update README
Browse files
README.md
CHANGED
|
@@ -68,38 +68,158 @@ steps), SDXL (50 inference steps), SDXL Turbo (1 inference step) and Würstchen
|
|
| 68 |
|
| 69 |
## Code Example
|
| 70 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 71 |
```python
|
| 72 |
import torch
|
| 73 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
| 74 |
|
| 75 |
-
|
| 76 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 77 |
|
| 78 |
-
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
|
| 81 |
-
prompt = "
|
| 82 |
negative_prompt = ""
|
| 83 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 84 |
prior_output = prior(
|
| 85 |
prompt=prompt,
|
| 86 |
height=1024,
|
| 87 |
width=1024,
|
| 88 |
negative_prompt=negative_prompt,
|
| 89 |
guidance_scale=4.0,
|
| 90 |
-
num_images_per_prompt=
|
| 91 |
num_inference_steps=20
|
| 92 |
)
|
|
|
|
|
|
|
| 93 |
decoder_output = decoder(
|
| 94 |
-
image_embeddings=prior_output.image_embeddings
|
| 95 |
prompt=prompt,
|
| 96 |
negative_prompt=negative_prompt,
|
| 97 |
guidance_scale=0.0,
|
| 98 |
output_type="pil",
|
| 99 |
num_inference_steps=10
|
| 100 |
-
).images
|
|
|
|
|
|
|
| 101 |
|
| 102 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
```
|
| 104 |
|
| 105 |
## Uses
|
|
|
|
| 68 |
|
| 69 |
## Code Example
|
| 70 |
|
| 71 |
+
**Note:** In order to use the `torch.bfloat16` data type with the `StableCascadeDecoderPipeline` you need to have PyTorch 2.2.0 or higher installed. This also means that using the `StableCascadeCombinedPipeline` with `torch.bfloat16` requires PyTorch 2.2.0 or higher, since it calls the StableCascadeDecoderPipeline internally.
|
| 72 |
+
|
| 73 |
+
If it is not possible to install PyTorch 2.2.0 or higher in your environment, the `StableCascadeDecoderPipeline` can be used on its own with the torch.float16 data type. You can download the full precision or bf16 variant weights for the pipeline and cast the weights to torch.float16.
|
| 74 |
+
|
| 75 |
+
```shell
|
| 76 |
+
pip install diffusers
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
```python
|
| 80 |
import torch
|
| 81 |
from diffusers import StableCascadeDecoderPipeline, StableCascadePriorPipeline
|
| 82 |
|
| 83 |
+
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
| 84 |
+
negative_prompt = ""
|
| 85 |
+
|
| 86 |
+
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", variant="bf16", torch_dtype=torch.bfloat16)
|
| 87 |
+
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.float16)
|
| 88 |
+
|
| 89 |
+
prior.enable_model_cpu_offload()
|
| 90 |
+
prior_output = prior(
|
| 91 |
+
prompt=prompt,
|
| 92 |
+
height=1024,
|
| 93 |
+
width=1024,
|
| 94 |
+
negative_prompt=negative_prompt,
|
| 95 |
+
guidance_scale=4.0,
|
| 96 |
+
num_images_per_prompt=1,
|
| 97 |
+
num_inference_steps=20
|
| 98 |
+
)
|
| 99 |
+
|
| 100 |
+
decoder.enable_model_cpu_offload()
|
| 101 |
+
decoder_output = decoder(
|
| 102 |
+
image_embeddings=prior_output.image_embeddings.to(torch.float16),
|
| 103 |
+
prompt=prompt,
|
| 104 |
+
negative_prompt=negative_prompt,
|
| 105 |
+
guidance_scale=0.0,
|
| 106 |
+
output_type="pil",
|
| 107 |
+
num_inference_steps=10
|
| 108 |
+
).images[0]
|
| 109 |
+
decoder_output.save("cascade.png")
|
| 110 |
+
```
|
| 111 |
+
|
| 112 |
+
### Using the Lite Version of the Stage B and Stage C models
|
| 113 |
+
|
| 114 |
+
```python
|
| 115 |
+
import torch
|
| 116 |
+
from diffusers import (
|
| 117 |
+
StableCascadeDecoderPipeline,
|
| 118 |
+
StableCascadePriorPipeline,
|
| 119 |
+
StableCascadeUNet,
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
| 123 |
+
negative_prompt = ""
|
| 124 |
+
|
| 125 |
+
prior_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade-prior", subfolder="prior_lite")
|
| 126 |
+
decoder_unet = StableCascadeUNet.from_pretrained("stabilityai/stable-cascade", subfolder="decoder_lite")
|
| 127 |
+
|
| 128 |
+
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet)
|
| 129 |
+
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet)
|
| 130 |
+
|
| 131 |
+
prior.enable_model_cpu_offload()
|
| 132 |
+
prior_output = prior(
|
| 133 |
+
prompt=prompt,
|
| 134 |
+
height=1024,
|
| 135 |
+
width=1024,
|
| 136 |
+
negative_prompt=negative_prompt,
|
| 137 |
+
guidance_scale=4.0,
|
| 138 |
+
num_images_per_prompt=1,
|
| 139 |
+
num_inference_steps=20
|
| 140 |
+
)
|
| 141 |
+
|
| 142 |
+
decoder.enable_model_cpu_offload()
|
| 143 |
+
decoder_output = decoder(
|
| 144 |
+
image_embeddings=prior_output.image_embeddings,
|
| 145 |
+
prompt=prompt,
|
| 146 |
+
negative_prompt=negative_prompt,
|
| 147 |
+
guidance_scale=0.0,
|
| 148 |
+
output_type="pil",
|
| 149 |
+
num_inference_steps=10
|
| 150 |
+
).images[0]
|
| 151 |
+
decoder_output.save("cascade.png")
|
| 152 |
+
```
|
| 153 |
+
|
| 154 |
+
### Loading original checkpoints with `from_single_file`
|
| 155 |
+
|
| 156 |
+
Loading the original format checkpoints is supported via `from_single_file` method in the StableCascadeUNet.
|
| 157 |
|
| 158 |
+
```python
|
| 159 |
+
import torch
|
| 160 |
+
from diffusers import (
|
| 161 |
+
StableCascadeDecoderPipeline,
|
| 162 |
+
StableCascadePriorPipeline,
|
| 163 |
+
StableCascadeUNet,
|
| 164 |
+
)
|
| 165 |
|
| 166 |
+
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
| 167 |
negative_prompt = ""
|
| 168 |
|
| 169 |
+
prior_unet = StableCascadeUNet.from_single_file(
|
| 170 |
+
"https://huggingface.co/stabilityai/stable-cascade/resolve/main/stage_c_bf16.safetensors",
|
| 171 |
+
torch_dtype=torch.bfloat16
|
| 172 |
+
)
|
| 173 |
+
decoder_unet = StableCascadeUNet.from_single_file(
|
| 174 |
+
"https://huggingface.co/stabilityai/stable-cascade/blob/main/stage_b_bf16.safetensors",
|
| 175 |
+
torch_dtype=torch.bfloat16
|
| 176 |
+
)
|
| 177 |
+
|
| 178 |
+
prior = StableCascadePriorPipeline.from_pretrained("stabilityai/stable-cascade-prior", prior=prior_unet, torch_dtype=torch.bfloat16)
|
| 179 |
+
decoder = StableCascadeDecoderPipeline.from_pretrained("stabilityai/stable-cascade", decoder=decoder_unet, torch_dtype=torch.bfloat16)
|
| 180 |
+
|
| 181 |
+
prior.enable_model_cpu_offload()
|
| 182 |
prior_output = prior(
|
| 183 |
prompt=prompt,
|
| 184 |
height=1024,
|
| 185 |
width=1024,
|
| 186 |
negative_prompt=negative_prompt,
|
| 187 |
guidance_scale=4.0,
|
| 188 |
+
num_images_per_prompt=1,
|
| 189 |
num_inference_steps=20
|
| 190 |
)
|
| 191 |
+
|
| 192 |
+
decoder.enable_model_cpu_offload()
|
| 193 |
decoder_output = decoder(
|
| 194 |
+
image_embeddings=prior_output.image_embeddings,
|
| 195 |
prompt=prompt,
|
| 196 |
negative_prompt=negative_prompt,
|
| 197 |
guidance_scale=0.0,
|
| 198 |
output_type="pil",
|
| 199 |
num_inference_steps=10
|
| 200 |
+
).images[0]
|
| 201 |
+
decoder_output.save("cascade-single-file.png")
|
| 202 |
+
```
|
| 203 |
|
| 204 |
+
### Using the `StableCascadeCombinedPipeline`
|
| 205 |
+
|
| 206 |
+
```python
|
| 207 |
+
from diffsers import StableCascadeCombinedPipeline
|
| 208 |
+
|
| 209 |
+
pipe = StableCascadeCombinedPipeline.from_pretrained("stabilityai/stable-cascade", variant="bf16", torch_dtype=torch.bfloat16)
|
| 210 |
+
|
| 211 |
+
prompt = "an image of a shiba inu, donning a spacesuit and helmet"
|
| 212 |
+
negative_prompt = ""
|
| 213 |
+
|
| 214 |
+
pipe(
|
| 215 |
+
prompt="photorealistic portrait artwork of an floral robot with a dark night cyberpunk city background",
|
| 216 |
+
negative_prompt="",
|
| 217 |
+
num_inference_steps=10,
|
| 218 |
+
prior_num_inference_steps=20,
|
| 219 |
+
prior_guidance_scale=3.0,
|
| 220 |
+
width=1024,
|
| 221 |
+
height=1024,
|
| 222 |
+
).images[0].save("cascade-combined.png")
|
| 223 |
```
|
| 224 |
|
| 225 |
## Uses
|