File size: 24,099 Bytes
24c6d15
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
2023-10-23 18:05:18,170 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,172 Model: "SequenceTagger(
  (embeddings): TransformerWordEmbeddings(
    (model): BertModel(
      (embeddings): BertEmbeddings(
        (word_embeddings): Embedding(64001, 768)
        (position_embeddings): Embedding(512, 768)
        (token_type_embeddings): Embedding(2, 768)
        (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
        (dropout): Dropout(p=0.1, inplace=False)
      )
      (encoder): BertEncoder(
        (layer): ModuleList(
          (0-11): 12 x BertLayer(
            (attention): BertAttention(
              (self): BertSelfAttention(
                (query): Linear(in_features=768, out_features=768, bias=True)
                (key): Linear(in_features=768, out_features=768, bias=True)
                (value): Linear(in_features=768, out_features=768, bias=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
              (output): BertSelfOutput(
                (dense): Linear(in_features=768, out_features=768, bias=True)
                (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
                (dropout): Dropout(p=0.1, inplace=False)
              )
            )
            (intermediate): BertIntermediate(
              (dense): Linear(in_features=768, out_features=3072, bias=True)
              (intermediate_act_fn): GELUActivation()
            )
            (output): BertOutput(
              (dense): Linear(in_features=3072, out_features=768, bias=True)
              (LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
              (dropout): Dropout(p=0.1, inplace=False)
            )
          )
        )
      )
      (pooler): BertPooler(
        (dense): Linear(in_features=768, out_features=768, bias=True)
        (activation): Tanh()
      )
    )
  )
  (locked_dropout): LockedDropout(p=0.5)
  (linear): Linear(in_features=768, out_features=25, bias=True)
  (loss_function): CrossEntropyLoss()
)"
2023-10-23 18:05:18,172 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,172 MultiCorpus: 1214 train + 266 dev + 251 test sentences
 - NER_HIPE_2022 Corpus: 1214 train + 266 dev + 251 test sentences - /root/.flair/datasets/ner_hipe_2022/v2.1/ajmc/en/with_doc_seperator
2023-10-23 18:05:18,172 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,172 Train:  1214 sentences
2023-10-23 18:05:18,172         (train_with_dev=False, train_with_test=False)
2023-10-23 18:05:18,172 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,172 Training Params:
2023-10-23 18:05:18,172  - learning_rate: "5e-05" 
2023-10-23 18:05:18,172  - mini_batch_size: "4"
2023-10-23 18:05:18,172  - max_epochs: "10"
2023-10-23 18:05:18,172  - shuffle: "True"
2023-10-23 18:05:18,172 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,172 Plugins:
2023-10-23 18:05:18,173  - TensorboardLogger
2023-10-23 18:05:18,173  - LinearScheduler | warmup_fraction: '0.1'
2023-10-23 18:05:18,173 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,173 Final evaluation on model from best epoch (best-model.pt)
2023-10-23 18:05:18,173  - metric: "('micro avg', 'f1-score')"
2023-10-23 18:05:18,173 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,173 Computation:
2023-10-23 18:05:18,173  - compute on device: cuda:0
2023-10-23 18:05:18,173  - embedding storage: none
2023-10-23 18:05:18,173 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,173 Model training base path: "hmbench-ajmc/en-dbmdz/bert-base-historic-multilingual-64k-td-cased-bs4-wsFalse-e10-lr5e-05-poolingfirst-layers-1-crfFalse-2"
2023-10-23 18:05:18,173 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,173 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:18,173 Logging anything other than scalars to TensorBoard is currently not supported.
2023-10-23 18:05:19,738 epoch 1 - iter 30/304 - loss 3.02351216 - time (sec): 1.56 - samples/sec: 2092.12 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:05:21,366 epoch 1 - iter 60/304 - loss 2.16279826 - time (sec): 3.19 - samples/sec: 1911.82 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:05:23,007 epoch 1 - iter 90/304 - loss 1.64732925 - time (sec): 4.83 - samples/sec: 1911.64 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:05:24,648 epoch 1 - iter 120/304 - loss 1.30376680 - time (sec): 6.47 - samples/sec: 1966.46 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:05:26,288 epoch 1 - iter 150/304 - loss 1.11797657 - time (sec): 8.11 - samples/sec: 1933.49 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:05:27,926 epoch 1 - iter 180/304 - loss 0.98825947 - time (sec): 9.75 - samples/sec: 1913.77 - lr: 0.000029 - momentum: 0.000000
2023-10-23 18:05:29,564 epoch 1 - iter 210/304 - loss 0.88981727 - time (sec): 11.39 - samples/sec: 1897.65 - lr: 0.000034 - momentum: 0.000000
2023-10-23 18:05:31,197 epoch 1 - iter 240/304 - loss 0.80330881 - time (sec): 13.02 - samples/sec: 1882.05 - lr: 0.000039 - momentum: 0.000000
2023-10-23 18:05:32,835 epoch 1 - iter 270/304 - loss 0.74394110 - time (sec): 14.66 - samples/sec: 1872.07 - lr: 0.000044 - momentum: 0.000000
2023-10-23 18:05:34,471 epoch 1 - iter 300/304 - loss 0.68489685 - time (sec): 16.30 - samples/sec: 1880.48 - lr: 0.000049 - momentum: 0.000000
2023-10-23 18:05:34,685 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:34,685 EPOCH 1 done: loss 0.6805 - lr: 0.000049
2023-10-23 18:05:35,473 DEV : loss 0.15541432797908783 - f1-score (micro avg)  0.726
2023-10-23 18:05:35,481 saving best model
2023-10-23 18:05:35,857 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:37,496 epoch 2 - iter 30/304 - loss 0.19423395 - time (sec): 1.64 - samples/sec: 1971.04 - lr: 0.000049 - momentum: 0.000000
2023-10-23 18:05:39,135 epoch 2 - iter 60/304 - loss 0.15037454 - time (sec): 3.28 - samples/sec: 1867.22 - lr: 0.000049 - momentum: 0.000000
2023-10-23 18:05:40,779 epoch 2 - iter 90/304 - loss 0.14114291 - time (sec): 4.92 - samples/sec: 1855.21 - lr: 0.000048 - momentum: 0.000000
2023-10-23 18:05:42,426 epoch 2 - iter 120/304 - loss 0.13326513 - time (sec): 6.57 - samples/sec: 1870.75 - lr: 0.000048 - momentum: 0.000000
2023-10-23 18:05:44,070 epoch 2 - iter 150/304 - loss 0.12683531 - time (sec): 8.21 - samples/sec: 1878.75 - lr: 0.000047 - momentum: 0.000000
2023-10-23 18:05:45,710 epoch 2 - iter 180/304 - loss 0.12499108 - time (sec): 9.85 - samples/sec: 1863.27 - lr: 0.000047 - momentum: 0.000000
2023-10-23 18:05:47,357 epoch 2 - iter 210/304 - loss 0.12849916 - time (sec): 11.50 - samples/sec: 1857.08 - lr: 0.000046 - momentum: 0.000000
2023-10-23 18:05:49,009 epoch 2 - iter 240/304 - loss 0.13158152 - time (sec): 13.15 - samples/sec: 1864.61 - lr: 0.000046 - momentum: 0.000000
2023-10-23 18:05:50,657 epoch 2 - iter 270/304 - loss 0.12718118 - time (sec): 14.80 - samples/sec: 1861.95 - lr: 0.000045 - momentum: 0.000000
2023-10-23 18:05:52,291 epoch 2 - iter 300/304 - loss 0.12696736 - time (sec): 16.43 - samples/sec: 1865.31 - lr: 0.000045 - momentum: 0.000000
2023-10-23 18:05:52,504 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:52,504 EPOCH 2 done: loss 0.1293 - lr: 0.000045
2023-10-23 18:05:53,359 DEV : loss 0.17078670859336853 - f1-score (micro avg)  0.76
2023-10-23 18:05:53,367 saving best model
2023-10-23 18:05:53,888 ----------------------------------------------------------------------------------------------------
2023-10-23 18:05:55,526 epoch 3 - iter 30/304 - loss 0.08939435 - time (sec): 1.64 - samples/sec: 1863.49 - lr: 0.000044 - momentum: 0.000000
2023-10-23 18:05:57,173 epoch 3 - iter 60/304 - loss 0.07897526 - time (sec): 3.28 - samples/sec: 1808.72 - lr: 0.000043 - momentum: 0.000000
2023-10-23 18:05:58,810 epoch 3 - iter 90/304 - loss 0.08706321 - time (sec): 4.92 - samples/sec: 1820.30 - lr: 0.000043 - momentum: 0.000000
2023-10-23 18:06:00,456 epoch 3 - iter 120/304 - loss 0.07668656 - time (sec): 6.57 - samples/sec: 1832.75 - lr: 0.000042 - momentum: 0.000000
2023-10-23 18:06:02,105 epoch 3 - iter 150/304 - loss 0.07354657 - time (sec): 8.21 - samples/sec: 1826.17 - lr: 0.000042 - momentum: 0.000000
2023-10-23 18:06:03,754 epoch 3 - iter 180/304 - loss 0.08189361 - time (sec): 9.86 - samples/sec: 1846.34 - lr: 0.000041 - momentum: 0.000000
2023-10-23 18:06:05,403 epoch 3 - iter 210/304 - loss 0.07732853 - time (sec): 11.51 - samples/sec: 1871.12 - lr: 0.000041 - momentum: 0.000000
2023-10-23 18:06:07,047 epoch 3 - iter 240/304 - loss 0.08312185 - time (sec): 13.16 - samples/sec: 1868.54 - lr: 0.000040 - momentum: 0.000000
2023-10-23 18:06:08,681 epoch 3 - iter 270/304 - loss 0.08169576 - time (sec): 14.79 - samples/sec: 1877.51 - lr: 0.000040 - momentum: 0.000000
2023-10-23 18:06:10,296 epoch 3 - iter 300/304 - loss 0.08673653 - time (sec): 16.41 - samples/sec: 1870.86 - lr: 0.000039 - momentum: 0.000000
2023-10-23 18:06:10,506 ----------------------------------------------------------------------------------------------------
2023-10-23 18:06:10,507 EPOCH 3 done: loss 0.0861 - lr: 0.000039
2023-10-23 18:06:11,363 DEV : loss 0.17484019696712494 - f1-score (micro avg)  0.8167
2023-10-23 18:06:11,371 saving best model
2023-10-23 18:06:11,897 ----------------------------------------------------------------------------------------------------
2023-10-23 18:06:13,537 epoch 4 - iter 30/304 - loss 0.04368220 - time (sec): 1.64 - samples/sec: 1658.87 - lr: 0.000038 - momentum: 0.000000
2023-10-23 18:06:15,181 epoch 4 - iter 60/304 - loss 0.05730760 - time (sec): 3.28 - samples/sec: 1825.30 - lr: 0.000038 - momentum: 0.000000
2023-10-23 18:06:16,788 epoch 4 - iter 90/304 - loss 0.06114841 - time (sec): 4.89 - samples/sec: 1849.70 - lr: 0.000037 - momentum: 0.000000
2023-10-23 18:06:18,420 epoch 4 - iter 120/304 - loss 0.05553906 - time (sec): 6.52 - samples/sec: 1850.44 - lr: 0.000037 - momentum: 0.000000
2023-10-23 18:06:20,054 epoch 4 - iter 150/304 - loss 0.06034393 - time (sec): 8.15 - samples/sec: 1885.51 - lr: 0.000036 - momentum: 0.000000
2023-10-23 18:06:21,679 epoch 4 - iter 180/304 - loss 0.06426993 - time (sec): 9.78 - samples/sec: 1865.59 - lr: 0.000036 - momentum: 0.000000
2023-10-23 18:06:23,330 epoch 4 - iter 210/304 - loss 0.06643169 - time (sec): 11.43 - samples/sec: 1891.08 - lr: 0.000035 - momentum: 0.000000
2023-10-23 18:06:24,979 epoch 4 - iter 240/304 - loss 0.06216304 - time (sec): 13.08 - samples/sec: 1900.70 - lr: 0.000035 - momentum: 0.000000
2023-10-23 18:06:26,611 epoch 4 - iter 270/304 - loss 0.06119980 - time (sec): 14.71 - samples/sec: 1877.13 - lr: 0.000034 - momentum: 0.000000
2023-10-23 18:06:28,247 epoch 4 - iter 300/304 - loss 0.05807122 - time (sec): 16.35 - samples/sec: 1874.32 - lr: 0.000033 - momentum: 0.000000
2023-10-23 18:06:28,461 ----------------------------------------------------------------------------------------------------
2023-10-23 18:06:28,461 EPOCH 4 done: loss 0.0590 - lr: 0.000033
2023-10-23 18:06:29,313 DEV : loss 0.20702120661735535 - f1-score (micro avg)  0.8028
2023-10-23 18:06:29,320 ----------------------------------------------------------------------------------------------------
2023-10-23 18:06:30,953 epoch 5 - iter 30/304 - loss 0.07189814 - time (sec): 1.63 - samples/sec: 1711.36 - lr: 0.000033 - momentum: 0.000000
2023-10-23 18:06:32,593 epoch 5 - iter 60/304 - loss 0.04765151 - time (sec): 3.27 - samples/sec: 1787.29 - lr: 0.000032 - momentum: 0.000000
2023-10-23 18:06:34,231 epoch 5 - iter 90/304 - loss 0.03673195 - time (sec): 4.91 - samples/sec: 1826.48 - lr: 0.000032 - momentum: 0.000000
2023-10-23 18:06:35,868 epoch 5 - iter 120/304 - loss 0.04243436 - time (sec): 6.55 - samples/sec: 1839.20 - lr: 0.000031 - momentum: 0.000000
2023-10-23 18:06:37,507 epoch 5 - iter 150/304 - loss 0.04100820 - time (sec): 8.19 - samples/sec: 1862.05 - lr: 0.000031 - momentum: 0.000000
2023-10-23 18:06:39,146 epoch 5 - iter 180/304 - loss 0.04005715 - time (sec): 9.82 - samples/sec: 1876.76 - lr: 0.000030 - momentum: 0.000000
2023-10-23 18:06:40,785 epoch 5 - iter 210/304 - loss 0.04081348 - time (sec): 11.46 - samples/sec: 1890.67 - lr: 0.000030 - momentum: 0.000000
2023-10-23 18:06:42,432 epoch 5 - iter 240/304 - loss 0.04483258 - time (sec): 13.11 - samples/sec: 1886.03 - lr: 0.000029 - momentum: 0.000000
2023-10-23 18:06:44,078 epoch 5 - iter 270/304 - loss 0.04381410 - time (sec): 14.76 - samples/sec: 1888.61 - lr: 0.000028 - momentum: 0.000000
2023-10-23 18:06:45,716 epoch 5 - iter 300/304 - loss 0.04177830 - time (sec): 16.39 - samples/sec: 1868.39 - lr: 0.000028 - momentum: 0.000000
2023-10-23 18:06:45,928 ----------------------------------------------------------------------------------------------------
2023-10-23 18:06:45,929 EPOCH 5 done: loss 0.0418 - lr: 0.000028
2023-10-23 18:06:46,772 DEV : loss 0.19316518306732178 - f1-score (micro avg)  0.8464
2023-10-23 18:06:46,779 saving best model
2023-10-23 18:06:47,338 ----------------------------------------------------------------------------------------------------
2023-10-23 18:06:48,973 epoch 6 - iter 30/304 - loss 0.05467245 - time (sec): 1.63 - samples/sec: 1886.52 - lr: 0.000027 - momentum: 0.000000
2023-10-23 18:06:50,612 epoch 6 - iter 60/304 - loss 0.03021958 - time (sec): 3.27 - samples/sec: 1888.73 - lr: 0.000027 - momentum: 0.000000
2023-10-23 18:06:52,244 epoch 6 - iter 90/304 - loss 0.02852577 - time (sec): 4.90 - samples/sec: 1844.84 - lr: 0.000026 - momentum: 0.000000
2023-10-23 18:06:53,884 epoch 6 - iter 120/304 - loss 0.02827307 - time (sec): 6.54 - samples/sec: 1856.42 - lr: 0.000026 - momentum: 0.000000
2023-10-23 18:06:55,532 epoch 6 - iter 150/304 - loss 0.03479194 - time (sec): 8.19 - samples/sec: 1873.89 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:06:57,167 epoch 6 - iter 180/304 - loss 0.03172006 - time (sec): 9.83 - samples/sec: 1845.55 - lr: 0.000025 - momentum: 0.000000
2023-10-23 18:06:58,806 epoch 6 - iter 210/304 - loss 0.03968617 - time (sec): 11.47 - samples/sec: 1847.34 - lr: 0.000024 - momentum: 0.000000
2023-10-23 18:07:00,442 epoch 6 - iter 240/304 - loss 0.04188832 - time (sec): 13.10 - samples/sec: 1848.07 - lr: 0.000023 - momentum: 0.000000
2023-10-23 18:07:02,083 epoch 6 - iter 270/304 - loss 0.04332220 - time (sec): 14.74 - samples/sec: 1846.32 - lr: 0.000023 - momentum: 0.000000
2023-10-23 18:07:03,721 epoch 6 - iter 300/304 - loss 0.05048982 - time (sec): 16.38 - samples/sec: 1873.09 - lr: 0.000022 - momentum: 0.000000
2023-10-23 18:07:03,936 ----------------------------------------------------------------------------------------------------
2023-10-23 18:07:03,936 EPOCH 6 done: loss 0.0501 - lr: 0.000022
2023-10-23 18:07:04,785 DEV : loss 0.22458811104297638 - f1-score (micro avg)  0.6659
2023-10-23 18:07:04,792 ----------------------------------------------------------------------------------------------------
2023-10-23 18:07:06,425 epoch 7 - iter 30/304 - loss 0.04567402 - time (sec): 1.63 - samples/sec: 1846.80 - lr: 0.000022 - momentum: 0.000000
2023-10-23 18:07:08,068 epoch 7 - iter 60/304 - loss 0.04013202 - time (sec): 3.27 - samples/sec: 1887.08 - lr: 0.000021 - momentum: 0.000000
2023-10-23 18:07:09,712 epoch 7 - iter 90/304 - loss 0.04103430 - time (sec): 4.92 - samples/sec: 1867.22 - lr: 0.000021 - momentum: 0.000000
2023-10-23 18:07:11,354 epoch 7 - iter 120/304 - loss 0.04689034 - time (sec): 6.56 - samples/sec: 1879.38 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:07:13,007 epoch 7 - iter 150/304 - loss 0.04243080 - time (sec): 8.21 - samples/sec: 1887.35 - lr: 0.000020 - momentum: 0.000000
2023-10-23 18:07:14,626 epoch 7 - iter 180/304 - loss 0.03739778 - time (sec): 9.83 - samples/sec: 1884.23 - lr: 0.000019 - momentum: 0.000000
2023-10-23 18:07:16,244 epoch 7 - iter 210/304 - loss 0.03572045 - time (sec): 11.45 - samples/sec: 1889.73 - lr: 0.000018 - momentum: 0.000000
2023-10-23 18:07:17,860 epoch 7 - iter 240/304 - loss 0.03268610 - time (sec): 13.07 - samples/sec: 1891.94 - lr: 0.000018 - momentum: 0.000000
2023-10-23 18:07:19,499 epoch 7 - iter 270/304 - loss 0.03137129 - time (sec): 14.71 - samples/sec: 1870.60 - lr: 0.000017 - momentum: 0.000000
2023-10-23 18:07:21,141 epoch 7 - iter 300/304 - loss 0.03089265 - time (sec): 16.35 - samples/sec: 1873.73 - lr: 0.000017 - momentum: 0.000000
2023-10-23 18:07:21,356 ----------------------------------------------------------------------------------------------------
2023-10-23 18:07:21,356 EPOCH 7 done: loss 0.0305 - lr: 0.000017
2023-10-23 18:07:22,378 DEV : loss 0.19062967598438263 - f1-score (micro avg)  0.8435
2023-10-23 18:07:22,386 ----------------------------------------------------------------------------------------------------
2023-10-23 18:07:24,031 epoch 8 - iter 30/304 - loss 0.03284706 - time (sec): 1.64 - samples/sec: 1796.18 - lr: 0.000016 - momentum: 0.000000
2023-10-23 18:07:25,666 epoch 8 - iter 60/304 - loss 0.02779091 - time (sec): 3.28 - samples/sec: 1744.32 - lr: 0.000016 - momentum: 0.000000
2023-10-23 18:07:27,302 epoch 8 - iter 90/304 - loss 0.01855685 - time (sec): 4.91 - samples/sec: 1746.35 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:07:28,948 epoch 8 - iter 120/304 - loss 0.01484052 - time (sec): 6.56 - samples/sec: 1789.62 - lr: 0.000015 - momentum: 0.000000
2023-10-23 18:07:30,589 epoch 8 - iter 150/304 - loss 0.01229122 - time (sec): 8.20 - samples/sec: 1841.21 - lr: 0.000014 - momentum: 0.000000
2023-10-23 18:07:32,228 epoch 8 - iter 180/304 - loss 0.01257633 - time (sec): 9.84 - samples/sec: 1836.27 - lr: 0.000013 - momentum: 0.000000
2023-10-23 18:07:33,865 epoch 8 - iter 210/304 - loss 0.01408353 - time (sec): 11.48 - samples/sec: 1834.05 - lr: 0.000013 - momentum: 0.000000
2023-10-23 18:07:35,504 epoch 8 - iter 240/304 - loss 0.01384160 - time (sec): 13.12 - samples/sec: 1836.24 - lr: 0.000012 - momentum: 0.000000
2023-10-23 18:07:37,149 epoch 8 - iter 270/304 - loss 0.01387053 - time (sec): 14.76 - samples/sec: 1853.15 - lr: 0.000012 - momentum: 0.000000
2023-10-23 18:07:38,791 epoch 8 - iter 300/304 - loss 0.01359108 - time (sec): 16.40 - samples/sec: 1866.58 - lr: 0.000011 - momentum: 0.000000
2023-10-23 18:07:39,007 ----------------------------------------------------------------------------------------------------
2023-10-23 18:07:39,007 EPOCH 8 done: loss 0.0134 - lr: 0.000011
2023-10-23 18:07:39,856 DEV : loss 0.2041168510913849 - f1-score (micro avg)  0.852
2023-10-23 18:07:39,863 saving best model
2023-10-23 18:07:40,387 ----------------------------------------------------------------------------------------------------
2023-10-23 18:07:42,032 epoch 9 - iter 30/304 - loss 0.00600479 - time (sec): 1.64 - samples/sec: 1838.36 - lr: 0.000011 - momentum: 0.000000
2023-10-23 18:07:43,670 epoch 9 - iter 60/304 - loss 0.00346556 - time (sec): 3.28 - samples/sec: 1817.14 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:07:45,307 epoch 9 - iter 90/304 - loss 0.00522093 - time (sec): 4.92 - samples/sec: 1831.14 - lr: 0.000010 - momentum: 0.000000
2023-10-23 18:07:46,946 epoch 9 - iter 120/304 - loss 0.00635893 - time (sec): 6.56 - samples/sec: 1857.20 - lr: 0.000009 - momentum: 0.000000
2023-10-23 18:07:48,561 epoch 9 - iter 150/304 - loss 0.00829404 - time (sec): 8.17 - samples/sec: 1843.97 - lr: 0.000008 - momentum: 0.000000
2023-10-23 18:07:50,202 epoch 9 - iter 180/304 - loss 0.01123978 - time (sec): 9.81 - samples/sec: 1863.28 - lr: 0.000008 - momentum: 0.000000
2023-10-23 18:07:51,829 epoch 9 - iter 210/304 - loss 0.00958663 - time (sec): 11.44 - samples/sec: 1875.46 - lr: 0.000007 - momentum: 0.000000
2023-10-23 18:07:53,451 epoch 9 - iter 240/304 - loss 0.00999350 - time (sec): 13.06 - samples/sec: 1858.64 - lr: 0.000007 - momentum: 0.000000
2023-10-23 18:07:55,085 epoch 9 - iter 270/304 - loss 0.00938350 - time (sec): 14.70 - samples/sec: 1862.46 - lr: 0.000006 - momentum: 0.000000
2023-10-23 18:07:56,735 epoch 9 - iter 300/304 - loss 0.00917477 - time (sec): 16.35 - samples/sec: 1877.87 - lr: 0.000006 - momentum: 0.000000
2023-10-23 18:07:56,950 ----------------------------------------------------------------------------------------------------
2023-10-23 18:07:56,950 EPOCH 9 done: loss 0.0091 - lr: 0.000006
2023-10-23 18:07:57,812 DEV : loss 0.2051309198141098 - f1-score (micro avg)  0.8456
2023-10-23 18:07:57,820 ----------------------------------------------------------------------------------------------------
2023-10-23 18:07:59,462 epoch 10 - iter 30/304 - loss 0.00983964 - time (sec): 1.64 - samples/sec: 1911.88 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:08:01,094 epoch 10 - iter 60/304 - loss 0.01371081 - time (sec): 3.27 - samples/sec: 1855.77 - lr: 0.000005 - momentum: 0.000000
2023-10-23 18:08:02,731 epoch 10 - iter 90/304 - loss 0.00942075 - time (sec): 4.91 - samples/sec: 1815.96 - lr: 0.000004 - momentum: 0.000000
2023-10-23 18:08:04,367 epoch 10 - iter 120/304 - loss 0.00928705 - time (sec): 6.55 - samples/sec: 1844.97 - lr: 0.000003 - momentum: 0.000000
2023-10-23 18:08:06,004 epoch 10 - iter 150/304 - loss 0.00814334 - time (sec): 8.18 - samples/sec: 1827.76 - lr: 0.000003 - momentum: 0.000000
2023-10-23 18:08:07,642 epoch 10 - iter 180/304 - loss 0.00692152 - time (sec): 9.82 - samples/sec: 1856.28 - lr: 0.000002 - momentum: 0.000000
2023-10-23 18:08:09,282 epoch 10 - iter 210/304 - loss 0.00802509 - time (sec): 11.46 - samples/sec: 1878.13 - lr: 0.000002 - momentum: 0.000000
2023-10-23 18:08:10,927 epoch 10 - iter 240/304 - loss 0.00720115 - time (sec): 13.11 - samples/sec: 1888.06 - lr: 0.000001 - momentum: 0.000000
2023-10-23 18:08:12,565 epoch 10 - iter 270/304 - loss 0.00642390 - time (sec): 14.74 - samples/sec: 1885.17 - lr: 0.000001 - momentum: 0.000000
2023-10-23 18:08:14,194 epoch 10 - iter 300/304 - loss 0.00718668 - time (sec): 16.37 - samples/sec: 1875.88 - lr: 0.000000 - momentum: 0.000000
2023-10-23 18:08:14,406 ----------------------------------------------------------------------------------------------------
2023-10-23 18:08:14,406 EPOCH 10 done: loss 0.0071 - lr: 0.000000
2023-10-23 18:08:15,325 DEV : loss 0.20948979258537292 - f1-score (micro avg)  0.8476
2023-10-23 18:08:15,746 ----------------------------------------------------------------------------------------------------
2023-10-23 18:08:15,747 Loading model from best epoch ...
2023-10-23 18:08:17,540 SequenceTagger predicts: Dictionary with 25 tags: O, S-scope, B-scope, E-scope, I-scope, S-pers, B-pers, E-pers, I-pers, S-work, B-work, E-work, I-work, S-loc, B-loc, E-loc, I-loc, S-date, B-date, E-date, I-date, S-object, B-object, E-object, I-object
2023-10-23 18:08:18,429 
Results:
- F-score (micro) 0.8016
- F-score (macro) 0.6217
- Accuracy 0.6781

By class:
              precision    recall  f1-score   support

       scope     0.7546    0.8146    0.7834       151
        work     0.7368    0.8842    0.8038        95
        pers     0.8000    0.9167    0.8544        96
         loc     0.6667    0.6667    0.6667         3
        date     0.0000    0.0000    0.0000         3

   micro avg     0.7557    0.8534    0.8016       348
   macro avg     0.5916    0.6564    0.6217       348
weighted avg     0.7550    0.8534    0.8008       348

2023-10-23 18:08:18,429 ----------------------------------------------------------------------------------------------------