File size: 2,746 Bytes
d0ff220
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
---
library_name: transformers
base_model: roneneldan/TinyStories-1M
tags:
- generated_from_trainer
model-index:
- name: tinylm1M-stella-2sent_32clust-2025-04-04-13-49
  results: []
---

<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->

# tinylm1M-stella-2sent_32clust-2025-04-04-13-49

This model is a fine-tuned version of [roneneldan/TinyStories-1M](https://huggingface.co/roneneldan/TinyStories-1M) on the None dataset.
It achieves the following results on the evaluation set:
- Loss: 2.2485

## Model description

More information needed

## Intended uses & limitations

More information needed

## Training and evaluation data

More information needed

## Training procedure

### Training hyperparameters

The following hyperparameters were used during training:
- learning_rate: 5e-06
- train_batch_size: 4
- eval_batch_size: 8
- seed: 42
- gradient_accumulation_steps: 2
- total_train_batch_size: 8
- optimizer: Use OptimizerNames.PAGED_ADAMW_8BIT with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 100
- num_epochs: 20

### Training results

| Training Loss | Epoch   | Step  | Validation Loss |
|:-------------:|:-------:|:-----:|:---------------:|
| 2.603         | 0.8418  | 500   | 2.5493          |
| 2.5641        | 1.6835  | 1000  | 2.5072          |
| 2.5856        | 2.5253  | 1500  | 2.4748          |
| 2.4812        | 3.3670  | 2000  | 2.4526          |
| 2.3806        | 4.2088  | 2500  | 2.4287          |
| 2.365         | 5.0505  | 3000  | 2.4067          |
| 2.3335        | 5.8923  | 3500  | 2.3860          |
| 2.3483        | 6.7340  | 4000  | 2.3676          |
| 2.3202        | 7.5758  | 4500  | 2.3528          |
| 2.3296        | 8.4175  | 5000  | 2.3395          |
| 2.2774        | 9.2593  | 5500  | 2.3251          |
| 2.2768        | 10.1010 | 6000  | 2.3136          |
| 2.312         | 10.9428 | 6500  | 2.3000          |
| 2.2991        | 11.7845 | 7000  | 2.2903          |
| 2.3076        | 12.6263 | 7500  | 2.2813          |
| 2.1882        | 13.4680 | 8000  | 2.2751          |
| 2.2872        | 14.3098 | 8500  | 2.2669          |
| 2.3859        | 15.1515 | 9000  | 2.2619          |
| 2.2089        | 15.9933 | 9500  | 2.2582          |
| 2.3199        | 16.8350 | 10000 | 2.2533          |
| 2.1989        | 17.6768 | 10500 | 2.2504          |
| 2.2267        | 18.5185 | 11000 | 2.2499          |
| 2.1404        | 19.3603 | 11500 | 2.2485          |


### Framework versions

- Transformers 4.50.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1