sec: 3766.44 - lr: 0.000024 - momentum: 0.000000
2023-10-23 18:20:06,039 epoch 3 - iter 120/152 - loss 0.07553394 - time (sec): 6.57 - samples/sec: 3780.26 - lr: 0.000024 - momentum: 0.000000
2023-10-23 18:20:06,888 epoch 3 - iter 135/152 - loss 0.07497682 - time (sec): 7.41 - samples/sec: 3727.66 - lr: 0.000024 - momentum: 0.000000
2023-10-23 18:20:07,685 epoch 3 - iter 150/152 - loss 0.08015255 - time (sec): 8.21 - samples/sec: 3735.74 - lr: 0.000023 - momentum: 0.000000
2023-10-23 18:20:07,797 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:07,797 EPOCH 3 done: loss 0.0807 - lr: 0.000023
2023-10-23 18:20:08,644 DEV : loss 0.14846408367156982 - f1-score (micro avg)  0.7875
2023-10-23 18:20:08,651 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:09,522 epoch 4 - iter 15/152 - loss 0.04146583 - time (sec): 0.87 - samples/sec: 3878.14 - lr: 0.000023 - momentum: 0.000000
2023-10-23 18:20:10,377 epoch 4 - iter 30/152 - loss 0.04382436 - time (sec): 1.72 - samples/sec: 3770.97 - lr: 0.000023 - momentum: 0.000000
2023-10-23 18:20:11,250 epoch 4 - iter 45/152 - loss 0.05477412 - time (sec): 2.60 - samples/sec: 3588.03 - lr: 0.000022 - momentum: 0.000000
2023-10-23 18:20:12,105 epoch 4 - iter 60/152 - loss 0.04640008 - time (sec): 3.45 - samples/sec: 3617.40 - lr: 0.000022 - momentum: 0.000000
2023-10-23 18:20:12,965 epoch 4 - iter 75/152 - loss 0.04581229 - time (sec): 4.31 - samples/sec: 3590.01 - lr: 0.000022 - momentum: 0.000000
2023-10-23 18:20:13,844 epoch 4 - iter 90/152 - loss 0.05157112 - time (sec): 5.19 - samples/sec: 3570.66 - lr: 0.000021 - momentum: 0.000000
2023-10-23 18:20:14,678 epoch 4 - iter 105/152 - loss 0.06028727 - time (sec): 6.02 - samples/sec: 3591.59 - lr: 0.000021 - momentum: 0.000000
2023-10-23 18:20:15,526 epoch 4 - iter 120/152 - loss 0.05892637 - time (sec): 6.87 - samples/sec: 3587.02 - lr: 0.000021 - momentum: 0.000000
2023-10-23 18:20:16,402 epoch 4 - iter 135/152 - loss 0.05678927 - time (sec): 7.75 - samples/sec: 3571.03 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:20:17,271 epoch 4 - iter 150/152 - loss 0.05572967 - time (sec): 8.62 - samples/sec: 3548.65 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:20:17,386 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:17,386 EPOCH 4 done: loss 0.0552 - lr: 0.000020
2023-10-23 18:20:18,253 DEV : loss 0.1560734659433365 - f1-score (micro avg)  0.8216
2023-10-23 18:20:18,260 saving best model
2023-10-23 18:20:18,829 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:19,661 epoch 5 - iter 15/152 - loss 0.01895573 - time (sec): 0.83 - samples/sec: 3785.59 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:20:20,531 epoch 5 - iter 30/152 - loss 0.03738480 - time (sec): 1.70 - samples/sec: 3588.93 - lr: 0.000019 - momentum: 0.000000
2023-10-23 18:20:21,386 epoch 5 - iter 45/152 - loss 0.04663379 - time (sec): 2.56 - samples/sec: 3658.12 - lr: 0.000019 - momentum: 0.000000
2023-10-23 18:20:22,235 epoch 5 - iter 60/152 - loss 0.04280235 - time (sec): 3.40 - samples/sec: 3627.69 - lr: 0.000019 - momentum: 0.000000
2023-10-23 18:20:23,086 epoch 5 - iter 75/152 - loss 0.04025851 - time (sec): 4.25 - samples/sec: 3688.14 - lr: 0.000018 - momentum: 0.000000
2023-10-23 18:20:23,909 epoch 5 - iter 90/152 - loss 0.03707620 - time (sec): 5.08 - samples/sec: 3678.00 - lr: 0.000018 - momentum: 0.000000
2023-10-23 18:20:24,760 epoch 5 - iter 105/152 - loss 0.03528057 - time (sec): 5.93 - samples/sec: 3658.21 - lr: 0.000018 - momentum: 0.000000
2023-10-23 18:20:25,609 epoch 5 - iter 120/152 - loss 0.03517572 - time (sec): 6.78 - samples/sec: 3647.27 - lr: 0.000017 - momentum: 0.000000
2023-10-23 18:20:26,467 epoch 5 - iter 135/152 - loss 0.03659409 - time (sec): 7.64 - samples/sec: 3614.77 - lr: 0.000017 - momentum: 0.000000
2023-10-23 18:20:27,329 epoch 5 - iter 150/152 - loss 0.03748552 - time (sec): 8.50 - samples/sec: 3591.66 - lr: 0.000017 - momentum: 0.000000
2023-10-23 18:20:27,433 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:27,433 EPOCH 5 done: loss 0.0388 - lr: 0.000017
2023-10-23 18:20:28,329 DEV : loss 0.17505785822868347 - f1-score (micro avg)  0.82
2023-10-23 18:20:28,337 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:29,209 epoch 6 - iter 15/152 - loss 0.07671918 - time (sec): 0.87 - samples/sec: 3587.02 - lr: 0.000016 - momentum: 0.000000
2023-10-23 18:20:30,069 epoch 6 - iter 30/152 - loss 0.04659880 - time (sec): 1.73 - samples/sec: 3469.36 - lr: 0.000016 - momentum: 0.000000
2023-10-23 18:20:30,926 epoch 6 - iter 45/152 - loss 0.04527842 - time (sec): 2.59 - samples/sec: 3568.63 - lr: 0.000016 - momentum: 0.000000
2023-10-23 18:20:31,782 epoch 6 - iter 60/152 - loss 0.03656474 - time (sec): 3.44 - samples/sec: 3532.81 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:20:32,631 epoch 6 - iter 75/152 - loss 0.03768485 - time (sec): 4.29 - samples/sec: 3528.16 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:20:33,496 epoch 6 - iter 90/152 - loss 0.03359681 - time (sec): 5.16 - samples/sec: 3495.68 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:20:34,370 epoch 6 - iter 105/152 - loss 0.03221236 - time (sec): 6.03 - samples/sec: 3500.09 - lr: 0.000014 - momentum: 0.000000
2023-10-23 18:20:35,205 epoch 6 - iter 120/152 - loss 0.03110637 - time (sec): 6.87 - samples/sec: 3552.19 - lr: 0.000014 - momentum: 0.000000
2023-10-23 18:20:36,059 epoch 6 - iter 135/152 - loss 0.03086084 - time (sec): 7.72 - samples/sec: 3549.93 - lr: 0.000014 - momentum: 0.000000
2023-10-23 18:20:36,922 epoch 6 - iter 150/152 - loss 0.02867945 - time (sec): 8.58 - samples/sec: 3575.30 - lr: 0.000013 - momentum: 0.000000
2023-10-23 18:20:37,023 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:37,023 EPOCH 6 done: loss 0.0286 - lr: 0.000013
2023-10-23 18:20:37,897 DEV : loss 0.213690847158432 - f1-score (micro avg)  0.8042
2023-10-23 18:20:37,904 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:38,775 epoch 7 - iter 15/152 - loss 0.01848948 - time (sec): 0.87 - samples/sec: 3605.57 - lr: 0.000013 - momentum: 0.000000
2023-10-23 18:20:39,649 epoch 7 - iter 30/152 - loss 0.02345417 - time (sec): 1.74 - samples/sec: 3534.13 - lr: 0.000013 - momentum: 0.000000
2023-10-23 18:20:40,466 epoch 7 - iter 45/152 - loss 0.01960782 - time (sec): 2.56 - samples/sec: 3630.78 - lr: 0.000012 - momentum: 0.000000
2023-10-23 18:20:41,328 epoch 7 - iter 60/152 - loss 0.01659578 - time (sec): 3.42 - samples/sec: 3677.30 - lr: 0.000012 - momentum: 0.000000
2023-10-23 18:20:42,192 epoch 7 - iter 75/152 - loss 0.01802838 - time (sec): 4.29 - samples/sec: 3632.53 - lr: 0.000012 - momentum: 0.000000
2023-10-23 18:20:43,067 epoch 7 - iter 90/152 - loss 0.01609284 - time (sec): 5.16 - samples/sec: 3606.92 - lr: 0.000011 - momentum: 0.000000
2023-10-23 18:20:44,104 epoch 7 - iter 105/152 - loss 0.01693181 - time (sec): 6.20 - samples/sec: 3481.38 - lr: 0.000011 - momentum: 0.000000
2023-10-23 18:20:44,980 epoch 7 - iter 120/152 - loss 0.02051780 - time (sec): 7.07 - samples/sec: 3447.07 - lr: 0.000011 - momentum: 0.000000
2023-10-23 18:20:45,850 epoch 7 - iter 135/152 - loss 0.02240269 - time (sec): 7.94 - samples/sec: 3500.08 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:20:46,714 epoch 7 - iter 150/152 - loss 0.02191603 - time (sec): 8.81 - samples/sec: 3484.81 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:20:46,830 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:46,830 EPOCH 7 done: loss 0.0217 - lr: 0.000010
2023-10-23 18:20:47,711 DEV : loss 0.20538194477558136 - f1-score (micro avg)  0.8298
2023-10-23 18:20:47,719 saving best model
2023-10-23 18:20:48,300 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:49,154 epoch 8 - iter 15/152 - loss 0.03230665 - time (sec): 0.85 - samples/sec: 3154.08 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:20:50,029 epoch 8 - iter 30/152 - loss 0.01668591 - time (sec): 1.73 - samples/sec: 3357.08 - lr: 0.000009 - momentum: 0.000000
2023-10-23 18:20:50,884 epoch 8 - iter 45/152 - loss 0.02251894 - time (sec): 2.58 - samples/sec: 3437.65 - lr: 0.000009 - momentum: 0.000000
2023-10-23 18:20:51,762 epoch 8 - iter 60/152 - loss 0.02137099 - time (sec): 3.46 - samples/sec: 3363.13 - lr: 0.000009 - momentum: 0.000000
2023-10-23 18:20:52,597 epoch 8 - iter 75/152 - loss 0.02250062 - time (sec): 4.30 - samples/sec: 3544.67 - lr: 0.000008 - momentum: 0.000000
2023-10-23 18:20:53,453 epoch 8 - iter 90/152 - loss 0.02719262 - time (sec): 5.15 - samples/sec: 3585.35 - lr: 0.000008 - momentum: 0.000000
2023-10-23 18:20:54,321 epoch 8 - iter 105/152 - loss 0.02531438 - time (sec): 6.02 - samples/sec: 3569.07 - lr: 0.000008 - momentum: 0.000000
2023-10-23 18:20:55,174 epoch 8 - iter 120/152 - loss 0.02258369 - time (sec): 6.87 - samples/sec: 3641.91 - lr: 0.000007 - momentum: 0.000000
2023-10-23 18:20:56,042 epoch 8 - iter 135/152 - loss 0.02136133 - time (sec): 7.74 - samples/sec: 3617.28 - lr: 0.000007 - momentum: 0.000000
2023-10-23 18:20:56,897 epoch 8 - iter 150/152 - loss 0.01996947 - time (sec): 8.60 - samples/sec: 3568.50 - lr: 0.000007 - momentum: 0.000000
2023-10-23 18:20:57,011 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:57,012 EPOCH 8 done: loss 0.0199 - lr: 0.000007
2023-10-23 18:20:57,869 DEV : loss 0.21447792649269104 - f1-score (micro avg)  0.8333
2023-10-23 18:20:57,877 saving best model
2023-10-23 18:20:58,441 ----------------------------------------------------------------------------------------------------
2023-10-23 18:20:59,283 epoch 9 - iter 15/152 - loss 0.01725436 - time (sec): 0.84 - samples/sec: 3938.89 - lr: 0.000006 - momentum: 0.000000
2023-10-23 18:21:00,148 epoch 9 - iter 30/152 - loss 0.01283757 - time (sec): 1.70 - samples/sec: 3671.09 - lr: 0.000006 - momentum: 0.000000
2023-10-23 18:21:00,986 epoch 9 - iter 45/152 - loss 0.01772803 - time (sec): 2.54 - samples/sec: 3708.49 - lr: 0.000006 - momentum: 0.000000
2023-10-23 18:21:01,843 epoch 9 - iter 60/152 - loss 0.01848425 - time (sec): 3.40 - samples/sec: 3532.67 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:21:02,696 epoch 9 - iter 75/152 - loss 0.01580778 - time (sec): 4.25 - samples/sec: 3604.89 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:21:03,553 epoch 9 - iter 90/152 - loss 0.01408170 - time (sec): 5.11 - samples/sec: 3579.45 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:21:04,389 epoch 9 - iter 105/152 - loss 0.01445924 - time (sec): 5.95 - samples/sec: 3594.29 - lr: 0.000004 - momentum: 0.000000
2023-10-23 18:21:05,258 epoch 9 - iter 120/152 - loss 0.01571336 - time (sec): 6.82 - samples/sec: 3577.20 - lr: 0.000004 - momentum: 0.000000
2023-10-23 18:21:06,133 epoch 9 - iter 135/152 - loss 0.01439284 - time (sec): 7.69 - samples/sec: 3576.32 - lr: 0.000004 - momentum: 0.000000
2023-10-23 18:21:07,008 epoch 9 - iter 150/152 - loss 0.01446179 - time (sec): 8.57 - samples/sec: 3577.22 - lr: 0.000004 - momentum: 0.000000
2023-10-23 18:21:07,117 ----------------------------------------------------------------------------------------------------
2023-10-23 18:21:07,117 EPOCH 9 done: loss 0.0143 - lr: 0.000004
2023-10-23 18:21:08,043 DEV : loss 0.20278561115264893 - f1-score (micro avg)  0.844
2023-10-23 18:21:08,053 saving best model
2023-10-23 18:21:08,617 ----------------------------------------------------------------------------------------------------
2023-10-23 18:21:09,456 epoch 10 - iter 15/152 - loss 0.01131616 - time (sec): 0.84 - samples/sec: 3627.17 - lr: 0.000003 - momentum: 0.000000
2023-10-23 18:21:10,257 epoch 10 - iter 30/152 - loss 0.01668086 - time (sec): 1.64 - samples/sec: 3740.30 - lr: 0.000003 - momentum: 0.000000
2023-10-23 18:21:11,029 epoch 10 - iter 45/152 - loss 0.01181820 - time (sec): 2.41 - samples/sec: 3876.25 - lr: 0.000002 - momentum: 0.000000
2023-10-23 18:21:11,812 epoch 10 - iter 60/152 - loss 0.01505051 - time (sec): 3.19 - samples/sec: 3823.97 - lr: 0.000002 - momentum: 0.000000
2023-10-23 18:21:12,607 epoch 10 - iter 75/152 - loss 0.01291314 - time (sec): 3.99 - samples/sec: 3857.98 - lr: 0.000002 - momentum: 0.000000
2023-10-23 18:21:13,388 epoch 10 - iter 90/152 - loss 0.01284814 - time (sec): 4.77 - samples/sec: 3864.82 - lr: 0.000002 - momentum: 0.000000
2023-10-23 18:21:14,161 epoch 10 - iter 105/152 - loss 0.01282451 - time (sec): 5.54 - samples/sec: 3862.61 - lr: 0.000001 - momentum: 0.000000
2023-10-23 18:21:14,948 epoch 10 - iter 120/152 - loss 0.01439910 - time (sec): 6.33 - samples/sec: 3912.19 - lr: 0.000001 - momentum: 0.000000
2023-10-23 18:21:15,731 epoch 10 - iter 135/152 - loss 0.01333481 - time (sec): 7.11 - samples/sec: 3882.82 - lr: 0.000001 - momentum: 0.000000
2023-10-23 18:21:16,498 epoch 10 - iter 150/152 - loss 0.01248508 - time (sec): 7.88 - samples/sec: 3884.03 - lr: 0.000000 - momentum: 0.000000
2023-10-23 18:21:16,596 ----------------------------------------------------------------------------------------------------
2023-10-23 18:21:16,596 EPOCH 10 done: loss 0.0123 - lr: 0.000000
2023-10-23 18:21:17,550 DEV : loss 0.20392796397209167 - f1-score (micro avg)  0.8443
2023-10-23 18:21:17,559 saving best model
2023-10-23 18:21:18,564 ----------------------------------------------------------------------------------------------------
2023-10-23 18:21:18,566 Loading model from best epoch ...
2023-10-23 18:21:20,461 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-23 18:21:21,342 
Results:
- F-score (micro) 0.8076
- F-score (macro) 0.6245
- Accuracy 0.6882

By class:
              precision    recall  f1-score   support

       scope     0.7669    0.8278    0.7962       151
        pers     0.7807    0.9271    0.8476        96
        work     0.7664    0.8632    0.8119        95
         loc     0.6667    0.6667    0.6667         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7641    0.8563    0.8076       348
   macro avg     0.5961    0.6569    0.6245       348
weighted avg     0.7631    0.8563    0.8067       348

2023-10-23 18:21:21,342 ----------------------------------------------------------------------------------------------------