File size: 2,744 Bytes
749ad87
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
base_model: roneneldan/TinyStories-1M
tags:
- generated_from_trainer
model-index:
- name: tinylm1M-stella-2sent_5clust-2025-04-04-12-24
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tinylm1M-stella-2sent_5clust-2025-04-04-12-24

This model is a fine-tuned version of [roneneldan/TinyStories-1M](https://huggingface.co/roneneldan/TinyStories-1M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.1698

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step  | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 2.6016        | 0.8418  | 500   | 2.5458          |
| 2.5545        | 1.6835  | 1000  | 2.5004          |
| 2.5733        | 2.5253  | 1500  | 2.4655          |
| 2.4717        | 3.3670  | 2000  | 2.4386          |
| 2.365         | 4.2088  | 2500  | 2.4093          |
| 2.3427        | 5.0505  | 3000  | 2.3835          |
| 2.3003        | 5.8923  | 3500  | 2.3546          |
| 2.3064        | 6.7340  | 4000  | 2.3315          |
| 2.2726        | 7.5758  | 4500  | 2.3080          |
| 2.2797        | 8.4175  | 5000  | 2.2870          |
| 2.2189        | 9.2593  | 5500  | 2.2659          |
| 2.2203        | 10.1010 | 6000  | 2.2510          |
| 2.2523        | 10.9428 | 6500  | 2.2368          |
| 2.2397        | 11.7845 | 7000  | 2.2251          |
| 2.2432        | 12.6263 | 7500  | 2.2137          |
| 2.119         | 13.4680 | 8000  | 2.2050          |
| 2.218         | 14.3098 | 8500  | 2.1953          |
| 2.3126        | 15.1515 | 9000  | 2.1882          |
| 2.1349        | 15.9933 | 9500  | 2.1825          |
| 2.2523        | 16.8350 | 10000 | 2.1788          |
| 2.1253        | 17.6768 | 10500 | 2.1735          |
| 2.1524        | 18.5185 | 11000 | 2.1706          |
| 2.0636        | 19.3603 | 11500 | 2.1698          |


### Framework versions

- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1