# Generated 2021-12-01 from: # /home/mila/s/subakany/speechbrain-soundskrit/recipes/WHAMandWHAMR/enhancement/hparams/sepformer-wham.yaml # yamllint disable # ################################ # Model: SepFormer for source separation # https://arxiv.org/abs/2010.13154 # # Dataset : WHAM! # ################################ # Basic parameters # Seed needs to be set at top of yaml, before objects with parameters are made # seed: 1234 __set_seed: !apply:torch.manual_seed [1234] # Data params # the data folder for the wham dataset # needs to end with wham_original for the wham dataset # respecting this convention effects the code functionality data_folder: /network/tmp1/subakany/wham_original task: enhancement dereverberate: false # the path for wsj0/si_tr_s/ folder -- only needed if dynamic mixing is used # e.g. /yourpath/wsj0-processed/si_tr_s/ ## you need to convert the original wsj0 to 8k # you can do this conversion with the script ../meta/preprocess_dynamic_mixing.py base_folder_dm: /network/tmp1/subakany/wsj0-processed/si_tr_s/ experiment_name: sepformer-wham-enhancement output_folder: results/sepformer-wham-enhancement/1234 train_log: results/sepformer-wham-enhancement/1234/train_log.txt save_folder: results/sepformer-wham-enhancement/1234/save # the file names should start with whamr instead of whamorg train_data: results/sepformer-wham-enhancement/1234/save/whamorg_tr.csv valid_data: results/sepformer-wham-enhancement/1234/save/whamorg_cv.csv test_data: results/sepformer-wham-enhancement/1234/save/whamorg_tt.csv skip_prep: false # Experiment params auto_mix_prec: true # Set it to True for mixed precision test_only: true num_spks: 1 # set to 3 for wsj0-3mix progressbar: true save_audio: false # Save estimated sources on disk sample_rate: 8000 # Training parameters N_epochs: 200 batch_size: 1 lr: 0.00015 clip_grad_norm: 5 loss_upper_lim: 999999 # this is the upper limit for an acceptable loss # if True, the training sequences are cut to a specified length limit_training_signal_len: false # this is the length of sequences if we choose to limit # the signal length of training sequences training_signal_len: 32000000 # Set it to True to dynamically create mixtures at training time dynamic_mixing: true # Parameters for data augmentation use_wavedrop: false use_speedperturb: true use_speedperturb_sameforeachsource: false use_rand_shift: false min_shift: -8000 max_shift: 8000 speedperturb: !new:speechbrain.lobes.augment.TimeDomainSpecAugment perturb_prob: 1.0 drop_freq_prob: 0.0 drop_chunk_prob: 0.0 sample_rate: 8000 speeds: [95, 100, 105] wavedrop: !new:speechbrain.lobes.augment.TimeDomainSpecAugment perturb_prob: 0.0 drop_freq_prob: 1.0 drop_chunk_prob: 1.0 sample_rate: 8000 # loss thresholding -- this thresholds the training loss threshold_byloss: true threshold: -30 # Encoder parameters N_encoder_out: 256 out_channels: 256 kernel_size: 16 kernel_stride: 8 # Dataloader options dataloader_opts: batch_size: 1 num_workers: 3 # Specifying the network Encoder: &id003 !new:speechbrain.lobes.models.dual_path.Encoder kernel_size: 16 out_channels: 256 SBtfintra: &id001 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock num_layers: 8 d_model: 256 nhead: 8 d_ffn: 1024 dropout: 0 use_positional_encoding: true norm_before: true SBtfinter: &id002 !new:speechbrain.lobes.models.dual_path.SBTransformerBlock num_layers: 8 d_model: 256 nhead: 8 d_ffn: 1024 dropout: 0 use_positional_encoding: true norm_before: true MaskNet: &id005 !new:speechbrain.lobes.models.dual_path.Dual_Path_Model num_spks: 1 in_channels: 256 out_channels: 256 num_layers: 2 K: 250 intra_model: *id001 inter_model: *id002 norm: ln linear_layer_after_inter_intra: false skip_around_intra: true Decoder: &id004 !new:speechbrain.lobes.models.dual_path.Decoder in_channels: 256 out_channels: 1 kernel_size: 16 stride: 8 bias: false optimizer: !name:torch.optim.Adam lr: 0.00015 weight_decay: 0 loss: !name:speechbrain.nnet.losses.get_si_snr_with_pitwrapper lr_scheduler: &id007 !new:speechbrain.nnet.schedulers.ReduceLROnPlateau factor: 0.5 patience: 2 dont_halve_until_epoch: 65 epoch_counter: &id006 !new:speechbrain.utils.epoch_loop.EpochCounter limit: 200 modules: encoder: *id003 decoder: *id004 masknet: *id005 checkpointer: !new:speechbrain.utils.checkpoints.Checkpointer checkpoints_dir: results/sepformer-wham-enhancement/1234/save recoverables: encoder: *id003 decoder: *id004 masknet: *id005 counter: *id006 lr_scheduler: *id007 train_logger: !new:speechbrain.utils.train_logger.FileTrainLogger save_file: results/sepformer-wham-enhancement/1234/train_log.txt