File size: 24,059 Bytes
e807e5b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
2023-10-23 18:16:14,534 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,535 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 18:16:14,535 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,535 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-23 18:16:14,535 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,535 Train:  1214 sentences
2023-10-23 18:16:14,536         (train_with_dev=False, train_with_test=False)
2023-10-23 18:16:14,536 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,536 Training Params:
2023-10-23 18:16:14,536  - learning_rate: "5e-05" 
2023-10-23 18:16:14,536  - mini_batch_size: "4"
2023-10-23 18:16:14,536  - max_epochs: "10"
2023-10-23 18:16:14,536  - shuffle: "True"
2023-10-23 18:16:14,536 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,536 Plugins:
2023-10-23 18:16:14,536  - TensorboardLogger
2023-10-23 18:16:14,536  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 18:16:14,536 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,536 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 18:16:14,536  - metric: "('micro avg', 'f1-score')"
2023-10-23 18:16:14,536 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,536 Computation:
2023-10-23 18:16:14,536  - compute on device: cuda:0
2023-10-23 18:16:14,536  - embedding storage: none
2023-10-23 18:16:14,536 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,536 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-3"
2023-10-23 18:16:14,536 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,536 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:14,537 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 18:16:16,168 epoch 1 - iter 30/304 - loss 2.81106393 - time (sec): 1.63 - samples/sec: 1868.20 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:16:17,803 epoch 1 - iter 60/304 - loss 1.93076019 - time (sec): 3.26 - samples/sec: 1809.64 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:16:19,444 epoch 1 - iter 90/304 - loss 1.46147412 - time (sec): 4.91 - samples/sec: 1814.82 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:16:21,083 epoch 1 - iter 120/304 - loss 1.20065349 - time (sec): 6.54 - samples/sec: 1830.61 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:16:22,722 epoch 1 - iter 150/304 - loss 1.01442418 - time (sec): 8.18 - samples/sec: 1840.20 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:16:24,360 epoch 1 - iter 180/304 - loss 0.89232529 - time (sec): 9.82 - samples/sec: 1850.31 - lr: 0.000029 - momentum: 0.000000
2023-10-23 18:16:25,998 epoch 1 - iter 210/304 - loss 0.78694129 - time (sec): 11.46 - samples/sec: 1858.68 - lr: 0.000034 - momentum: 0.000000
2023-10-23 18:16:27,642 epoch 1 - iter 240/304 - loss 0.71551296 - time (sec): 13.10 - samples/sec: 1858.63 - lr: 0.000039 - momentum: 0.000000
2023-10-23 18:16:29,280 epoch 1 - iter 270/304 - loss 0.64584501 - time (sec): 14.74 - samples/sec: 1871.71 - lr: 0.000044 - momentum: 0.000000
2023-10-23 18:16:30,918 epoch 1 - iter 300/304 - loss 0.60271094 - time (sec): 16.38 - samples/sec: 1866.99 - lr: 0.000049 - momentum: 0.000000
2023-10-23 18:16:31,135 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:31,135 EPOCH 1 done: loss 0.5980 - lr: 0.000049
2023-10-23 18:16:31,913 DEV : loss 0.16384108364582062 - f1-score (micro avg)  0.704
2023-10-23 18:16:31,921 saving best model
2023-10-23 18:16:32,319 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:33,933 epoch 2 - iter 30/304 - loss 0.13187891 - time (sec): 1.61 - samples/sec: 1921.94 - lr: 0.000049 - momentum: 0.000000
2023-10-23 18:16:35,566 epoch 2 - iter 60/304 - loss 0.12737012 - time (sec): 3.25 - samples/sec: 1942.32 - lr: 0.000049 - momentum: 0.000000
2023-10-23 18:16:37,200 epoch 2 - iter 90/304 - loss 0.12304473 - time (sec): 4.88 - samples/sec: 1887.11 - lr: 0.000048 - momentum: 0.000000
2023-10-23 18:16:38,830 epoch 2 - iter 120/304 - loss 0.12231441 - time (sec): 6.51 - samples/sec: 1875.57 - lr: 0.000048 - momentum: 0.000000
2023-10-23 18:16:40,451 epoch 2 - iter 150/304 - loss 0.12142969 - time (sec): 8.13 - samples/sec: 1860.22 - lr: 0.000047 - momentum: 0.000000
2023-10-23 18:16:42,079 epoch 2 - iter 180/304 - loss 0.12168571 - time (sec): 9.76 - samples/sec: 1866.79 - lr: 0.000047 - momentum: 0.000000
2023-10-23 18:16:43,699 epoch 2 - iter 210/304 - loss 0.12781452 - time (sec): 11.38 - samples/sec: 1840.27 - lr: 0.000046 - momentum: 0.000000
2023-10-23 18:16:45,340 epoch 2 - iter 240/304 - loss 0.12865335 - time (sec): 13.02 - samples/sec: 1857.53 - lr: 0.000046 - momentum: 0.000000
2023-10-23 18:16:46,971 epoch 2 - iter 270/304 - loss 0.12960732 - time (sec): 14.65 - samples/sec: 1863.18 - lr: 0.000045 - momentum: 0.000000
2023-10-23 18:16:48,610 epoch 2 - iter 300/304 - loss 0.12332332 - time (sec): 16.29 - samples/sec: 1880.23 - lr: 0.000045 - momentum: 0.000000
2023-10-23 18:16:48,825 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:48,825 EPOCH 2 done: loss 0.1226 - lr: 0.000045
2023-10-23 18:16:49,711 DEV : loss 0.14167819917201996 - f1-score (micro avg)  0.8188
2023-10-23 18:16:49,718 saving best model
2023-10-23 18:16:50,248 ----------------------------------------------------------------------------------------------------
2023-10-23 18:16:51,875 epoch 3 - iter 30/304 - loss 0.07030755 - time (sec): 1.63 - samples/sec: 1785.11 - lr: 0.000044 - momentum: 0.000000
2023-10-23 18:16:53,518 epoch 3 - iter 60/304 - loss 0.07494672 - time (sec): 3.27 - samples/sec: 1911.69 - lr: 0.000043 - momentum: 0.000000
2023-10-23 18:16:55,156 epoch 3 - iter 90/304 - loss 0.08781157 - time (sec): 4.91 - samples/sec: 1927.02 - lr: 0.000043 - momentum: 0.000000
2023-10-23 18:16:56,786 epoch 3 - iter 120/304 - loss 0.08801500 - time (sec): 6.54 - samples/sec: 1902.16 - lr: 0.000042 - momentum: 0.000000
2023-10-23 18:16:58,422 epoch 3 - iter 150/304 - loss 0.08096093 - time (sec): 8.17 - samples/sec: 1922.15 - lr: 0.000042 - momentum: 0.000000
2023-10-23 18:17:00,061 epoch 3 - iter 180/304 - loss 0.08068663 - time (sec): 9.81 - samples/sec: 1898.78 - lr: 0.000041 - momentum: 0.000000
2023-10-23 18:17:01,697 epoch 3 - iter 210/304 - loss 0.08424806 - time (sec): 11.45 - samples/sec: 1878.13 - lr: 0.000041 - momentum: 0.000000
2023-10-23 18:17:03,312 epoch 3 - iter 240/304 - loss 0.08231945 - time (sec): 13.06 - samples/sec: 1900.07 - lr: 0.000040 - momentum: 0.000000
2023-10-23 18:17:04,951 epoch 3 - iter 270/304 - loss 0.07987312 - time (sec): 14.70 - samples/sec: 1880.03 - lr: 0.000040 - momentum: 0.000000
2023-10-23 18:17:06,596 epoch 3 - iter 300/304 - loss 0.08623195 - time (sec): 16.35 - samples/sec: 1876.47 - lr: 0.000039 - momentum: 0.000000
2023-10-23 18:17:06,810 ----------------------------------------------------------------------------------------------------
2023-10-23 18:17:06,810 EPOCH 3 done: loss 0.0874 - lr: 0.000039
2023-10-23 18:17:07,670 DEV : loss 0.1868170201778412 - f1-score (micro avg)  0.8171
2023-10-23 18:17:07,678 ----------------------------------------------------------------------------------------------------
2023-10-23 18:17:09,306 epoch 4 - iter 30/304 - loss 0.03795868 - time (sec): 1.63 - samples/sec: 2070.92 - lr: 0.000038 - momentum: 0.000000
2023-10-23 18:17:10,945 epoch 4 - iter 60/304 - loss 0.03436106 - time (sec): 3.27 - samples/sec: 1990.77 - lr: 0.000038 - momentum: 0.000000
2023-10-23 18:17:12,583 epoch 4 - iter 90/304 - loss 0.05396697 - time (sec): 4.90 - samples/sec: 1900.22 - lr: 0.000037 - momentum: 0.000000
2023-10-23 18:17:14,225 epoch 4 - iter 120/304 - loss 0.04411729 - time (sec): 6.55 - samples/sec: 1907.64 - lr: 0.000037 - momentum: 0.000000
2023-10-23 18:17:15,858 epoch 4 - iter 150/304 - loss 0.04620010 - time (sec): 8.18 - samples/sec: 1892.75 - lr: 0.000036 - momentum: 0.000000
2023-10-23 18:17:17,502 epoch 4 - iter 180/304 - loss 0.05291311 - time (sec): 9.82 - samples/sec: 1887.18 - lr: 0.000036 - momentum: 0.000000
2023-10-23 18:17:19,138 epoch 4 - iter 210/304 - loss 0.06392533 - time (sec): 11.46 - samples/sec: 1888.42 - lr: 0.000035 - momentum: 0.000000
2023-10-23 18:17:20,771 epoch 4 - iter 240/304 - loss 0.06336046 - time (sec): 13.09 - samples/sec: 1883.10 - lr: 0.000035 - momentum: 0.000000
2023-10-23 18:17:22,404 epoch 4 - iter 270/304 - loss 0.06184609 - time (sec): 14.73 - samples/sec: 1879.24 - lr: 0.000034 - momentum: 0.000000
2023-10-23 18:17:24,030 epoch 4 - iter 300/304 - loss 0.05887253 - time (sec): 16.35 - samples/sec: 1870.50 - lr: 0.000033 - momentum: 0.000000
2023-10-23 18:17:24,245 ----------------------------------------------------------------------------------------------------
2023-10-23 18:17:24,246 EPOCH 4 done: loss 0.0581 - lr: 0.000033
2023-10-23 18:17:25,250 DEV : loss 0.1909182071685791 - f1-score (micro avg)  0.8271
2023-10-23 18:17:25,257 saving best model
2023-10-23 18:17:25,783 ----------------------------------------------------------------------------------------------------
2023-10-23 18:17:27,406 epoch 5 - iter 30/304 - loss 0.01744137 - time (sec): 1.62 - samples/sec: 1937.30 - lr: 0.000033 - momentum: 0.000000
2023-10-23 18:17:29,031 epoch 5 - iter 60/304 - loss 0.03338940 - time (sec): 3.25 - samples/sec: 1879.20 - lr: 0.000032 - momentum: 0.000000
2023-10-23 18:17:30,666 epoch 5 - iter 90/304 - loss 0.04690048 - time (sec): 4.88 - samples/sec: 1914.80 - lr: 0.000032 - momentum: 0.000000
2023-10-23 18:17:32,300 epoch 5 - iter 120/304 - loss 0.04346722 - time (sec): 6.52 - samples/sec: 1895.35 - lr: 0.000031 - momentum: 0.000000
2023-10-23 18:17:33,937 epoch 5 - iter 150/304 - loss 0.04056557 - time (sec): 8.15 - samples/sec: 1924.73 - lr: 0.000031 - momentum: 0.000000
2023-10-23 18:17:35,568 epoch 5 - iter 180/304 - loss 0.03650648 - time (sec): 9.78 - samples/sec: 1908.95 - lr: 0.000030 - momentum: 0.000000
2023-10-23 18:17:37,208 epoch 5 - iter 210/304 - loss 0.03565747 - time (sec): 11.42 - samples/sec: 1898.72 - lr: 0.000030 - momentum: 0.000000
2023-10-23 18:17:38,842 epoch 5 - iter 240/304 - loss 0.03624900 - time (sec): 13.06 - samples/sec: 1893.31 - lr: 0.000029 - momentum: 0.000000
2023-10-23 18:17:40,473 epoch 5 - iter 270/304 - loss 0.03997973 - time (sec): 14.69 - samples/sec: 1879.27 - lr: 0.000028 - momentum: 0.000000
2023-10-23 18:17:41,959 epoch 5 - iter 300/304 - loss 0.04238227 - time (sec): 16.17 - samples/sec: 1887.18 - lr: 0.000028 - momentum: 0.000000
2023-10-23 18:17:42,137 ----------------------------------------------------------------------------------------------------
2023-10-23 18:17:42,137 EPOCH 5 done: loss 0.0438 - lr: 0.000028
2023-10-23 18:17:42,996 DEV : loss 0.20630058646202087 - f1-score (micro avg)  0.8014
2023-10-23 18:17:43,003 ----------------------------------------------------------------------------------------------------
2023-10-23 18:17:44,652 epoch 6 - iter 30/304 - loss 0.07524903 - time (sec): 1.65 - samples/sec: 1896.84 - lr: 0.000027 - momentum: 0.000000
2023-10-23 18:17:46,280 epoch 6 - iter 60/304 - loss 0.05025896 - time (sec): 3.28 - samples/sec: 1832.90 - lr: 0.000027 - momentum: 0.000000
2023-10-23 18:17:47,919 epoch 6 - iter 90/304 - loss 0.04756550 - time (sec): 4.91 - samples/sec: 1879.40 - lr: 0.000026 - momentum: 0.000000
2023-10-23 18:17:49,557 epoch 6 - iter 120/304 - loss 0.03855495 - time (sec): 6.55 - samples/sec: 1856.87 - lr: 0.000026 - momentum: 0.000000
2023-10-23 18:17:51,183 epoch 6 - iter 150/304 - loss 0.04185719 - time (sec): 8.18 - samples/sec: 1851.78 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:17:52,810 epoch 6 - iter 180/304 - loss 0.03650979 - time (sec): 9.81 - samples/sec: 1838.74 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:17:54,443 epoch 6 - iter 210/304 - loss 0.03600914 - time (sec): 11.44 - samples/sec: 1845.91 - lr: 0.000024 - momentum: 0.000000
2023-10-23 18:17:56,084 epoch 6 - iter 240/304 - loss 0.03276981 - time (sec): 13.08 - samples/sec: 1865.06 - lr: 0.000023 - momentum: 0.000000
2023-10-23 18:17:57,720 epoch 6 - iter 270/304 - loss 0.03306713 - time (sec): 14.72 - samples/sec: 1862.62 - lr: 0.000023 - momentum: 0.000000
2023-10-23 18:17:59,360 epoch 6 - iter 300/304 - loss 0.03105096 - time (sec): 16.36 - samples/sec: 1876.42 - lr: 0.000022 - momentum: 0.000000
2023-10-23 18:17:59,574 ----------------------------------------------------------------------------------------------------
2023-10-23 18:17:59,574 EPOCH 6 done: loss 0.0308 - lr: 0.000022
2023-10-23 18:18:00,427 DEV : loss 0.22646591067314148 - f1-score (micro avg)  0.8223
2023-10-23 18:18:00,434 ----------------------------------------------------------------------------------------------------
2023-10-23 18:18:02,066 epoch 7 - iter 30/304 - loss 0.02843019 - time (sec): 1.63 - samples/sec: 1922.19 - lr: 0.000022 - momentum: 0.000000
2023-10-23 18:18:03,702 epoch 7 - iter 60/304 - loss 0.02264544 - time (sec): 3.27 - samples/sec: 1886.65 - lr: 0.000021 - momentum: 0.000000
2023-10-23 18:18:05,338 epoch 7 - iter 90/304 - loss 0.02267803 - time (sec): 4.90 - samples/sec: 1896.52 - lr: 0.000021 - momentum: 0.000000
2023-10-23 18:18:06,978 epoch 7 - iter 120/304 - loss 0.02033071 - time (sec): 6.54 - samples/sec: 1923.53 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:18:08,606 epoch 7 - iter 150/304 - loss 0.01831766 - time (sec): 8.17 - samples/sec: 1905.74 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:18:10,240 epoch 7 - iter 180/304 - loss 0.01927033 - time (sec): 9.80 - samples/sec: 1898.80 - lr: 0.000019 - momentum: 0.000000
2023-10-23 18:18:11,864 epoch 7 - iter 210/304 - loss 0.02071687 - time (sec): 11.43 - samples/sec: 1888.28 - lr: 0.000018 - momentum: 0.000000
2023-10-23 18:18:13,494 epoch 7 - iter 240/304 - loss 0.02263808 - time (sec): 13.06 - samples/sec: 1867.41 - lr: 0.000018 - momentum: 0.000000
2023-10-23 18:18:15,133 epoch 7 - iter 270/304 - loss 0.02451109 - time (sec): 14.70 - samples/sec: 1891.99 - lr: 0.000017 - momentum: 0.000000
2023-10-23 18:18:16,761 epoch 7 - iter 300/304 - loss 0.02486620 - time (sec): 16.33 - samples/sec: 1880.23 - lr: 0.000017 - momentum: 0.000000
2023-10-23 18:18:16,975 ----------------------------------------------------------------------------------------------------
2023-10-23 18:18:16,975 EPOCH 7 done: loss 0.0246 - lr: 0.000017
2023-10-23 18:18:17,816 DEV : loss 0.20806437730789185 - f1-score (micro avg)  0.8262
2023-10-23 18:18:17,823 ----------------------------------------------------------------------------------------------------
2023-10-23 18:18:19,440 epoch 8 - iter 30/304 - loss 0.03017504 - time (sec): 1.62 - samples/sec: 1665.61 - lr: 0.000016 - momentum: 0.000000
2023-10-23 18:18:21,061 epoch 8 - iter 60/304 - loss 0.01475323 - time (sec): 3.24 - samples/sec: 1791.60 - lr: 0.000016 - momentum: 0.000000
2023-10-23 18:18:22,689 epoch 8 - iter 90/304 - loss 0.01529115 - time (sec): 4.86 - samples/sec: 1824.73 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:18:24,301 epoch 8 - iter 120/304 - loss 0.01367787 - time (sec): 6.48 - samples/sec: 1797.21 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:18:25,946 epoch 8 - iter 150/304 - loss 0.01317154 - time (sec): 8.12 - samples/sec: 1874.76 - lr: 0.000014 - momentum: 0.000000
2023-10-23 18:18:27,541 epoch 8 - iter 180/304 - loss 0.01616983 - time (sec): 9.72 - samples/sec: 1901.04 - lr: 0.000013 - momentum: 0.000000
2023-10-23 18:18:29,175 epoch 8 - iter 210/304 - loss 0.01609663 - time (sec): 11.35 - samples/sec: 1892.89 - lr: 0.000013 - momentum: 0.000000
2023-10-23 18:18:30,814 epoch 8 - iter 240/304 - loss 0.01486684 - time (sec): 12.99 - samples/sec: 1926.77 - lr: 0.000012 - momentum: 0.000000
2023-10-23 18:18:32,438 epoch 8 - iter 270/304 - loss 0.01438102 - time (sec): 14.61 - samples/sec: 1916.14 - lr: 0.000012 - momentum: 0.000000
2023-10-23 18:18:34,068 epoch 8 - iter 300/304 - loss 0.01467520 - time (sec): 16.24 - samples/sec: 1888.31 - lr: 0.000011 - momentum: 0.000000
2023-10-23 18:18:34,281 ----------------------------------------------------------------------------------------------------
2023-10-23 18:18:34,281 EPOCH 8 done: loss 0.0145 - lr: 0.000011
2023-10-23 18:18:35,114 DEV : loss 0.21577374637126923 - f1-score (micro avg)  0.8517
2023-10-23 18:18:35,121 saving best model
2023-10-23 18:18:35,654 ----------------------------------------------------------------------------------------------------
2023-10-23 18:18:37,296 epoch 9 - iter 30/304 - loss 0.02217251 - time (sec): 1.64 - samples/sec: 2016.73 - lr: 0.000011 - momentum: 0.000000
2023-10-23 18:18:38,925 epoch 9 - iter 60/304 - loss 0.01548730 - time (sec): 3.27 - samples/sec: 1914.58 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:18:40,571 epoch 9 - iter 90/304 - loss 0.01781690 - time (sec): 4.91 - samples/sec: 1919.16 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:18:42,193 epoch 9 - iter 120/304 - loss 0.01604254 - time (sec): 6.54 - samples/sec: 1837.29 - lr: 0.000009 - momentum: 0.000000
2023-10-23 18:18:43,837 epoch 9 - iter 150/304 - loss 0.01483913 - time (sec): 8.18 - samples/sec: 1874.20 - lr: 0.000008 - momentum: 0.000000
2023-10-23 18:18:45,472 epoch 9 - iter 180/304 - loss 0.01278405 - time (sec): 9.82 - samples/sec: 1863.31 - lr: 0.000008 - momentum: 0.000000
2023-10-23 18:18:47,113 epoch 9 - iter 210/304 - loss 0.01183613 - time (sec): 11.46 - samples/sec: 1865.42 - lr: 0.000007 - momentum: 0.000000
2023-10-23 18:18:48,744 epoch 9 - iter 240/304 - loss 0.01173901 - time (sec): 13.09 - samples/sec: 1862.89 - lr: 0.000007 - momentum: 0.000000
2023-10-23 18:18:50,377 epoch 9 - iter 270/304 - loss 0.01107654 - time (sec): 14.72 - samples/sec: 1868.29 - lr: 0.000006 - momentum: 0.000000
2023-10-23 18:18:52,020 epoch 9 - iter 300/304 - loss 0.01093778 - time (sec): 16.36 - samples/sec: 1872.44 - lr: 0.000006 - momentum: 0.000000
2023-10-23 18:18:52,237 ----------------------------------------------------------------------------------------------------
2023-10-23 18:18:52,237 EPOCH 9 done: loss 0.0108 - lr: 0.000006
2023-10-23 18:18:53,118 DEV : loss 0.2204783409833908 - f1-score (micro avg)  0.8473
2023-10-23 18:18:53,125 ----------------------------------------------------------------------------------------------------
2023-10-23 18:18:54,762 epoch 10 - iter 30/304 - loss 0.00097800 - time (sec): 1.64 - samples/sec: 1856.40 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:18:56,397 epoch 10 - iter 60/304 - loss 0.00905964 - time (sec): 3.27 - samples/sec: 1873.85 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:18:58,043 epoch 10 - iter 90/304 - loss 0.00780886 - time (sec): 4.92 - samples/sec: 1900.28 - lr: 0.000004 - momentum: 0.000000
2023-10-23 18:18:59,671 epoch 10 - iter 120/304 - loss 0.00866515 - time (sec): 6.55 - samples/sec: 1865.78 - lr: 0.000003 - momentum: 0.000000
2023-10-23 18:19:01,310 epoch 10 - iter 150/304 - loss 0.00766781 - time (sec): 8.18 - samples/sec: 1880.41 - lr: 0.000003 - momentum: 0.000000
2023-10-23 18:19:02,940 epoch 10 - iter 180/304 - loss 0.00744633 - time (sec): 9.81 - samples/sec: 1878.27 - lr: 0.000002 - momentum: 0.000000
2023-10-23 18:19:04,571 epoch 10 - iter 210/304 - loss 0.00780657 - time (sec): 11.44 - samples/sec: 1870.69 - lr: 0.000002 - momentum: 0.000000
2023-10-23 18:19:06,209 epoch 10 - iter 240/304 - loss 0.00784100 - time (sec): 13.08 - samples/sec: 1892.77 - lr: 0.000001 - momentum: 0.000000
2023-10-23 18:19:07,839 epoch 10 - iter 270/304 - loss 0.00724030 - time (sec): 14.71 - samples/sec: 1877.08 - lr: 0.000001 - momentum: 0.000000
2023-10-23 18:19:09,472 epoch 10 - iter 300/304 - loss 0.00659561 - time (sec): 16.35 - samples/sec: 1872.36 - lr: 0.000000 - momentum: 0.000000
2023-10-23 18:19:09,686 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:09,686 EPOCH 10 done: loss 0.0065 - lr: 0.000000
2023-10-23 18:19:10,517 DEV : loss 0.22362594306468964 - f1-score (micro avg)  0.8427
2023-10-23 18:19:10,914 ----------------------------------------------------------------------------------------------------
2023-10-23 18:19:10,915 Loading model from best epoch ...
2023-10-23 18:19:12,690 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-23 18:19:13,529 
Results:
- F-score (micro) 0.8081
- F-score (macro) 0.7142
- Accuracy 0.6874

By class:
              precision    recall  f1-score   support

       scope     0.8013    0.8278    0.8143       151
        work     0.6855    0.8947    0.7763        95
        pers     0.8037    0.8958    0.8473        96
        date     0.3333    0.3333    0.3333         3
         loc     1.0000    0.6667    0.8000         3

   micro avg     0.7628    0.8592    0.8081       348
   macro avg     0.7248    0.7237    0.7142       348
weighted avg     0.7680    0.8592    0.8088       348

2023-10-23 18:19:13,529 ----------------------------------------------------------------------------------------------------