File size: 5,618 Bytes
b72dd2c
5eefd1b
2a11eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b72dd2c
a5148f4
 
 
 
5eefd1b
 
 
 
 
 
d48c92d
 
ce62c08
d48c92d
 
 
ce62c08
d48c92d
 
ce62c08
2a11eb0
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
---
license: llama2
model-index:
- name: speechless-mistral-7b-dare-0.85
  results:
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: AI2 Reasoning Challenge (25-Shot)
      type: ai2_arc
      config: ARC-Challenge
      split: test
      args:
        num_few_shot: 25
    metrics:
    - type: acc_norm
      value: 63.31
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=speechlessai/speechless-mistral-7b-dare-0.85
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: HellaSwag (10-Shot)
      type: hellaswag
      split: validation
      args:
        num_few_shot: 10
    metrics:
    - type: acc_norm
      value: 84.93
      name: normalized accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=speechlessai/speechless-mistral-7b-dare-0.85
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: MMLU (5-Shot)
      type: cais/mmlu
      config: all
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 64.22
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=speechlessai/speechless-mistral-7b-dare-0.85
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: TruthfulQA (0-shot)
      type: truthful_qa
      config: multiple_choice
      split: validation
      args:
        num_few_shot: 0
    metrics:
    - type: mc2
      value: 50.68
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=speechlessai/speechless-mistral-7b-dare-0.85
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: Winogrande (5-shot)
      type: winogrande
      config: winogrande_xl
      split: validation
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 79.32
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=speechlessai/speechless-mistral-7b-dare-0.85
      name: Open LLM Leaderboard
  - task:
      type: text-generation
      name: Text Generation
    dataset:
      name: GSM8k (5-shot)
      type: gsm8k
      config: main
      split: test
      args:
        num_few_shot: 5
    metrics:
    - type: acc
      value: 19.86
      name: accuracy
    source:
      url: https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard?query=speechlessai/speechless-mistral-7b-dare-0.85
      name: Open LLM Leaderboard
---
* [AWQ model(s) for GPU inference.](https://huggingface.co/TheBloke/speechless-mistral-7B-dare-0.85-AWQ)
* [GPTQ models for GPU inference, with multiple quantisation parameter options.](https://huggingface.co/TheBloke/speechless-mistral-7B-dare-0.85-GPTQ)
* [2, 3, 4, 5, 6 and 8-bit GGUF models for CPU+GPU inference](https://huggingface.co/TheBloke/speechless-mistral-7B-dare-0.85-GGUF)

Experiment for DARE(Drop and REscale), most of the delta parameters can be directly set to zeros without affecting the capabilities of SFT LMs and larger models can tolerate a higher proportion of discarded parameters.

Merged with below DARE models.

weight_mask_rate: 0.85 / use_weight_rescale: True / mask_stratery: random / scaling_coefficient: 1.0

| Model                                                        | Average | ARC    | HellaSwag | MMLU   | TruthfulQA | Winogrande | GSM8K  | 
| ------                                                       | ------  | ------ | ------    | ------ | ------     | ------     | ------ |
| Intel/neural-chat-7b-v3-1                                    | 61.59   | **66.21**  | 83.64     | 62.37  | 59.65      | 78.14      | 19.56  |
| migtissera/SynthIA-7B-v1.3                                   | 59.34   | 62.12  | 83.45     | 62.65  | 51.37      | 78.85      | 17.59  |
| bhenrym14/mistral-7b-platypus-fp16                           | 58.71   | 63.05  | 84.15     | 64.11  | 45.07      | 78.53      | 17.36  |
| jondurbin/airoboros-m-7b-3.1.2                               | 58.75   | 61.86  | 83.51     | 61.91  | 53.75      | 77.58      | 13.87  |
| teknium/CollectiveCognition-v1.1-Mistral-7B                  | 62.92   | 62.12  | 84.17     | 62.35  | **57.62**      | 75.37      | 15.62  |
| uukuguy/speechless-mistral-dolphin-orca-platypus-samantha-7b | 62.06   | 64.33  | 84.4      | 63.72  | 52.52      | 78.37      | 21.38  |
|                                                              |         |        |           |        |            |            |        |
| speechless-mistral-7b-dare-0.85 (Merge 6 DARE models)        | **64.69**   | 63.57  | **84.82**     | **64.29**  | 50.66      | **79.24**      | **45.56**  |

# [Open LLM Leaderboard Evaluation Results](https://huggingface.co/spaces/HuggingFaceH4/open_llm_leaderboard)
Detailed results can be found [here](https://huggingface.co/datasets/open-llm-leaderboard/details_speechlessai__speechless-mistral-7b-dare-0.85)

|             Metric              |Value|
|---------------------------------|----:|
|Avg.                             |60.39|
|AI2 Reasoning Challenge (25-Shot)|63.31|
|HellaSwag (10-Shot)              |84.93|
|MMLU (5-Shot)                    |64.22|
|TruthfulQA (0-shot)              |50.68|
|Winogrande (5-shot)              |79.32|
|GSM8k (5-shot)                   |19.86|