import torch from datasets.rb_loader import RB_loader from utils import Prev_RetMetric, l2_norm, compute_recall_at_k import numpy as np from tqdm import tqdm from model import SwinModel_domain_agnostic as Model from sklearn.metrics import roc_curve, auc import json import torch.nn.functional as F if __name__ == '__main__': device = torch.device('cuda') data = RB_loader(split = 'test') dataloader = torch.utils.data.DataLoader(data,batch_size = 16, num_workers = 1, pin_memory = True) model = Model().to(device) checkpoint = torch.load("ridgeformer_checkpoints/phase1_scratch.pt",map_location = torch.device('cpu')) model.load_state_dict(checkpoint,strict=False) model.eval() cl_feats, cb_feats, cl_labels, cb_labels, cl_fnames, cb_fnames, cl_feats_unnormed, cb_feats_unnormed = list(),list(),list(),list(),list(),list(),list(),list() print("Computing Test Recall") with torch.no_grad(): for (x_cl, x_cb, target, cl_fname, cb_fname) in tqdm(dataloader): x_cl, x_cb, target = x_cl.to(device), x_cb.to(device), target.to(device) x_cl, _ = model.get_embeddings(x_cl, ftype="contactless") x_cb, _ = model.get_embeddings(x_cb, ftype="contactbased") cl_feats_unnormed.append(x_cl.cpu().detach().numpy()) cb_feats_unnormed.append(x_cb.cpu().detach().numpy()) x_cl = l2_norm(x_cl).cpu().detach().numpy() x_cb = l2_norm(x_cb).cpu().detach().numpy() target = target.cpu().detach().numpy() cl_feats.append(x_cl) cb_feats.append(x_cb) cl_labels.append(target) cb_labels.append(target) cl_fnames.extend(cl_fname) cb_fnames.extend(cb_fname) cl_feats = torch.from_numpy(np.concatenate(cl_feats)) cb_feats = torch.from_numpy(np.concatenate(cb_feats)) cl_labels = torch.from_numpy(np.concatenate(cl_labels)) cb_labels = torch.from_numpy(np.concatenate(cb_labels)) cl_feats_unnormed = torch.from_numpy(np.concatenate(cl_feats_unnormed)) cb_feats_unnormed = torch.from_numpy(np.concatenate(cb_feats_unnormed)) unique_labels, indices = torch.unique(cb_labels, return_inverse=True) unique_feats = torch.stack([cb_feats[indices == i].mean(dim=0) for i in range(len(unique_labels))]) cb_feats = unique_feats unique_labels, indices = torch.unique(cb_labels, return_inverse=True) unique_feats = torch.stack([cb_feats_unnormed[indices == i].mean(dim=0) for i in range(len(unique_labels))]) cb_labels = unique_labels cb_feats_unnormed = unique_feats # CL2CB <----------------------------------------> cl_feats = cl_feats.numpy() cb_feats = cb_feats.numpy() cb_feats_unnormed = cb_feats_unnormed.numpy() cl_feats_unnormed = cl_feats_unnormed.numpy() squared_diff = np.sum(np.square(cl_feats_unnormed[:, np.newaxis] - cb_feats_unnormed), axis=2) distance = -1 * np.sqrt(squared_diff) similarities = np.dot(cl_feats,np.transpose(cb_feats)) scores_mat = similarities + 0.1 * distance scores = scores_mat.flatten().tolist() ids = torch.eq(cl_labels.view(-1,1)-cb_labels.view(1,-1),0.0).flatten().tolist() ids_mod = list() for x in ids: if x==True: ids_mod.append(1) else: ids_mod.append(0) fpr,tpr,thresh = roc_curve(ids_mod,scores,drop_intermediate=True) lower_fpr_idx = max(i for i, val in enumerate(fpr) if val < 0.01) upper_fpr_idx = min(i for i, val in enumerate(fpr) if val >= 0.01) tar_far_102 = tpr[upper_fpr_idx] print(tpr[lower_fpr_idx], lower_fpr_idx, fpr[lower_fpr_idx], thresh[lower_fpr_idx]) print(tpr[upper_fpr_idx], upper_fpr_idx, fpr[upper_fpr_idx], thresh[upper_fpr_idx]) lower_fpr_idx = max(i for i, val in enumerate(fpr) if val < 0.001) upper_fpr_idx = min(i for i, val in enumerate(fpr) if val >= 0.001) tar_far_103 = (tpr[lower_fpr_idx]+tpr[upper_fpr_idx])/2 print(tpr[lower_fpr_idx], lower_fpr_idx, fpr[lower_fpr_idx]) print(tpr[upper_fpr_idx], upper_fpr_idx, fpr[upper_fpr_idx]) lower_fpr_idx = max(i for i, val in enumerate(fpr) if val < 0.0001) upper_fpr_idx = min(i for i, val in enumerate(fpr) if val >= 0.0001) tar_far_104 = (tpr[lower_fpr_idx]+tpr[upper_fpr_idx])/2 print(tpr[lower_fpr_idx], lower_fpr_idx, fpr[lower_fpr_idx]) print(tpr[upper_fpr_idx], upper_fpr_idx, fpr[upper_fpr_idx]) fnr = 1 - tpr EER = fpr[np.nanargmin(np.absolute((fnr - fpr)))] roc_auc = auc(fpr, tpr) print(f"ROCAUC for CB2CL: {roc_auc * 100} %") print(f"EER for CB2CL: {EER * 100} %") eer_cb2cl = EER * 100 cbcltf102 = tar_far_102 * 100 cbcltf103 = tar_far_103 * 100 cbcltf104 = tar_far_104 * 100 cl_labels = cl_labels.cpu().detach() cb_labels = cb_labels.cpu().detach() print(f"TAR@FAR=10^-2 for CB2CL: {tar_far_102 * 100} %") print(f"TAR@FAR=10^-3 for CB2CL: {tar_far_103 * 100} %") print(f"TAR@FAR=10^-4 for CB2CL: {tar_far_104 * 100} %") print(f"R@1 for CB2CL: {compute_recall_at_k(torch.from_numpy(scores_mat), cl_labels, cb_labels, 1) * 100} %") print(f"R@10 for CB2CL: {compute_recall_at_k(torch.from_numpy(scores_mat), cl_labels, cb_labels, 10) * 100} %") print(f"R@50 for CB2CL: {compute_recall_at_k(torch.from_numpy(scores_mat), cl_labels, cb_labels, 50) * 100} %") print(f"R@100 for CB2CL: {compute_recall_at_k(torch.from_numpy(scores_mat), cl_labels, cb_labels, 100) * 100} %") ################################################################################ # CL2CL scores = torch.from_numpy(np.dot(cl_feats,np.transpose(cl_feats))) row, col = torch.triu_indices(row=scores.size(0), col=scores.size(1), offset=1) scores = scores[row, col] scores = scores.numpy().flatten().tolist() labels = torch.eq(cl_labels.view(-1,1) - cl_labels.view(1,-1),0.0).float().cuda() labels = labels[torch.triu(torch.ones(labels.shape),diagonal = 1) == 1].tolist() fpr,tpr,_ = roc_curve(labels,scores) lower_fpr_idx = max(i for i, val in enumerate(fpr) if val < 0.01) upper_fpr_idx = min(i for i, val in enumerate(fpr) if val >= 0.01) tar_far_102 = (tpr[lower_fpr_idx]+tpr[upper_fpr_idx])/2 lower_fpr_idx = max(i for i, val in enumerate(fpr) if val < 0.001) upper_fpr_idx = min(i for i, val in enumerate(fpr) if val >= 0.001) tar_far_103 = (tpr[lower_fpr_idx]+tpr[upper_fpr_idx])/2 lower_fpr_idx = max(i for i, val in enumerate(fpr) if val < 0.0001) upper_fpr_idx = min(i for i, val in enumerate(fpr) if val >= 0.0001) tar_far_104 = (tpr[lower_fpr_idx]+tpr[upper_fpr_idx])/2 clcltf102 = tar_far_102 * 100 clcltf103 = tar_far_103 * 100 clcltf104 = tar_far_104 * 100 fnr = 1 - tpr EER = fpr[np.nanargmin(np.absolute((fnr - fpr)))] roc_auc = auc(fpr, tpr) print(f"ROCAUC for CL2CL: {roc_auc * 100} %") print(f"EER for CL2CL: {EER * 100} %") eer_cl2cl = EER * 100 print(f"TAR@FAR=10^-2 for CL2CL: {tar_far_102 * 100} %") print(f"TAR@FAR=10^-3 for CL2CL: {tar_far_103 * 100} %") print(f"TAR@FAR=10^-4 for CL2CL: {tar_far_104 * 100} %") cl_labels = cl_labels.cpu().detach().numpy() recall_score = Prev_RetMetric([cl_feats,cl_feats],[cl_labels,cl_labels],cl2cl = True) cl2clk1 = recall_score.recall_k(k=1) * 100 print(f"R@1 for CL2CL: {recall_score.recall_k(k=1) * 100} %") print(f"R@10 for CL2CL: {recall_score.recall_k(k=10) * 100} %") print(f"R@50 for CL2CL: {recall_score.recall_k(k=50) * 100} %") print(f"R@100 for CL2CL: {recall_score.recall_k(k=100) * 100} %")