File size: 5,263 Bytes
5e86e9c
 
 
 
 
 
 
 
 
6c7b3e8
 
 
079d451
 
 
 
6c7b3e8
 
079d451
 
 
 
 
 
 
 
 
 
 
6c7b3e8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8465b
5d15940
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eb8465b
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
---
license: apache-2.0
language:
- de
- en
base_model:
- allenai/Molmo-7B-D-0924
pipeline_tag: image-text-to-text
library_name: transformers
---
# ELAM-7B

ELAM (Evaluative Large Action Model) is a Molmo 7B-D-based LAM (Large Action Model) that is also able to evaluate user expectations on screenshots of user interfaces.
It was specifically fine-tuned on 17,708 instructions and evaluations for 6,230 automotive UI images. The images contained German and English text.
All training prompts were English. German content was either translated or quoted directly.

The evaluation dataset [AutomotiveUI-Bench-4K](https://huggingface.co/datasets/sparks-solutions/AutomotiveUI-Bench-4K) is available on Hugging Face.

# Results
## AutomotiveUI-Bench-4K
| Model | Test Action Grounding | Expected Result Grounding | Expected Result Evaluation |
|---|---|---|---|
| InternVL2.5-8B | 26.6 | 5.7 | 64.8 |
| TinyClick | 61.0 | 54.6 | - |
| UGround-V1-7B (Qwen2-VL) | 69.4 | 55.0 | - |
| Molmo-7B-D-0924 | 71.3 | 71.4 | 66.9 |
| LAM-270M (TinyClick) | 73.9 | 59.9 | - |
| ELAM-7B (Molmo) | **87.6** | **77.5** | **78.2** |

# Quick-Start
```
conda create -n elam python=3.10 -y
conda activate elam
pip install datasets==3.5.0 einops==0.8.1 torchvision==0.20.1 accelerate==1.6.0
pip install transformers==4.48.2
```

```python
import re

import torch
from PIL import Image
from transformers import AutoModelForCausalLM, AutoProcessor, GenerationConfig

# Load processor
model_name = "sparks-solutions/ELAM-7B"
processor = AutoProcessor.from_pretrained(model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto")

# Load model
model = AutoModelForCausalLM.from_pretrained(
    model_name, trust_remote_code=True, torch_dtype="bfloat16", device_map="auto"
)


def preprocess_elam_prompt(user_request: str, label_class: str):
    """Apply ELAM prompt template depending on class."""
    if label_class == "Expected Result":
        return f"Evaluate this statement about the image:\n'{user_request}'\nThink step by step, conclude whether the evaluation is 'PASSED' or 'FAILED' and point to the UI element that corresponds to this evaluation."
    elif label_class == "Test Action":
        return f"Identify and point to the UI element that corresponds to this test action:\n{user_request}"


def postprocess_response_elam(response: str):
    """Parse Molmo-style point coordinates from string and return tuple of floats in [0-1]."""
    pattern = r'<point x="(?P<x>\d+\.\d+)" y="(?P<y>\d+\.\d+)"'
    match = re.search(pattern, response)
    if match:
        x_coord_raw = float(match.group("x"))
        y_coord_raw = float(match.group("y"))
        x_coord = x_coord_raw / 100
        y_coord = y_coord_raw / 100
        return [x_coord, y_coord]
    else:
        return [-1, -1]

```

Two prompt types were fine-tuned for UI testing:

1. *Test Action*: These prompts take an instruction (e.g., "tap music not in bottom navigation bar") and return the corresponding tap coordinates.
2. *Expected Results*: These prompts take an expectation (e.g., "notification toggle switch is disabled") and return "PASSED" or "FAILED" along with coordinates of the relevant UI element.

```python

image_path = "path/to/your/ui/image"
user_request = "Tap home button"  # or "The home icon is white"
request_type = "Test Action"  # or "Expected Result"


image = Image.open(image_path)

elam_prompt = preprocess_elam_prompt(user_request, request_type)

inputs = processor.process(
    images=[image],
    text=elam_prompt,
)

# Move inputs to the correct device and make a batch of size 1, cast to bfloat16
inputs_bfloat16 = {}
for k, v in inputs.items():
    if v.dtype == torch.float32:
        inputs_bfloat16[k] = v.to(model.device).to(torch.bfloat16).unsqueeze(0)
    else:
        inputs_bfloat16[k] = v.to(model.device).unsqueeze(0)

inputs = inputs_bfloat16  # Replace original inputs with the correctly typed inputs

# Generate output
output = model.generate_from_batch(
    inputs, GenerationConfig(max_new_tokens=2048, stop_strings="<|endoftext|>"), tokenizer=processor.tokenizer
)

# Only get generated tokens; decode them to text
generated_tokens = output[0, inputs["input_ids"].size(1) :]
response = processor.tokenizer.decode(generated_tokens, skip_special_tokens=True)
coordinates = postprocess_response_elam(response)

# Print outputs
print(f"ELAM response: {response}")
print(f"Got coordinates: {coordinates}")
```

# Citation
If you find ELAM useful in your research, please cite the following paper:

``` latex
@misc{ernhofer2025leveragingvisionlanguagemodelsvisual,
      title={Leveraging Vision-Language Models for Visual Grounding and Analysis of Automotive UI}, 
      author={Benjamin Raphael Ernhofer and Daniil Prokhorov and Jannica Langner and Dominik Bollmann},
      year={2025},
      eprint={2505.05895},
      archivePrefix={arXiv},
      primaryClass={cs.CV},
      url={https://arxiv.org/abs/2505.05895}, 
}
```

# Acknowledgements
## Funding
This work was supported by German BMBF within the scope of project "KI4BoardNet".


## Models and Code
- ELAM is based on [Molmo](https://github.com/allenai/molmo) by Allen Institute for AI.
- Training was conducted using [ms-swift](https://github.com/modelscope/ms-swift) by ModelScope.