File size: 23,770 Bytes
35dd799 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 |
2024-03-26 10:12:07,550 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Model: "SequenceTagger(
(embeddings): TransformerWordEmbeddings(
(model): BertModel(
(embeddings): BertEmbeddings(
(word_embeddings): Embedding(31103, 768)
(position_embeddings): Embedding(512, 768)
(token_type_embeddings): Embedding(2, 768)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(encoder): BertEncoder(
(layer): ModuleList(
(0-11): 12 x BertLayer(
(attention): BertAttention(
(self): BertSelfAttention(
(query): Linear(in_features=768, out_features=768, bias=True)
(key): Linear(in_features=768, out_features=768, bias=True)
(value): Linear(in_features=768, out_features=768, bias=True)
(dropout): Dropout(p=0.1, inplace=False)
)
(output): BertSelfOutput(
(dense): Linear(in_features=768, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
(intermediate): BertIntermediate(
(dense): Linear(in_features=768, out_features=3072, bias=True)
(intermediate_act_fn): GELUActivation()
)
(output): BertOutput(
(dense): Linear(in_features=3072, out_features=768, bias=True)
(LayerNorm): LayerNorm((768,), eps=1e-12, elementwise_affine=True)
(dropout): Dropout(p=0.1, inplace=False)
)
)
)
)
(pooler): BertPooler(
(dense): Linear(in_features=768, out_features=768, bias=True)
(activation): Tanh()
)
)
)
(locked_dropout): LockedDropout(p=0.5)
(linear): Linear(in_features=768, out_features=17, bias=True)
(loss_function): CrossEntropyLoss()
)"
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Corpus: 758 train + 94 dev + 96 test sentences
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Train: 758 sentences
2024-03-26 10:12:07,551 (train_with_dev=False, train_with_test=False)
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Training Params:
2024-03-26 10:12:07,551 - learning_rate: "5e-05"
2024-03-26 10:12:07,551 - mini_batch_size: "8"
2024-03-26 10:12:07,551 - max_epochs: "10"
2024-03-26 10:12:07,551 - shuffle: "True"
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Plugins:
2024-03-26 10:12:07,551 - TensorboardLogger
2024-03-26 10:12:07,551 - LinearScheduler | warmup_fraction: '0.1'
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Final evaluation on model from best epoch (best-model.pt)
2024-03-26 10:12:07,551 - metric: "('micro avg', 'f1-score')"
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Computation:
2024-03-26 10:12:07,551 - compute on device: cuda:0
2024-03-26 10:12:07,551 - embedding storage: none
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Model training base path: "flair-co-funer-gbert_base-bs8-e10-lr5e-05-3"
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:07,551 Logging anything other than scalars to TensorBoard is currently not supported.
2024-03-26 10:12:08,913 epoch 1 - iter 9/95 - loss 3.30878654 - time (sec): 1.36 - samples/sec: 2342.42 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:12:10,727 epoch 1 - iter 18/95 - loss 3.10425395 - time (sec): 3.18 - samples/sec: 1988.82 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:12:12,640 epoch 1 - iter 27/95 - loss 2.80107707 - time (sec): 5.09 - samples/sec: 1941.49 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:12:14,009 epoch 1 - iter 36/95 - loss 2.56832707 - time (sec): 6.46 - samples/sec: 1959.16 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:12:15,906 epoch 1 - iter 45/95 - loss 2.38441941 - time (sec): 8.35 - samples/sec: 1941.76 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:12:17,254 epoch 1 - iter 54/95 - loss 2.23503114 - time (sec): 9.70 - samples/sec: 1967.22 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:12:18,501 epoch 1 - iter 63/95 - loss 2.10127196 - time (sec): 10.95 - samples/sec: 1994.22 - lr: 0.000033 - momentum: 0.000000
2024-03-26 10:12:20,434 epoch 1 - iter 72/95 - loss 1.93262394 - time (sec): 12.88 - samples/sec: 1980.87 - lr: 0.000037 - momentum: 0.000000
2024-03-26 10:12:22,397 epoch 1 - iter 81/95 - loss 1.77367380 - time (sec): 14.85 - samples/sec: 1966.51 - lr: 0.000042 - momentum: 0.000000
2024-03-26 10:12:23,920 epoch 1 - iter 90/95 - loss 1.66263281 - time (sec): 16.37 - samples/sec: 1984.51 - lr: 0.000047 - momentum: 0.000000
2024-03-26 10:12:24,965 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:24,965 EPOCH 1 done: loss 1.5923 - lr: 0.000047
2024-03-26 10:12:25,850 DEV : loss 0.4564521014690399 - f1-score (micro avg) 0.6914
2024-03-26 10:12:25,851 saving best model
2024-03-26 10:12:26,114 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:27,479 epoch 2 - iter 9/95 - loss 0.52426643 - time (sec): 1.36 - samples/sec: 2007.72 - lr: 0.000050 - momentum: 0.000000
2024-03-26 10:12:29,308 epoch 2 - iter 18/95 - loss 0.41660600 - time (sec): 3.19 - samples/sec: 1913.27 - lr: 0.000049 - momentum: 0.000000
2024-03-26 10:12:30,481 epoch 2 - iter 27/95 - loss 0.40217596 - time (sec): 4.37 - samples/sec: 1965.47 - lr: 0.000048 - momentum: 0.000000
2024-03-26 10:12:32,723 epoch 2 - iter 36/95 - loss 0.38722517 - time (sec): 6.61 - samples/sec: 1918.56 - lr: 0.000048 - momentum: 0.000000
2024-03-26 10:12:34,656 epoch 2 - iter 45/95 - loss 0.37676757 - time (sec): 8.54 - samples/sec: 1925.24 - lr: 0.000047 - momentum: 0.000000
2024-03-26 10:12:36,809 epoch 2 - iter 54/95 - loss 0.36567606 - time (sec): 10.69 - samples/sec: 1897.06 - lr: 0.000047 - momentum: 0.000000
2024-03-26 10:12:38,805 epoch 2 - iter 63/95 - loss 0.35177076 - time (sec): 12.69 - samples/sec: 1852.39 - lr: 0.000046 - momentum: 0.000000
2024-03-26 10:12:40,311 epoch 2 - iter 72/95 - loss 0.35231443 - time (sec): 14.20 - samples/sec: 1860.87 - lr: 0.000046 - momentum: 0.000000
2024-03-26 10:12:41,751 epoch 2 - iter 81/95 - loss 0.35619563 - time (sec): 15.64 - samples/sec: 1883.95 - lr: 0.000045 - momentum: 0.000000
2024-03-26 10:12:43,960 epoch 2 - iter 90/95 - loss 0.34268426 - time (sec): 17.85 - samples/sec: 1858.76 - lr: 0.000045 - momentum: 0.000000
2024-03-26 10:12:44,600 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:44,600 EPOCH 2 done: loss 0.3389 - lr: 0.000045
2024-03-26 10:12:45,487 DEV : loss 0.2517702877521515 - f1-score (micro avg) 0.8598
2024-03-26 10:12:45,488 saving best model
2024-03-26 10:12:45,916 ----------------------------------------------------------------------------------------------------
2024-03-26 10:12:47,544 epoch 3 - iter 9/95 - loss 0.18626350 - time (sec): 1.63 - samples/sec: 1836.16 - lr: 0.000044 - momentum: 0.000000
2024-03-26 10:12:49,324 epoch 3 - iter 18/95 - loss 0.16963537 - time (sec): 3.41 - samples/sec: 1858.50 - lr: 0.000043 - momentum: 0.000000
2024-03-26 10:12:50,515 epoch 3 - iter 27/95 - loss 0.18166954 - time (sec): 4.60 - samples/sec: 2032.19 - lr: 0.000043 - momentum: 0.000000
2024-03-26 10:12:52,065 epoch 3 - iter 36/95 - loss 0.17639533 - time (sec): 6.15 - samples/sec: 2020.76 - lr: 0.000042 - momentum: 0.000000
2024-03-26 10:12:53,470 epoch 3 - iter 45/95 - loss 0.17991451 - time (sec): 7.55 - samples/sec: 2029.39 - lr: 0.000042 - momentum: 0.000000
2024-03-26 10:12:55,457 epoch 3 - iter 54/95 - loss 0.17836259 - time (sec): 9.54 - samples/sec: 1981.19 - lr: 0.000041 - momentum: 0.000000
2024-03-26 10:12:57,451 epoch 3 - iter 63/95 - loss 0.17801210 - time (sec): 11.53 - samples/sec: 1930.20 - lr: 0.000041 - momentum: 0.000000
2024-03-26 10:12:59,290 epoch 3 - iter 72/95 - loss 0.17908359 - time (sec): 13.37 - samples/sec: 1912.74 - lr: 0.000040 - momentum: 0.000000
2024-03-26 10:13:01,293 epoch 3 - iter 81/95 - loss 0.17473687 - time (sec): 15.38 - samples/sec: 1885.59 - lr: 0.000040 - momentum: 0.000000
2024-03-26 10:13:03,243 epoch 3 - iter 90/95 - loss 0.18331440 - time (sec): 17.33 - samples/sec: 1887.20 - lr: 0.000039 - momentum: 0.000000
2024-03-26 10:13:04,335 ----------------------------------------------------------------------------------------------------
2024-03-26 10:13:04,336 EPOCH 3 done: loss 0.1780 - lr: 0.000039
2024-03-26 10:13:05,235 DEV : loss 0.21343179047107697 - f1-score (micro avg) 0.8682
2024-03-26 10:13:05,236 saving best model
2024-03-26 10:13:05,669 ----------------------------------------------------------------------------------------------------
2024-03-26 10:13:06,950 epoch 4 - iter 9/95 - loss 0.12934404 - time (sec): 1.28 - samples/sec: 2171.15 - lr: 0.000039 - momentum: 0.000000
2024-03-26 10:13:08,782 epoch 4 - iter 18/95 - loss 0.11598588 - time (sec): 3.11 - samples/sec: 1975.63 - lr: 0.000038 - momentum: 0.000000
2024-03-26 10:13:10,695 epoch 4 - iter 27/95 - loss 0.11184561 - time (sec): 5.02 - samples/sec: 1922.31 - lr: 0.000037 - momentum: 0.000000
2024-03-26 10:13:12,169 epoch 4 - iter 36/95 - loss 0.10779297 - time (sec): 6.50 - samples/sec: 1930.71 - lr: 0.000037 - momentum: 0.000000
2024-03-26 10:13:14,583 epoch 4 - iter 45/95 - loss 0.10822640 - time (sec): 8.91 - samples/sec: 1854.16 - lr: 0.000036 - momentum: 0.000000
2024-03-26 10:13:16,423 epoch 4 - iter 54/95 - loss 0.10627905 - time (sec): 10.75 - samples/sec: 1835.61 - lr: 0.000036 - momentum: 0.000000
2024-03-26 10:13:18,347 epoch 4 - iter 63/95 - loss 0.10563130 - time (sec): 12.68 - samples/sec: 1814.36 - lr: 0.000035 - momentum: 0.000000
2024-03-26 10:13:20,216 epoch 4 - iter 72/95 - loss 0.11061803 - time (sec): 14.54 - samples/sec: 1829.28 - lr: 0.000035 - momentum: 0.000000
2024-03-26 10:13:22,230 epoch 4 - iter 81/95 - loss 0.11629637 - time (sec): 16.56 - samples/sec: 1825.85 - lr: 0.000034 - momentum: 0.000000
2024-03-26 10:13:23,199 epoch 4 - iter 90/95 - loss 0.11624132 - time (sec): 17.53 - samples/sec: 1865.91 - lr: 0.000034 - momentum: 0.000000
2024-03-26 10:13:24,226 ----------------------------------------------------------------------------------------------------
2024-03-26 10:13:24,226 EPOCH 4 done: loss 0.1162 - lr: 0.000034
2024-03-26 10:13:25,126 DEV : loss 0.17539489269256592 - f1-score (micro avg) 0.9069
2024-03-26 10:13:25,128 saving best model
2024-03-26 10:13:25,559 ----------------------------------------------------------------------------------------------------
2024-03-26 10:13:27,443 epoch 5 - iter 9/95 - loss 0.07744264 - time (sec): 1.88 - samples/sec: 1825.68 - lr: 0.000033 - momentum: 0.000000
2024-03-26 10:13:28,876 epoch 5 - iter 18/95 - loss 0.07305274 - time (sec): 3.32 - samples/sec: 1887.57 - lr: 0.000032 - momentum: 0.000000
2024-03-26 10:13:30,235 epoch 5 - iter 27/95 - loss 0.08372766 - time (sec): 4.67 - samples/sec: 1931.87 - lr: 0.000032 - momentum: 0.000000
2024-03-26 10:13:32,114 epoch 5 - iter 36/95 - loss 0.08762107 - time (sec): 6.55 - samples/sec: 1872.88 - lr: 0.000031 - momentum: 0.000000
2024-03-26 10:13:34,321 epoch 5 - iter 45/95 - loss 0.08538004 - time (sec): 8.76 - samples/sec: 1858.35 - lr: 0.000031 - momentum: 0.000000
2024-03-26 10:13:36,754 epoch 5 - iter 54/95 - loss 0.08449088 - time (sec): 11.19 - samples/sec: 1814.50 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:13:38,420 epoch 5 - iter 63/95 - loss 0.08194794 - time (sec): 12.86 - samples/sec: 1806.64 - lr: 0.000030 - momentum: 0.000000
2024-03-26 10:13:40,188 epoch 5 - iter 72/95 - loss 0.08370354 - time (sec): 14.63 - samples/sec: 1808.03 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:13:42,386 epoch 5 - iter 81/95 - loss 0.08624660 - time (sec): 16.83 - samples/sec: 1793.37 - lr: 0.000029 - momentum: 0.000000
2024-03-26 10:13:43,778 epoch 5 - iter 90/95 - loss 0.08725992 - time (sec): 18.22 - samples/sec: 1809.23 - lr: 0.000028 - momentum: 0.000000
2024-03-26 10:13:44,549 ----------------------------------------------------------------------------------------------------
2024-03-26 10:13:44,549 EPOCH 5 done: loss 0.0853 - lr: 0.000028
2024-03-26 10:13:45,528 DEV : loss 0.15603235363960266 - f1-score (micro avg) 0.9191
2024-03-26 10:13:45,529 saving best model
2024-03-26 10:13:45,955 ----------------------------------------------------------------------------------------------------
2024-03-26 10:13:47,889 epoch 6 - iter 9/95 - loss 0.05189760 - time (sec): 1.93 - samples/sec: 1805.09 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:13:49,440 epoch 6 - iter 18/95 - loss 0.05290575 - time (sec): 3.48 - samples/sec: 1826.05 - lr: 0.000027 - momentum: 0.000000
2024-03-26 10:13:51,348 epoch 6 - iter 27/95 - loss 0.05365903 - time (sec): 5.39 - samples/sec: 1834.17 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:13:52,910 epoch 6 - iter 36/95 - loss 0.05604796 - time (sec): 6.95 - samples/sec: 1834.10 - lr: 0.000026 - momentum: 0.000000
2024-03-26 10:13:54,366 epoch 6 - iter 45/95 - loss 0.05515355 - time (sec): 8.41 - samples/sec: 1870.09 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:13:55,813 epoch 6 - iter 54/95 - loss 0.05376542 - time (sec): 9.86 - samples/sec: 1868.77 - lr: 0.000025 - momentum: 0.000000
2024-03-26 10:13:57,095 epoch 6 - iter 63/95 - loss 0.05273952 - time (sec): 11.14 - samples/sec: 1930.27 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:13:59,339 epoch 6 - iter 72/95 - loss 0.06092265 - time (sec): 13.38 - samples/sec: 1897.59 - lr: 0.000024 - momentum: 0.000000
2024-03-26 10:14:00,927 epoch 6 - iter 81/95 - loss 0.05912352 - time (sec): 14.97 - samples/sec: 1914.17 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:14:02,632 epoch 6 - iter 90/95 - loss 0.06035882 - time (sec): 16.68 - samples/sec: 1932.85 - lr: 0.000023 - momentum: 0.000000
2024-03-26 10:14:03,897 ----------------------------------------------------------------------------------------------------
2024-03-26 10:14:03,897 EPOCH 6 done: loss 0.0603 - lr: 0.000023
2024-03-26 10:14:04,793 DEV : loss 0.16718925535678864 - f1-score (micro avg) 0.9201
2024-03-26 10:14:04,794 saving best model
2024-03-26 10:14:05,238 ----------------------------------------------------------------------------------------------------
2024-03-26 10:14:07,130 epoch 7 - iter 9/95 - loss 0.05321789 - time (sec): 1.89 - samples/sec: 1679.94 - lr: 0.000022 - momentum: 0.000000
2024-03-26 10:14:09,176 epoch 7 - iter 18/95 - loss 0.03684477 - time (sec): 3.94 - samples/sec: 1665.45 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:14:10,709 epoch 7 - iter 27/95 - loss 0.03258736 - time (sec): 5.47 - samples/sec: 1788.71 - lr: 0.000021 - momentum: 0.000000
2024-03-26 10:14:12,654 epoch 7 - iter 36/95 - loss 0.03305511 - time (sec): 7.41 - samples/sec: 1777.21 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:14:15,035 epoch 7 - iter 45/95 - loss 0.03992535 - time (sec): 9.80 - samples/sec: 1770.36 - lr: 0.000020 - momentum: 0.000000
2024-03-26 10:14:16,548 epoch 7 - iter 54/95 - loss 0.03978942 - time (sec): 11.31 - samples/sec: 1778.83 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:14:18,735 epoch 7 - iter 63/95 - loss 0.04213624 - time (sec): 13.49 - samples/sec: 1784.59 - lr: 0.000019 - momentum: 0.000000
2024-03-26 10:14:20,525 epoch 7 - iter 72/95 - loss 0.04587297 - time (sec): 15.29 - samples/sec: 1790.89 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:14:21,947 epoch 7 - iter 81/95 - loss 0.04361343 - time (sec): 16.71 - samples/sec: 1802.97 - lr: 0.000018 - momentum: 0.000000
2024-03-26 10:14:23,915 epoch 7 - iter 90/95 - loss 0.04536795 - time (sec): 18.68 - samples/sec: 1783.65 - lr: 0.000017 - momentum: 0.000000
2024-03-26 10:14:24,399 ----------------------------------------------------------------------------------------------------
2024-03-26 10:14:24,399 EPOCH 7 done: loss 0.0462 - lr: 0.000017
2024-03-26 10:14:25,307 DEV : loss 0.16716967523097992 - f1-score (micro avg) 0.9411
2024-03-26 10:14:25,308 saving best model
2024-03-26 10:14:25,747 ----------------------------------------------------------------------------------------------------
2024-03-26 10:14:27,627 epoch 8 - iter 9/95 - loss 0.01951604 - time (sec): 1.88 - samples/sec: 1708.16 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:14:30,113 epoch 8 - iter 18/95 - loss 0.01840664 - time (sec): 4.36 - samples/sec: 1697.69 - lr: 0.000016 - momentum: 0.000000
2024-03-26 10:14:31,879 epoch 8 - iter 27/95 - loss 0.02281365 - time (sec): 6.13 - samples/sec: 1736.13 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:14:33,422 epoch 8 - iter 36/95 - loss 0.02354290 - time (sec): 7.67 - samples/sec: 1728.02 - lr: 0.000015 - momentum: 0.000000
2024-03-26 10:14:34,930 epoch 8 - iter 45/95 - loss 0.02180613 - time (sec): 9.18 - samples/sec: 1759.24 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:14:36,592 epoch 8 - iter 54/95 - loss 0.02226186 - time (sec): 10.84 - samples/sec: 1779.13 - lr: 0.000014 - momentum: 0.000000
2024-03-26 10:14:38,783 epoch 8 - iter 63/95 - loss 0.03092783 - time (sec): 13.03 - samples/sec: 1775.62 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:14:41,032 epoch 8 - iter 72/95 - loss 0.03257996 - time (sec): 15.28 - samples/sec: 1756.12 - lr: 0.000013 - momentum: 0.000000
2024-03-26 10:14:42,690 epoch 8 - iter 81/95 - loss 0.03612619 - time (sec): 16.94 - samples/sec: 1758.38 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:14:43,981 epoch 8 - iter 90/95 - loss 0.03615101 - time (sec): 18.23 - samples/sec: 1800.86 - lr: 0.000012 - momentum: 0.000000
2024-03-26 10:14:44,878 ----------------------------------------------------------------------------------------------------
2024-03-26 10:14:44,878 EPOCH 8 done: loss 0.0350 - lr: 0.000012
2024-03-26 10:14:45,778 DEV : loss 0.1608782857656479 - f1-score (micro avg) 0.9517
2024-03-26 10:14:45,779 saving best model
2024-03-26 10:14:46,223 ----------------------------------------------------------------------------------------------------
2024-03-26 10:14:48,197 epoch 9 - iter 9/95 - loss 0.01453760 - time (sec): 1.97 - samples/sec: 1787.94 - lr: 0.000011 - momentum: 0.000000
2024-03-26 10:14:49,915 epoch 9 - iter 18/95 - loss 0.02446034 - time (sec): 3.69 - samples/sec: 1813.90 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:14:51,796 epoch 9 - iter 27/95 - loss 0.02473284 - time (sec): 5.57 - samples/sec: 1834.03 - lr: 0.000010 - momentum: 0.000000
2024-03-26 10:14:53,651 epoch 9 - iter 36/95 - loss 0.02318813 - time (sec): 7.43 - samples/sec: 1828.97 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:14:55,908 epoch 9 - iter 45/95 - loss 0.02045251 - time (sec): 9.68 - samples/sec: 1750.46 - lr: 0.000009 - momentum: 0.000000
2024-03-26 10:14:57,835 epoch 9 - iter 54/95 - loss 0.02611207 - time (sec): 11.61 - samples/sec: 1738.74 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:14:59,723 epoch 9 - iter 63/95 - loss 0.02537917 - time (sec): 13.50 - samples/sec: 1749.31 - lr: 0.000008 - momentum: 0.000000
2024-03-26 10:15:01,602 epoch 9 - iter 72/95 - loss 0.02461298 - time (sec): 15.38 - samples/sec: 1752.48 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:15:02,853 epoch 9 - iter 81/95 - loss 0.02473164 - time (sec): 16.63 - samples/sec: 1775.52 - lr: 0.000007 - momentum: 0.000000
2024-03-26 10:15:04,257 epoch 9 - iter 90/95 - loss 0.02719568 - time (sec): 18.03 - samples/sec: 1797.34 - lr: 0.000006 - momentum: 0.000000
2024-03-26 10:15:05,204 ----------------------------------------------------------------------------------------------------
2024-03-26 10:15:05,204 EPOCH 9 done: loss 0.0265 - lr: 0.000006
2024-03-26 10:15:06,105 DEV : loss 0.18035191297531128 - f1-score (micro avg) 0.9468
2024-03-26 10:15:06,106 ----------------------------------------------------------------------------------------------------
2024-03-26 10:15:08,246 epoch 10 - iter 9/95 - loss 0.00557531 - time (sec): 2.14 - samples/sec: 1781.65 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:15:09,506 epoch 10 - iter 18/95 - loss 0.00880795 - time (sec): 3.40 - samples/sec: 1904.54 - lr: 0.000005 - momentum: 0.000000
2024-03-26 10:15:10,813 epoch 10 - iter 27/95 - loss 0.02526886 - time (sec): 4.71 - samples/sec: 2014.92 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:15:12,166 epoch 10 - iter 36/95 - loss 0.02295782 - time (sec): 6.06 - samples/sec: 2035.49 - lr: 0.000004 - momentum: 0.000000
2024-03-26 10:15:14,123 epoch 10 - iter 45/95 - loss 0.01953834 - time (sec): 8.02 - samples/sec: 1986.50 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:15:15,695 epoch 10 - iter 54/95 - loss 0.01921737 - time (sec): 9.59 - samples/sec: 1977.11 - lr: 0.000003 - momentum: 0.000000
2024-03-26 10:15:18,215 epoch 10 - iter 63/95 - loss 0.02060934 - time (sec): 12.11 - samples/sec: 1898.74 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:15:19,503 epoch 10 - iter 72/95 - loss 0.01949359 - time (sec): 13.40 - samples/sec: 1903.48 - lr: 0.000002 - momentum: 0.000000
2024-03-26 10:15:21,840 epoch 10 - iter 81/95 - loss 0.01845566 - time (sec): 15.73 - samples/sec: 1851.36 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:15:24,060 epoch 10 - iter 90/95 - loss 0.02088092 - time (sec): 17.95 - samples/sec: 1831.79 - lr: 0.000001 - momentum: 0.000000
2024-03-26 10:15:25,122 ----------------------------------------------------------------------------------------------------
2024-03-26 10:15:25,122 EPOCH 10 done: loss 0.0206 - lr: 0.000001
2024-03-26 10:15:26,019 DEV : loss 0.18286916613578796 - f1-score (micro avg) 0.9417
2024-03-26 10:15:26,304 ----------------------------------------------------------------------------------------------------
2024-03-26 10:15:26,304 Loading model from best epoch ...
2024-03-26 10:15:27,155 SequenceTagger predicts: Dictionary with 17 tags: O, S-Unternehmen, B-Unternehmen, E-Unternehmen, I-Unternehmen, S-Auslagerung, B-Auslagerung, E-Auslagerung, I-Auslagerung, S-Ort, B-Ort, E-Ort, I-Ort, S-Software, B-Software, E-Software, I-Software
2024-03-26 10:15:27,901
Results:
- F-score (micro) 0.9163
- F-score (macro) 0.6959
- Accuracy 0.8504
By class:
precision recall f1-score support
Unternehmen 0.9173 0.8759 0.8962 266
Auslagerung 0.8851 0.9277 0.9059 249
Ort 0.9708 0.9925 0.9815 134
Software 0.0000 0.0000 0.0000 0
micro avg 0.9128 0.9199 0.9163 649
macro avg 0.6933 0.6990 0.6959 649
weighted avg 0.9160 0.9199 0.9175 649
2024-03-26 10:15:27,901 ----------------------------------------------------------------------------------------------------
|