File size: 2,481 Bytes
6c9c3da 3e91af9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 |
---
license: mit
---
# Med-VAE
Med-VAE is a family of six large-scale, generalizable 2D and 3D variational autoencoders (VAEs) designed for medical imaging. It is trained on over one million medical images across multiple anatomical regions and modalities. Med-VAE autoencoders encode medical images as downsized latent representations and decode latent representations back to high-resolution images. Across diverse tasks obtained from 20 medical image datasets, we demonstrate that utilizing MedVAE latent representations in place of high-resolution images when training downstream models can lead to efficiency benefits (up to 70x improvement in throughput) while simultaneously preserving clinically-relevant features.
[💻 Github](https://github.com/StanfordMIMI/MedVAE)
## Model Description
| Total Compression Factor | Channels | Dimensions | Modalities | Anatomies | Config File | Model File |
|----------|----------|----------|----------|----------|----------|----------|
| 16 | 1 | 2D | X-ray | Chest, Breast (FFDM) | [medvae_4x1.yaml ](model_weights/medvae_4x1.yaml)| [vae_4x_1c_2D.ckpt](model_weights/vae_4x_1c_2D.ckpt)
| 16 | 3 | 2D | X-ray | Chest, Breast (FFDM) | [medvae_4x3.yaml](model_weights/medvae_4x3.yaml) | [vae_4x_3c_2D.ckpt](model_weights/vae_4x_3c_2D.ckpt)
| 64 | 1 | 2D | X-ray | Chest, Breast (FFDM) | [medvae_8x1.yaml](model_weights/medvae_8x1.yaml) | [vae_8x_1c_2D.ckpt](model_weights/vae_8x_1c_2D.ckpt)
| 64 | 3 | 2D | X-ray | Chest, Breast (FFDM) | [medvae_8x4.yaml](model_weights/medvae_8x4.yaml) | [vae_8x_4c_2D.ckpt](model_weights/vae_8x_4c_2D.ckpt)
| 64 | 1 | 3D | MRI, CT | Whole-Body | [medvae_4x1.yaml ](model_weights/medvae_4x1.yaml) | [vae_4x_1c_3D.ckpt](model_weights/vae_4x_1c_3D.ckpt)
| 512 | 1 | 3D | MRI, CT | Whole-Body | [medvae_8x1.yaml](model_weights/medvae_8x1.yaml) | [vae_8x_1c_3D.ckpt](model_weights/vae_8x_1c_3D.ckpt)
Note: Model weights and checkpoints are located in the `model_weights` folder.
## Usage Instructions
## Citation
If you use Med-VAE, please cite the original paper:
```bibtex
@article{varma2025medvae,
title = {Med-VAE: --},
author = {Maya Varma, Ashwin Kumar, Rogier van der Sluijs, Sophie Ostmeier, Louis Blankemeier, Pierre Chambon, Christian Bluethgen, Jip Prince, Curtis Langlotz, Akshay Chaudhari},
year = {2025},
publisher = {Arxiv},
journal = {Arvix},
howpublished = {TODO}
}
```
For questions, please place a Github Issues message.
|