Spaces:
Runtime error
Runtime error
zhang qiao
commited on
Commit
·
49ba314
1
Parent(s):
f3054b6
Upload folder using huggingface_hub
Browse files- .DS_Store +0 -0
- .env +2 -0
- .gitignore +160 -0
- .vscode/settings.json +6 -0
- README.md +3 -9
- __pycache__/gr_app.cpython-310.pyc +0 -0
- configs/idsc_config.yaml +4 -0
- data/mock/demand_table.csv +4 -0
- data/mock/product_table.csv +4 -0
- gr_app.py +235 -0
- gradio/calculator.py +33 -0
- gradio/hello.py +59 -0
- notebooks/inventory.ipynb +1421 -0
- requirements.txt +1 -0
- src/.DS_Store +0 -0
- src/__init__.py +1 -0
- src/__pycache__/GradioApp.cpython-310.pyc +0 -0
- src/__pycache__/GradioFns.cpython-310.pyc +0 -0
- src/__pycache__/__init__.cpython-310.pyc +0 -0
- src/__pycache__/gr_args.cpython-310.pyc +0 -0
- src/apis/__init__.py +0 -0
- src/apis/idsc_login.py +40 -0
- src/apis/inventory.py +0 -0
- src/demo_data/example_inventory.csv +6 -0
- src/demo_data/example_rm.csv +3 -0
- src/demo_data/example_wip.csv +4 -0
- src/gr/GradioApp.py +376 -0
- src/gr/GradioFns.py +144 -0
- src/gr/__init__.py +0 -0
- src/gr/__pycache__/GradioApp.cpython-310.pyc +0 -0
- src/gr/__pycache__/GradioFns.cpython-310.pyc +0 -0
- src/gr/__pycache__/__init__.cpython-310.pyc +0 -0
- src/gr/__pycache__/gr_args.cpython-310.pyc +0 -0
- src/gr/gr_args.py +132 -0
- src/idsc/__pycache__/idsc_apis.cpython-310.pyc +0 -0
- src/idsc/idsc_apis.py +134 -0
- src/idsc/idsc_config.yaml +2 -0
.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
.env
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 | |
2 |
+
IDSC_PASS=APItest1412
|
.gitignore
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Byte-compiled / optimized / DLL files
|
2 |
+
__pycache__/
|
3 |
+
*.py[cod]
|
4 |
+
*$py.class
|
5 |
+
|
6 |
+
# C extensions
|
7 |
+
*.so
|
8 |
+
|
9 |
+
# Distribution / packaging
|
10 |
+
.Python
|
11 |
+
build/
|
12 |
+
develop-eggs/
|
13 |
+
dist/
|
14 |
+
downloads/
|
15 |
+
eggs/
|
16 |
+
.eggs/
|
17 |
+
lib/
|
18 |
+
lib64/
|
19 |
+
parts/
|
20 |
+
sdist/
|
21 |
+
var/
|
22 |
+
wheels/
|
23 |
+
share/python-wheels/
|
24 |
+
*.egg-info/
|
25 |
+
.installed.cfg
|
26 |
+
*.egg
|
27 |
+
MANIFEST
|
28 |
+
|
29 |
+
# PyInstaller
|
30 |
+
# Usually these files are written by a python script from a template
|
31 |
+
# before PyInstaller builds the exe, so as to inject date/other infos into it.
|
32 |
+
*.manifest
|
33 |
+
*.spec
|
34 |
+
|
35 |
+
# Installer logs
|
36 |
+
pip-log.txt
|
37 |
+
pip-delete-this-directory.txt
|
38 |
+
|
39 |
+
# Unit test / coverage reports
|
40 |
+
htmlcov/
|
41 |
+
.tox/
|
42 |
+
.nox/
|
43 |
+
.coverage
|
44 |
+
.coverage.*
|
45 |
+
.cache
|
46 |
+
nosetests.xml
|
47 |
+
coverage.xml
|
48 |
+
*.cover
|
49 |
+
*.py,cover
|
50 |
+
.hypothesis/
|
51 |
+
.pytest_cache/
|
52 |
+
cover/
|
53 |
+
|
54 |
+
# Translations
|
55 |
+
*.mo
|
56 |
+
*.pot
|
57 |
+
|
58 |
+
# Django stuff:
|
59 |
+
*.log
|
60 |
+
local_settings.py
|
61 |
+
db.sqlite3
|
62 |
+
db.sqlite3-journal
|
63 |
+
|
64 |
+
# Flask stuff:
|
65 |
+
instance/
|
66 |
+
.webassets-cache
|
67 |
+
|
68 |
+
# Scrapy stuff:
|
69 |
+
.scrapy
|
70 |
+
|
71 |
+
# Sphinx documentation
|
72 |
+
docs/_build/
|
73 |
+
|
74 |
+
# PyBuilder
|
75 |
+
.pybuilder/
|
76 |
+
target/
|
77 |
+
|
78 |
+
# Jupyter Notebook
|
79 |
+
.ipynb_checkpoints
|
80 |
+
|
81 |
+
# IPython
|
82 |
+
profile_default/
|
83 |
+
ipython_config.py
|
84 |
+
|
85 |
+
# pyenv
|
86 |
+
# For a library or package, you might want to ignore these files since the code is
|
87 |
+
# intended to run in multiple environments; otherwise, check them in:
|
88 |
+
# .python-version
|
89 |
+
|
90 |
+
# pipenv
|
91 |
+
# According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
|
92 |
+
# However, in case of collaboration, if having platform-specific dependencies or dependencies
|
93 |
+
# having no cross-platform support, pipenv may install dependencies that don't work, or not
|
94 |
+
# install all needed dependencies.
|
95 |
+
#Pipfile.lock
|
96 |
+
|
97 |
+
# poetry
|
98 |
+
# Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
|
99 |
+
# This is especially recommended for binary packages to ensure reproducibility, and is more
|
100 |
+
# commonly ignored for libraries.
|
101 |
+
# https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
|
102 |
+
#poetry.lock
|
103 |
+
|
104 |
+
# pdm
|
105 |
+
# Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
|
106 |
+
#pdm.lock
|
107 |
+
# pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
|
108 |
+
# in version control.
|
109 |
+
# https://pdm.fming.dev/#use-with-ide
|
110 |
+
.pdm.toml
|
111 |
+
|
112 |
+
# PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
|
113 |
+
__pypackages__/
|
114 |
+
|
115 |
+
# Celery stuff
|
116 |
+
celerybeat-schedule
|
117 |
+
celerybeat.pid
|
118 |
+
|
119 |
+
# SageMath parsed files
|
120 |
+
*.sage.py
|
121 |
+
|
122 |
+
# Environments
|
123 |
+
.env
|
124 |
+
.venv
|
125 |
+
env/
|
126 |
+
venv/
|
127 |
+
ENV/
|
128 |
+
env.bak/
|
129 |
+
venv.bak/
|
130 |
+
|
131 |
+
# Spyder project settings
|
132 |
+
.spyderproject
|
133 |
+
.spyproject
|
134 |
+
|
135 |
+
# Rope project settings
|
136 |
+
.ropeproject
|
137 |
+
|
138 |
+
# mkdocs documentation
|
139 |
+
/site
|
140 |
+
|
141 |
+
# mypy
|
142 |
+
.mypy_cache/
|
143 |
+
.dmypy.json
|
144 |
+
dmypy.json
|
145 |
+
|
146 |
+
# Pyre type checker
|
147 |
+
.pyre/
|
148 |
+
|
149 |
+
# pytype static type analyzer
|
150 |
+
.pytype/
|
151 |
+
|
152 |
+
# Cython debug symbols
|
153 |
+
cython_debug/
|
154 |
+
|
155 |
+
# PyCharm
|
156 |
+
# JetBrains specific template is maintained in a separate JetBrains.gitignore that can
|
157 |
+
# be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
|
158 |
+
# and can be added to the global gitignore or merged into this file. For a more nuclear
|
159 |
+
# option (not recommended) you can uncomment the following to ignore the entire idea folder.
|
160 |
+
#.idea/
|
.vscode/settings.json
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"[python]": {
|
3 |
+
"editor.defaultFormatter": "ms-python.autopep8"
|
4 |
+
},
|
5 |
+
"python.formatting.provider": "none"
|
6 |
+
}
|
README.md
CHANGED
@@ -1,12 +1,6 @@
|
|
1 |
---
|
2 |
-
title:
|
3 |
-
|
4 |
-
colorFrom: yellow
|
5 |
-
colorTo: blue
|
6 |
sdk: gradio
|
7 |
-
sdk_version:
|
8 |
-
app_file: app.py
|
9 |
-
pinned: false
|
10 |
---
|
11 |
-
|
12 |
-
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
1 |
---
|
2 |
+
title: inventory-optimization-demo
|
3 |
+
app_file: gr_app.py
|
|
|
|
|
4 |
sdk: gradio
|
5 |
+
sdk_version: 3.41.0
|
|
|
|
|
6 |
---
|
|
|
|
__pycache__/gr_app.cpython-310.pyc
ADDED
Binary file (3.72 kB). View file
|
|
configs/idsc_config.yaml
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
apikey: 61ef23ae00df4f91417ec0d45fe7b03319f1bdc7
|
2 |
+
apikey_expire: 08/17/2023, 13:54:15
|
3 |
+
email: [email protected]
|
4 |
+
password: APItest1412
|
data/mock/demand_table.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
product,demand
|
2 |
+
White Bread,40
|
3 |
+
Special Cake,40
|
4 |
+
Wedding Cake,30
|
data/mock/product_table.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
product,price,cost,required_space_per_unit,inventory_consideration_range
|
2 |
+
White Bread,100,70,3,0.1
|
3 |
+
Special Cake,100,60,2,0.1
|
4 |
+
Wedding Cake,100,50,3,0.1
|
gr_app.py
ADDED
@@ -0,0 +1,235 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
from src.gr.GradioApp import GradioApp
|
4 |
+
from src.gr import gr_args
|
5 |
+
|
6 |
+
# =============================== #
|
7 |
+
# Inventory Optimization Demo App #
|
8 |
+
# =============================== #
|
9 |
+
|
10 |
+
app = GradioApp()
|
11 |
+
|
12 |
+
demo = gr.Blocks(**gr_args.main_block)
|
13 |
+
|
14 |
+
with demo:
|
15 |
+
|
16 |
+
gr.Markdown('# Inventory Optimization')
|
17 |
+
|
18 |
+
with gr.Tabs() as tabs:
|
19 |
+
|
20 |
+
# ============================ #
|
21 |
+
# Raw Material Optimization #
|
22 |
+
# ============================ #
|
23 |
+
with gr.TabItem('Raw Material Optimization', id=0):
|
24 |
+
with gr.Row():
|
25 |
+
with gr.Column():
|
26 |
+
|
27 |
+
# Inventory Optimization #
|
28 |
+
rm_md = gr.Markdown(**gr_args.rm_md)
|
29 |
+
|
30 |
+
with gr.Row():
|
31 |
+
|
32 |
+
# [ Load Demo Dataset ] #
|
33 |
+
rm_demo_data_btn = gr.Button(
|
34 |
+
**gr_args.rm_demo_data_btn)
|
35 |
+
|
36 |
+
rm_file = gr.File(**gr_args.rm_file)
|
37 |
+
|
38 |
+
# [Inventory Optimization Input] #
|
39 |
+
rm_input_df = gr.Dataframe(**gr_args.rm_input_df)
|
40 |
+
|
41 |
+
with gr.Row():
|
42 |
+
|
43 |
+
# [FG Storage Capacity] #
|
44 |
+
rm_storage_capacity = gr.Number(
|
45 |
+
**gr_args.rm_storage_capacity)
|
46 |
+
|
47 |
+
# [FG Budget] #
|
48 |
+
rm_budget_constraint = gr.Number(
|
49 |
+
**gr_args.rm_budget_constraint)
|
50 |
+
|
51 |
+
# [Optimize Raw Material Inventory] #
|
52 |
+
rm_btn = gr.Button(**gr_args.rm_btn)
|
53 |
+
|
54 |
+
gr.Markdown('# Raw Material Inventory Recommendations')
|
55 |
+
with gr.Row():
|
56 |
+
rm_total_capacity_usage_md = gr.Markdown()
|
57 |
+
rm_total_budget_usage_md = gr.Markdown()
|
58 |
+
|
59 |
+
rm_recom_df = gr.Dataframe()
|
60 |
+
|
61 |
+
rm_plot = gr.Plot()
|
62 |
+
|
63 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
64 |
+
# Raw Material Event Listeners #
|
65 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
66 |
+
rm_demo_data_btn.click(
|
67 |
+
app.rm_demo_data_btn__click,
|
68 |
+
[], [rm_input_df, rm_storage_capacity, rm_budget_constraint])
|
69 |
+
|
70 |
+
rm_file.upload(
|
71 |
+
app.rm_file__upload,
|
72 |
+
[rm_file], [rm_input_df])
|
73 |
+
|
74 |
+
rm_storage_capacity.change(
|
75 |
+
app.rm_storage_capacity__change,
|
76 |
+
[rm_storage_capacity], [])
|
77 |
+
|
78 |
+
rm_budget_constraint.change(
|
79 |
+
app.rm_budget_constraint__change,
|
80 |
+
[rm_budget_constraint], [])
|
81 |
+
|
82 |
+
rm_btn.click(
|
83 |
+
app.rm_btn__click,
|
84 |
+
[],
|
85 |
+
[rm_recom_df,
|
86 |
+
rm_total_capacity_usage_md,
|
87 |
+
rm_total_budget_usage_md,
|
88 |
+
rm_plot])
|
89 |
+
|
90 |
+
# ================ #
|
91 |
+
# WIP Optimization #
|
92 |
+
# ================ #
|
93 |
+
with gr.TabItem('WIP Optimization', id=1):
|
94 |
+
|
95 |
+
with gr.Row():
|
96 |
+
with gr.Column():
|
97 |
+
|
98 |
+
# Inventory Optimization #
|
99 |
+
wip_md = gr.Markdown(**gr_args.wip_md)
|
100 |
+
|
101 |
+
with gr.Row():
|
102 |
+
|
103 |
+
# [ Load Demo Dataset ] #
|
104 |
+
wip_demo_data_btn = gr.Button(
|
105 |
+
**gr_args.wip_demo_data_btn)
|
106 |
+
|
107 |
+
wip_file = gr.File(**gr_args.wip_file)
|
108 |
+
|
109 |
+
# [Inventory Optimization Input] #
|
110 |
+
wip_input_df = gr.Dataframe(**gr_args.wip_input_df)
|
111 |
+
|
112 |
+
with gr.Row():
|
113 |
+
|
114 |
+
# [FG Storage Capacity] #
|
115 |
+
wip_storage_capacity = gr.Number(
|
116 |
+
**gr_args.wip_storage_capacity)
|
117 |
+
|
118 |
+
# [FG Budget] #
|
119 |
+
wip_budget_constraint = gr.Number(
|
120 |
+
**gr_args.wip_budget_constraint)
|
121 |
+
|
122 |
+
# [Optimize Raw Material Inventory] #
|
123 |
+
wip_btn = gr.Button(**gr_args.wip_btn)
|
124 |
+
|
125 |
+
gr.Markdown('# WIP Inventory Recommendations')
|
126 |
+
with gr.Row():
|
127 |
+
wip_total_capacity_usage_md = gr.Markdown()
|
128 |
+
wip_total_budget_usage_md = gr.Markdown()
|
129 |
+
|
130 |
+
wip_recom_df = gr.Dataframe()
|
131 |
+
|
132 |
+
wip_plot = gr.Plot()
|
133 |
+
|
134 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
135 |
+
# WIP Event Listeners #
|
136 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
137 |
+
wip_demo_data_btn.click(
|
138 |
+
app.wip_demo_data_btn__click,
|
139 |
+
[], [wip_input_df, wip_storage_capacity, wip_budget_constraint])
|
140 |
+
|
141 |
+
wip_file.upload(
|
142 |
+
app.wip_file__upload,
|
143 |
+
[wip_file], [wip_input_df])
|
144 |
+
|
145 |
+
wip_storage_capacity.change(
|
146 |
+
app.wip_storage_capacity__change,
|
147 |
+
[wip_storage_capacity], [])
|
148 |
+
|
149 |
+
wip_budget_constraint.change(
|
150 |
+
app.wip_budget_constraint__change,
|
151 |
+
[wip_budget_constraint], [])
|
152 |
+
|
153 |
+
wip_btn.click(
|
154 |
+
app.wip_btn__click,
|
155 |
+
[],
|
156 |
+
[wip_recom_df,
|
157 |
+
wip_total_capacity_usage_md,
|
158 |
+
wip_total_budget_usage_md,
|
159 |
+
wip_plot])
|
160 |
+
|
161 |
+
# ============================ #
|
162 |
+
# Finishend Goods Optimization #
|
163 |
+
# ============================ #
|
164 |
+
with gr.TabItem('FG Optimization', id=2):
|
165 |
+
with gr.Row():
|
166 |
+
with gr.Column():
|
167 |
+
|
168 |
+
# Inventory Optimization #
|
169 |
+
inventory_md = gr.Markdown(**gr_args.inventory_md)
|
170 |
+
|
171 |
+
with gr.Row():
|
172 |
+
|
173 |
+
# [ Load Demo Dataset ] #
|
174 |
+
demo_data_btn = gr.Button(**gr_args.demo_data_btn)
|
175 |
+
|
176 |
+
inventory_file = gr.File(**gr_args.inventory_file)
|
177 |
+
|
178 |
+
# [Inventory Optimization Input] #
|
179 |
+
inventory_input_df = gr.Dataframe(**gr_args.inventory_input_df)
|
180 |
+
|
181 |
+
with gr.Row():
|
182 |
+
|
183 |
+
# [FG Storage Capacity] #
|
184 |
+
inventory_storage_capacity = gr.Number(
|
185 |
+
**gr_args.inventory_storage_capacity)
|
186 |
+
|
187 |
+
# [FG Budget] #
|
188 |
+
inventory_budget_constraint = gr.Number(
|
189 |
+
**gr_args.inventory_budget_constraint)
|
190 |
+
|
191 |
+
# [Optimize Inventory] #
|
192 |
+
inventory_btn = gr.Button(**gr_args.inventory_btn)
|
193 |
+
|
194 |
+
gr.Markdown('# Inventory Recommendations')
|
195 |
+
with gr.Row():
|
196 |
+
inv_total_profit_md = gr.Markdown()
|
197 |
+
inv_total_capacity_usage_md = gr.Markdown()
|
198 |
+
inv_total_budget_usage_md = gr.Markdown()
|
199 |
+
inv_total_margin_md = gr.Markdown()
|
200 |
+
|
201 |
+
inv_recom_df = gr.Dataframe()
|
202 |
+
|
203 |
+
inv_plot = gr.Plot()
|
204 |
+
|
205 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
206 |
+
# FG Optimization Event Listeners #
|
207 |
+
# ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
|
208 |
+
demo_data_btn.click(
|
209 |
+
app.demo_data_btn__click,
|
210 |
+
[], [inventory_input_df, inventory_storage_capacity, inventory_budget_constraint])
|
211 |
+
|
212 |
+
inventory_file.upload(
|
213 |
+
app.inventory_file__upload,
|
214 |
+
[inventory_file], [inventory_input_df])
|
215 |
+
|
216 |
+
inventory_storage_capacity.change(
|
217 |
+
app.inventory_storage_capacity__change,
|
218 |
+
[inventory_storage_capacity], [])
|
219 |
+
|
220 |
+
inventory_budget_constraint.change(
|
221 |
+
app.inventory_budget_constraint__change,
|
222 |
+
[inventory_budget_constraint], [])
|
223 |
+
|
224 |
+
inventory_btn.click(
|
225 |
+
app.inventory_btn__click,
|
226 |
+
[],
|
227 |
+
[inv_recom_df,
|
228 |
+
inv_total_profit_md,
|
229 |
+
inv_total_capacity_usage_md,
|
230 |
+
inv_total_budget_usage_md,
|
231 |
+
inv_total_margin_md,
|
232 |
+
inv_plot])
|
233 |
+
|
234 |
+
|
235 |
+
demo.launch()
|
gradio/calculator.py
ADDED
@@ -0,0 +1,33 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
|
3 |
+
def calculator(num1, operation, num2):
|
4 |
+
if operation == "add":
|
5 |
+
return num1 + num2
|
6 |
+
elif operation == "subtract":
|
7 |
+
return num1 - num2
|
8 |
+
elif operation == "multiply":
|
9 |
+
return num1 * num2
|
10 |
+
elif operation == "divide":
|
11 |
+
if num2 == 0:
|
12 |
+
raise gr.Error("Cannot divide by zero!")
|
13 |
+
return num1 / num2
|
14 |
+
|
15 |
+
demo = gr.Interface(
|
16 |
+
calculator,
|
17 |
+
[
|
18 |
+
"number",
|
19 |
+
gr.Radio(["add", "subtract", "multiply", "divide"]),
|
20 |
+
"number"
|
21 |
+
],
|
22 |
+
"number",
|
23 |
+
examples=[
|
24 |
+
[5, "add", 3],
|
25 |
+
[4, "divide", 2],
|
26 |
+
[-4, "multiply", 2.5],
|
27 |
+
[0, "subtract", 1.2],
|
28 |
+
],
|
29 |
+
title="Toy Calculator",
|
30 |
+
description="Here's a sample toy calculator. Allows you to calculate things like $2+2=4$",
|
31 |
+
)
|
32 |
+
if __name__ == "__main__":
|
33 |
+
demo.launch()
|
gradio/hello.py
ADDED
@@ -0,0 +1,59 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import sys, os, io
|
3 |
+
import pandas as pd
|
4 |
+
sys.path.append(os.path.abspath('../src'))
|
5 |
+
|
6 |
+
from idsc.idsc_apis import idsc_apis
|
7 |
+
|
8 |
+
idsc = idsc_apis()
|
9 |
+
|
10 |
+
|
11 |
+
def forecast(demand_table, product_table, storage_capacity):
|
12 |
+
demand_table_df = pd.read_csv(demand_table.name)
|
13 |
+
product_table_df = pd.read_csv(product_table.name)
|
14 |
+
|
15 |
+
res = idsc.product_mix(
|
16 |
+
demand_table_df.to_json(),
|
17 |
+
product_table_df.to_json(),
|
18 |
+
storage_capacity)
|
19 |
+
return res
|
20 |
+
|
21 |
+
def upload_file(file):
|
22 |
+
return file.name
|
23 |
+
|
24 |
+
def show():
|
25 |
+
return gr.update(visible=True)
|
26 |
+
|
27 |
+
# demo = gr.Interface(
|
28 |
+
# fn=forecast,
|
29 |
+
# inputs=[
|
30 |
+
# demand_table_upload_btn,
|
31 |
+
# product_table_upload_btn,
|
32 |
+
# storage_capacity_input],
|
33 |
+
# outputs="text")
|
34 |
+
|
35 |
+
with gr.Blocks() as demo:
|
36 |
+
demand_table_file = gr.File(visible=False)
|
37 |
+
demand_table_upload_btn = gr.UploadButton(
|
38 |
+
'Demand Table',
|
39 |
+
file_types=['.csv'])
|
40 |
+
|
41 |
+
product_table_file = gr.File()
|
42 |
+
product_table_upload_btn = gr.UploadButton(
|
43 |
+
'Product Table',
|
44 |
+
file_types=['.csv'])
|
45 |
+
|
46 |
+
storage_capacity_input = gr.Number(
|
47 |
+
label='Storage Capacity',
|
48 |
+
minimum=0)
|
49 |
+
|
50 |
+
optimize_inventory_btn = gr.Button('Optimize')
|
51 |
+
|
52 |
+
demand_table_upload_btn.upload(
|
53 |
+
upload_file,
|
54 |
+
demand_table_upload_btn,
|
55 |
+
demand_table_file)
|
56 |
+
|
57 |
+
demand_table_file.change(fn=show)
|
58 |
+
|
59 |
+
demo.launch()
|
notebooks/inventory.ipynb
ADDED
@@ -0,0 +1,1421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
{
|
2 |
+
"cells": [
|
3 |
+
{
|
4 |
+
"cell_type": "code",
|
5 |
+
"execution_count": 33,
|
6 |
+
"id": "b60aa108",
|
7 |
+
"metadata": {},
|
8 |
+
"outputs": [],
|
9 |
+
"source": [
|
10 |
+
"import requests, yaml\n",
|
11 |
+
"import sys\n",
|
12 |
+
"import os\n",
|
13 |
+
"sys.path.append(os.path.abspath('../src'))\n",
|
14 |
+
"import pandas as pd\n",
|
15 |
+
"\n",
|
16 |
+
"from idsc.idsc_apis import idsc_apis"
|
17 |
+
]
|
18 |
+
},
|
19 |
+
{
|
20 |
+
"cell_type": "code",
|
21 |
+
"execution_count": 34,
|
22 |
+
"id": "5c549960",
|
23 |
+
"metadata": {},
|
24 |
+
"outputs": [
|
25 |
+
{
|
26 |
+
"name": "stdout",
|
27 |
+
"output_type": "stream",
|
28 |
+
"text": [
|
29 |
+
"apikey still available, logged in\n"
|
30 |
+
]
|
31 |
+
}
|
32 |
+
],
|
33 |
+
"source": [
|
34 |
+
"idsc = idsc_apis()"
|
35 |
+
]
|
36 |
+
},
|
37 |
+
{
|
38 |
+
"cell_type": "code",
|
39 |
+
"execution_count": 35,
|
40 |
+
"id": "258034d8-ab4f-49cb-b4eb-e61bda31babc",
|
41 |
+
"metadata": {},
|
42 |
+
"outputs": [],
|
43 |
+
"source": [
|
44 |
+
"demand_table = pd.read_csv('../data/mock/demand_table.csv')\n",
|
45 |
+
"product_table = pd.read_csv('../data/mock/product_table.csv')"
|
46 |
+
]
|
47 |
+
},
|
48 |
+
{
|
49 |
+
"cell_type": "code",
|
50 |
+
"execution_count": 36,
|
51 |
+
"id": "afb53f04",
|
52 |
+
"metadata": {},
|
53 |
+
"outputs": [],
|
54 |
+
"source": [
|
55 |
+
"res = idsc.product_mix(demand_table.to_json(), product_table.to_json(), 100)"
|
56 |
+
]
|
57 |
+
},
|
58 |
+
{
|
59 |
+
"cell_type": "code",
|
60 |
+
"execution_count": 51,
|
61 |
+
"id": "b33feb18",
|
62 |
+
"metadata": {},
|
63 |
+
"outputs": [
|
64 |
+
{
|
65 |
+
"data": {
|
66 |
+
"text/plain": [
|
67 |
+
"{'product_mix_result': {'White Bread': {'recommended_stock': 3},\n",
|
68 |
+
" 'Special Cake': {'recommended_stock': 26},\n",
|
69 |
+
" 'Wedding Cake': {'recommended_stock': 13}},\n",
|
70 |
+
" 'engine_code': 'optimax_product_mix',\n",
|
71 |
+
" 'probability_table': '{\"product\":{\"263\":\"Wedding Cake\",\"261\":\"Wedding Cake\",\"259\":\"Wedding Cake\",\"269\":\"Wedding Cake\",\"264\":\"Wedding Cake\",\"268\":\"Wedding Cake\",\"258\":\"Wedding Cake\",\"260\":\"Wedding Cake\",\"257\":\"Wedding Cake\",\"270\":\"Wedding Cake\",\"262\":\"Wedding Cake\",\"265\":\"Wedding Cake\",\"266\":\"Wedding Cake\",\"267\":\"Wedding Cake\",\"271\":\"Wedding Cake\",\"161\":\"Special Cake\",\"46\":\"White Bread\",\"256\":\"Wedding Cake\",\"255\":\"Wedding Cake\",\"275\":\"Wedding Cake\",\"272\":\"Wedding Cake\",\"34\":\"White Bread\",\"149\":\"Special Cake\",\"278\":\"Wedding Cake\",\"159\":\"Special Cake\",\"44\":\"White Bread\",\"35\":\"White Bread\",\"150\":\"Special Cake\",\"277\":\"Wedding Cake\",\"36\":\"White Bread\",\"151\":\"Special Cake\",\"253\":\"Wedding Cake\",\"43\":\"White Bread\",\"158\":\"Special Cake\",\"274\":\"Wedding Cake\",\"157\":\"Special Cake\",\"42\":\"White Bread\",\"162\":\"Special Cake\",\"47\":\"White Bread\",\"254\":\"Wedding Cake\",\"154\":\"Special Cake\",\"39\":\"White Bread\",\"276\":\"Wedding Cake\",\"163\":\"Special Cake\",\"48\":\"White Bread\",\"279\":\"Wedding Cake\",\"153\":\"Special Cake\",\"38\":\"White Bread\",\"152\":\"Special Cake\",\"37\":\"White Bread\",\"45\":\"White Bread\",\"160\":\"Special Cake\",\"164\":\"Special Cake\",\"49\":\"White Bread\",\"40\":\"White Bread\",\"155\":\"Special Cake\",\"41\":\"White Bread\",\"156\":\"Special Cake\",\"166\":\"Special Cake\",\"51\":\"White Bread\",\"273\":\"Wedding Cake\",\"82\":\"White Bread\",\"197\":\"Special Cake\",\"79\":\"White Bread\",\"194\":\"Special Cake\",\"81\":\"White Bread\",\"196\":\"Special Cake\",\"182\":\"Special Cake\",\"67\":\"White Bread\",\"52\":\"White Bread\",\"167\":\"Special Cake\",\"50\":\"White Bread\",\"165\":\"Special Cake\",\"280\":\"Wedding Cake\",\"80\":\"White Bread\",\"195\":\"Special Cake\",\"252\":\"Wedding Cake\",\"85\":\"White Bread\",\"200\":\"Special Cake\",\"199\":\"Special Cake\",\"84\":\"White Bread\",\"281\":\"Wedding Cake\",\"183\":\"Special Cake\",\"68\":\"White Bread\",\"251\":\"Wedding Cake\",\"181\":\"Special Cake\",\"66\":\"White Bread\",\"282\":\"Wedding Cake\",\"171\":\"Special Cake\",\"56\":\"White Bread\",\"33\":\"White Bread\",\"148\":\"Special Cake\",\"53\":\"White Bread\",\"168\":\"Special Cake\",\"173\":\"Special Cake\",\"58\":\"White Bread\",\"172\":\"Special Cake\",\"57\":\"White Bread\",\"60\":\"White Bread\",\"175\":\"Special Cake\",\"286\":\"Wedding Cake\",\"174\":\"Special Cake\",\"59\":\"White Bread\",\"198\":\"Special Cake\",\"83\":\"White Bread\",\"169\":\"Special Cake\",\"54\":\"White Bread\",\"86\":\"White Bread\",\"201\":\"Special Cake\",\"185\":\"Special Cake\",\"70\":\"White Bread\",\"184\":\"Special Cake\",\"69\":\"White Bread\",\"78\":\"White Bread\",\"193\":\"Special Cake\",\"250\":\"Wedding Cake\",\"71\":\"White Bread\",\"186\":\"Special Cake\",\"192\":\"Special Cake\",\"77\":\"White Bread\",\"191\":\"Special Cake\",\"76\":\"White Bread\",\"285\":\"Wedding Cake\",\"176\":\"Special Cake\",\"61\":\"White Bread\",\"249\":\"Wedding Cake\",\"74\":\"White Bread\",\"189\":\"Special Cake\",\"170\":\"Special Cake\",\"55\":\"White Bread\",\"190\":\"Special Cake\",\"75\":\"White Bread\",\"177\":\"Special Cake\",\"62\":\"White Bread\",\"283\":\"Wedding Cake\",\"188\":\"Special Cake\",\"73\":\"White Bread\",\"65\":\"White Bread\",\"180\":\"Special Cake\",\"187\":\"Special Cake\",\"72\":\"White Bread\",\"284\":\"Wedding Cake\",\"203\":\"Special Cake\",\"88\":\"White Bread\",\"63\":\"White Bread\",\"178\":\"Special Cake\",\"287\":\"Wedding Cake\",\"87\":\"White Bread\",\"202\":\"Special Cake\",\"32\":\"White Bread\",\"147\":\"Special Cake\",\"207\":\"Special Cake\",\"92\":\"White Bread\",\"290\":\"Wedding Cake\",\"90\":\"White Bread\",\"205\":\"Special Cake\",\"248\":\"Wedding Cake\",\"211\":\"Special Cake\",\"96\":\"White Bread\",\"89\":\"White Bread\",\"204\":\"Special Cake\",\"289\":\"Wedding Cake\",\"291\":\"Wedding Cake\",\"146\":\"Special Cake\",\"31\":\"White Bread\",\"64\":\"White Bread\",\"179\":\"Special Cake\",\"209\":\"Special Cake\",\"94\":\"White Bread\",\"288\":\"Wedding Cake\",\"224\":\"Special Cake\",\"109\":\"White Bread\",\"292\":\"Wedding Cake\",\"28\":\"White Bread\",\"143\":\"Special Cake\",\"30\":\"White Bread\",\"145\":\"Special Cake\",\"29\":\"White Bread\",\"144\":\"Special Cake\",\"208\":\"Special Cake\",\"93\":\"White Bread\",\"206\":\"Special Cake\",\"91\":\"White Bread\",\"223\":\"Special Cake\",\"108\":\"White Bread\",\"222\":\"Special Cake\",\"107\":\"White Bread\",\"220\":\"Special Cake\",\"105\":\"White Bread\",\"27\":\"White Bread\",\"142\":\"Special Cake\",\"245\":\"Wedding Cake\",\"95\":\"White Bread\",\"210\":\"Special Cake\",\"106\":\"White Bread\",\"221\":\"Special Cake\",\"26\":\"White Bread\",\"141\":\"Special Cake\",\"293\":\"Wedding Cake\",\"110\":\"White Bread\",\"225\":\"Special Cake\",\"112\":\"White Bread\",\"227\":\"Special Cake\",\"243\":\"Wedding Cake\",\"247\":\"Wedding Cake\",\"25\":\"White Bread\",\"140\":\"Special Cake\",\"244\":\"Wedding Cake\",\"294\":\"Wedding Cake\",\"212\":\"Special Cake\",\"97\":\"White Bread\",\"297\":\"Wedding Cake\",\"226\":\"Special Cake\",\"111\":\"White Bread\",\"298\":\"Wedding Cake\",\"246\":\"Wedding Cake\",\"104\":\"White Bread\",\"219\":\"Special Cake\",\"15\":\"White Bread\",\"130\":\"Special Cake\",\"295\":\"Wedding Cake\",\"296\":\"Wedding Cake\",\"237\":\"Wedding Cake\",\"113\":\"White Bread\",\"228\":\"Special Cake\",\"139\":\"Special Cake\",\"24\":\"White Bread\",\"218\":\"Special Cake\",\"103\":\"White Bread\",\"137\":\"Special Cake\",\"22\":\"White Bread\",\"299\":\"Wedding Cake\",\"131\":\"Special Cake\",\"16\":\"White Bread\",\"235\":\"Wedding Cake\",\"213\":\"Special Cake\",\"98\":\"White Bread\",\"120\":\"Special Cake\",\"5\":\"White Bread\",\"23\":\"White Bread\",\"138\":\"Special Cake\",\"7\":\"White Bread\",\"122\":\"Special Cake\",\"132\":\"Special Cake\",\"17\":\"White Bread\",\"129\":\"Special Cake\",\"14\":\"White Bread\",\"231\":\"Wedding Cake\",\"300\":\"Wedding Cake\",\"136\":\"Special Cake\",\"21\":\"White Bread\",\"242\":\"Wedding Cake\",\"8\":\"White Bread\",\"123\":\"Special Cake\",\"302\":\"Wedding Cake\",\"101\":\"White Bread\",\"216\":\"Special Cake\",\"9\":\"White Bread\",\"124\":\"Special Cake\",\"1\":\"White Bread\",\"116\":\"Special Cake\",\"233\":\"Wedding Cake\",\"234\":\"Wedding Cake\",\"303\":\"Wedding Cake\",\"13\":\"White Bread\",\"128\":\"Special Cake\",\"304\":\"Wedding Cake\",\"215\":\"Special Cake\",\"100\":\"White Bread\",\"20\":\"White Bread\",\"135\":\"Special Cake\",\"133\":\"Special Cake\",\"18\":\"White Bread\",\"3\":\"White Bread\",\"118\":\"Special Cake\",\"214\":\"Special Cake\",\"99\":\"White Bread\",\"232\":\"Wedding Cake\",\"217\":\"Special Cake\",\"102\":\"White Bread\",\"301\":\"Wedding Cake\",\"238\":\"Wedding Cake\",\"239\":\"Wedding Cake\",\"240\":\"Wedding Cake\",\"134\":\"Special Cake\",\"19\":\"White Bread\",\"4\":\"White Bread\",\"119\":\"Special Cake\",\"126\":\"Special Cake\",\"11\":\"White Bread\",\"117\":\"Special Cake\",\"2\":\"White Bread\",\"114\":\"White Bread\",\"229\":\"Special Cake\",\"236\":\"Wedding Cake\",\"241\":\"Wedding Cake\",\"121\":\"Special Cake\",\"6\":\"White Bread\",\"12\":\"White Bread\",\"127\":\"Special Cake\",\"125\":\"Special Cake\",\"10\":\"White Bread\"},\"demand\":{\"263\":33,\"261\":31,\"259\":29,\"269\":39,\"264\":34,\"268\":38,\"258\":28,\"260\":30,\"257\":27,\"270\":40,\"262\":32,\"265\":35,\"266\":36,\"267\":37,\"271\":41,\"161\":46,\"46\":46,\"256\":26,\"255\":25,\"275\":45,\"272\":42,\"34\":34,\"149\":34,\"278\":48,\"159\":44,\"44\":44,\"35\":35,\"150\":35,\"277\":47,\"36\":36,\"151\":36,\"253\":23,\"43\":43,\"158\":43,\"274\":44,\"157\":42,\"42\":42,\"162\":47,\"47\":47,\"254\":24,\"154\":39,\"39\":39,\"276\":46,\"163\":48,\"48\":48,\"279\":49,\"153\":38,\"38\":38,\"152\":37,\"37\":37,\"45\":45,\"160\":45,\"164\":49,\"49\":49,\"40\":40,\"155\":40,\"41\":41,\"156\":41,\"166\":51,\"51\":51,\"273\":43,\"82\":82,\"197\":82,\"79\":79,\"194\":79,\"81\":81,\"196\":81,\"182\":67,\"67\":67,\"52\":52,\"167\":52,\"50\":50,\"165\":50,\"280\":50,\"80\":80,\"195\":80,\"252\":22,\"85\":85,\"200\":85,\"199\":84,\"84\":84,\"281\":51,\"183\":68,\"68\":68,\"251\":21,\"181\":66,\"66\":66,\"282\":52,\"171\":56,\"56\":56,\"33\":33,\"148\":33,\"53\":53,\"168\":53,\"173\":58,\"58\":58,\"172\":57,\"57\":57,\"60\":60,\"175\":60,\"286\":56,\"174\":59,\"59\":59,\"198\":83,\"83\":83,\"169\":54,\"54\":54,\"86\":86,\"201\":86,\"185\":70,\"70\":70,\"184\":69,\"69\":69,\"78\":78,\"193\":78,\"250\":20,\"71\":71,\"186\":71,\"192\":77,\"77\":77,\"191\":76,\"76\":76,\"285\":55,\"176\":61,\"61\":61,\"249\":19,\"74\":74,\"189\":74,\"170\":55,\"55\":55,\"190\":75,\"75\":75,\"177\":62,\"62\":62,\"283\":53,\"188\":73,\"73\":73,\"65\":65,\"180\":65,\"187\":72,\"72\":72,\"284\":54,\"203\":88,\"88\":88,\"63\":63,\"178\":63,\"287\":57,\"87\":87,\"202\":87,\"32\":32,\"147\":32,\"207\":92,\"92\":92,\"290\":60,\"90\":90,\"205\":90,\"248\":18,\"211\":96,\"96\":96,\"89\":89,\"204\":89,\"289\":59,\"291\":61,\"146\":31,\"31\":31,\"64\":64,\"179\":64,\"209\":94,\"94\":94,\"288\":58,\"224\":109,\"109\":109,\"292\":62,\"28\":28,\"143\":28,\"30\":30,\"145\":30,\"29\":29,\"144\":29,\"208\":93,\"93\":93,\"206\":91,\"91\":91,\"223\":108,\"108\":108,\"222\":107,\"107\":107,\"220\":105,\"105\":105,\"27\":27,\"142\":27,\"245\":15,\"95\":95,\"210\":95,\"106\":106,\"221\":106,\"26\":26,\"141\":26,\"293\":63,\"110\":110,\"225\":110,\"112\":112,\"227\":112,\"243\":13,\"247\":17,\"25\":25,\"140\":25,\"244\":14,\"294\":64,\"212\":97,\"97\":97,\"297\":67,\"226\":111,\"111\":111,\"298\":68,\"246\":16,\"104\":104,\"219\":104,\"15\":15,\"130\":15,\"295\":65,\"296\":66,\"237\":7,\"113\":113,\"228\":113,\"139\":24,\"24\":24,\"218\":103,\"103\":103,\"137\":22,\"22\":22,\"299\":69,\"131\":16,\"16\":16,\"235\":5,\"213\":98,\"98\":98,\"120\":5,\"5\":5,\"23\":23,\"138\":23,\"7\":7,\"122\":7,\"132\":17,\"17\":17,\"129\":14,\"14\":14,\"231\":1,\"300\":70,\"136\":21,\"21\":21,\"242\":12,\"8\":8,\"123\":8,\"302\":72,\"101\":101,\"216\":101,\"9\":9,\"124\":9,\"1\":1,\"116\":1,\"233\":3,\"234\":4,\"303\":73,\"13\":13,\"128\":13,\"304\":74,\"215\":100,\"100\":100,\"20\":20,\"135\":20,\"133\":18,\"18\":18,\"3\":3,\"118\":3,\"214\":99,\"99\":99,\"232\":2,\"217\":102,\"102\":102,\"301\":71,\"238\":8,\"239\":9,\"240\":10,\"134\":19,\"19\":19,\"4\":4,\"119\":4,\"126\":11,\"11\":11,\"117\":2,\"2\":2,\"114\":114,\"229\":114,\"236\":6,\"241\":11,\"121\":6,\"6\":6,\"12\":12,\"127\":12,\"125\":10,\"10\":10},\"probability\":{\"263\":0.0368592173,\"261\":0.0359488332,\"259\":0.034826178,\"269\":0.0345176881,\"264\":0.0338754672,\"268\":0.0336984278,\"258\":0.0333003656,\"260\":0.032756232,\"257\":0.0325301611,\"270\":0.032197924,\"262\":0.0318970326,\"265\":0.0311347815,\"266\":0.030689652,\"267\":0.0290920836,\"271\":0.0283928783,\"161\":0.028135825,\"46\":0.028135825,\"256\":0.0280648941,\"255\":0.026794912,\"275\":0.0267789487,\"272\":0.0266978264,\"34\":0.02649434,\"149\":0.02649434,\"278\":0.0261790284,\"159\":0.0260993218,\"44\":0.0260993218,\"35\":0.0258797103,\"150\":0.0258797103,\"277\":0.0249885005,\"36\":0.0247542848,\"151\":0.0247542848,\"253\":0.0237528724,\"43\":0.0227409136,\"158\":0.0227409136,\"274\":0.0223511295,\"157\":0.0218458294,\"42\":0.0218458294,\"162\":0.0218256638,\"47\":0.0218256638,\"254\":0.0217967443,\"154\":0.0216395613,\"39\":0.0216395613,\"276\":0.0216095805,\"163\":0.0215321773,\"48\":0.0215321773,\"279\":0.0213346388,\"153\":0.0203048915,\"38\":0.0203048915,\"152\":0.020051612,\"37\":0.020051612,\"45\":0.0199892913,\"160\":0.0199892913,\"164\":0.0195399323,\"49\":0.0195399323,\"40\":0.019229393,\"155\":0.019229393,\"41\":0.0190548591,\"156\":0.0190548591,\"166\":0.018913738,\"51\":0.018913738,\"273\":0.0184784305,\"82\":0.0182737867,\"197\":0.0182737867,\"79\":0.0180723397,\"194\":0.0180723397,\"81\":0.0179847392,\"196\":0.0179847392,\"182\":0.0177538496,\"67\":0.0177538496,\"52\":0.017304322,\"167\":0.017304322,\"50\":0.0172683526,\"165\":0.0172683526,\"280\":0.017080318,\"80\":0.0165558467,\"195\":0.0165558467,\"252\":0.0164150156,\"85\":0.0163239057,\"200\":0.0163239057,\"199\":0.0155502511,\"84\":0.0155502511,\"281\":0.0155468033,\"183\":0.0153482999,\"68\":0.0153482999,\"251\":0.0150519811,\"181\":0.0149100957,\"66\":0.0149100957,\"282\":0.0145321593,\"171\":0.0145073305,\"56\":0.0145073305,\"33\":0.0143434204,\"148\":0.0143434204,\"53\":0.0139978926,\"168\":0.0139978926,\"173\":0.0137575929,\"58\":0.0137575929,\"172\":0.0133753577,\"57\":0.0133753577,\"60\":0.0132917234,\"175\":0.0132917234,\"286\":0.0128341354,\"174\":0.0125602164,\"59\":0.0125602164,\"198\":0.0122586994,\"83\":0.0122586994,\"169\":0.0121257892,\"54\":0.0121257892,\"86\":0.0121178443,\"201\":0.0121178443,\"185\":0.0117735274,\"70\":0.0117735274,\"184\":0.0117612458,\"69\":0.0117612458,\"78\":0.011635456,\"193\":0.011635456,\"250\":0.01154316,\"71\":0.0112493485,\"186\":0.0112493485,\"192\":0.0111785296,\"77\":0.0111785296,\"191\":0.0111410438,\"76\":0.0111410438,\"285\":0.0110507398,\"176\":0.0105914583,\"61\":0.0105914583,\"249\":0.0105420966,\"74\":0.0105078101,\"189\":0.0105078101,\"170\":0.0103408676,\"55\":0.0103408676,\"190\":0.0100856266,\"75\":0.0100856266,\"177\":0.0100635496,\"62\":0.0100635496,\"283\":0.0098274898,\"188\":0.009615686,\"73\":0.009615686,\"65\":0.0089209082,\"180\":0.0089209082,\"187\":0.0088669788,\"72\":0.0088669788,\"284\":0.008681397,\"203\":0.0085985317,\"88\":0.0085985317,\"63\":0.0083903575,\"178\":0.0083903575,\"287\":0.0079844742,\"87\":0.0075161459,\"202\":0.0075161459,\"32\":0.0065831021,\"147\":0.0065831021,\"207\":0.0063411487,\"92\":0.0063411487,\"290\":0.0061494519,\"90\":0.0060437383,\"205\":0.0060437383,\"248\":0.0057253414,\"211\":0.0057178973,\"96\":0.0057178973,\"89\":0.0056477112,\"204\":0.0056477112,\"289\":0.0055459619,\"291\":0.0054795932,\"146\":0.0054244868,\"31\":0.0054244868,\"64\":0.0053959746,\"179\":0.0053959746,\"209\":0.0051360659,\"94\":0.0051360659,\"288\":0.0050816214,\"224\":0.0048954825,\"109\":0.0048954825,\"292\":0.0047980717,\"28\":0.0045802571,\"143\":0.0045802571,\"30\":0.0044781409,\"145\":0.0044781409,\"29\":0.0043621607,\"144\":0.0043621607,\"208\":0.0043273171,\"93\":0.0043273171,\"206\":0.0041276299,\"91\":0.0041276299,\"223\":0.0040755787,\"108\":0.0040755787,\"222\":0.0039335012,\"107\":0.0039335012,\"220\":0.0038894774,\"105\":0.0038894774,\"27\":0.00385749,\"142\":0.00385749,\"245\":0.0036740912,\"95\":0.0036275468,\"210\":0.0036275468,\"106\":0.0035281844,\"221\":0.0035281844,\"26\":0.0033199252,\"141\":0.0033199252,\"293\":0.0032641712,\"110\":0.0031606894,\"225\":0.0031606894,\"112\":0.002931355,\"227\":0.002931355,\"243\":0.0029177054,\"247\":0.0027665343,\"25\":0.0026568393,\"140\":0.0026568393,\"244\":0.0026502146,\"294\":0.0025965544,\"212\":0.002554393,\"97\":0.002554393,\"297\":0.0022778517,\"226\":0.0022694948,\"111\":0.0022694948,\"298\":0.0022332029,\"246\":0.00198394,\"104\":0.0019647995,\"219\":0.0019647995,\"15\":0.0019036542,\"130\":0.0019036542,\"295\":0.0018337038,\"296\":0.0014691137,\"237\":0.0014035503,\"113\":0.0013588412,\"228\":0.0013588412,\"139\":0.0013444622,\"24\":0.0013444622,\"218\":0.001279575,\"103\":0.001279575,\"137\":0.0012722084,\"22\":0.0012722084,\"299\":0.0012112573,\"131\":0.0009974778,\"16\":0.0009974778,\"235\":0.0009420068,\"213\":0.000899227,\"98\":0.000899227,\"120\":0.0007732343,\"5\":0.0007732343,\"23\":0.0007673017,\"138\":0.0007673017,\"7\":0.000579398,\"122\":0.000579398,\"132\":0.0005463021,\"17\":0.0005463021,\"129\":0.0005379338,\"14\":0.0005379338,\"231\":0.0004810596,\"300\":0.0004541821,\"136\":0.0004143761,\"21\":0.0004143761,\"242\":0.0004077686,\"8\":0.000402153,\"123\":0.000402153,\"302\":0.0003903984,\"101\":0.0003871625,\"216\":0.0003871625,\"9\":0.0003653594,\"124\":0.0003653594,\"1\":0.0003608402,\"116\":0.0003608402,\"233\":0.0003515124,\"234\":0.0003474865,\"303\":0.0003399258,\"13\":0.0003227829,\"128\":0.0003227829,\"304\":0.0003183052,\"215\":0.0003102312,\"100\":0.0003102312,\"20\":0.0003036225,\"135\":0.0003036225,\"133\":0.0002644347,\"18\":0.0002644347,\"3\":0.0002636676,\"118\":0.0002636676,\"214\":0.0002458838,\"99\":0.0002458838,\"232\":0.0002280527,\"217\":0.0002082343,\"102\":0.0002082343,\"301\":0.0002049358,\"238\":0.0002048074,\"239\":0.0001971212,\"240\":0.0001920457,\"134\":0.0001910985,\"19\":0.0001910985,\"4\":0.0001887357,\"119\":0.0001887357,\"126\":0.0001747752,\"11\":0.0001747752,\"117\":0.0001710611,\"2\":0.0001710611,\"114\":0.0001586266,\"229\":0.0001586266,\"236\":0.0001076846,\"241\":0.0000884724,\"121\":0.0000860457,\"6\":0.0000860457,\"12\":0.0000617417,\"127\":0.0000617417,\"125\":0.0000430096,\"10\":0.0000430096}}',\n",
|
72 |
+
" 'plan_timestamp': '2023-08-15 16:24:11'}"
|
73 |
+
]
|
74 |
+
},
|
75 |
+
"execution_count": 51,
|
76 |
+
"metadata": {},
|
77 |
+
"output_type": "execute_result"
|
78 |
+
}
|
79 |
+
],
|
80 |
+
"source": [
|
81 |
+
"res"
|
82 |
+
]
|
83 |
+
},
|
84 |
+
{
|
85 |
+
"cell_type": "code",
|
86 |
+
"execution_count": 37,
|
87 |
+
"id": "87f7d882",
|
88 |
+
"metadata": {},
|
89 |
+
"outputs": [],
|
90 |
+
"source": [
|
91 |
+
"res_df = pd.DataFrame(res['product_mix_result'])"
|
92 |
+
]
|
93 |
+
},
|
94 |
+
{
|
95 |
+
"cell_type": "code",
|
96 |
+
"execution_count": 38,
|
97 |
+
"id": "93b21c64",
|
98 |
+
"metadata": {},
|
99 |
+
"outputs": [
|
100 |
+
{
|
101 |
+
"data": {
|
102 |
+
"text/html": [
|
103 |
+
"<div>\n",
|
104 |
+
"<style scoped>\n",
|
105 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
106 |
+
" vertical-align: middle;\n",
|
107 |
+
" }\n",
|
108 |
+
"\n",
|
109 |
+
" .dataframe tbody tr th {\n",
|
110 |
+
" vertical-align: top;\n",
|
111 |
+
" }\n",
|
112 |
+
"\n",
|
113 |
+
" .dataframe thead th {\n",
|
114 |
+
" text-align: right;\n",
|
115 |
+
" }\n",
|
116 |
+
"</style>\n",
|
117 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
118 |
+
" <thead>\n",
|
119 |
+
" <tr style=\"text-align: right;\">\n",
|
120 |
+
" <th></th>\n",
|
121 |
+
" <th>White Bread</th>\n",
|
122 |
+
" <th>Special Cake</th>\n",
|
123 |
+
" <th>Wedding Cake</th>\n",
|
124 |
+
" </tr>\n",
|
125 |
+
" </thead>\n",
|
126 |
+
" <tbody>\n",
|
127 |
+
" <tr>\n",
|
128 |
+
" <th>recommended_stock</th>\n",
|
129 |
+
" <td>3</td>\n",
|
130 |
+
" <td>26</td>\n",
|
131 |
+
" <td>13</td>\n",
|
132 |
+
" </tr>\n",
|
133 |
+
" </tbody>\n",
|
134 |
+
"</table>\n",
|
135 |
+
"</div>"
|
136 |
+
],
|
137 |
+
"text/plain": [
|
138 |
+
" White Bread Special Cake Wedding Cake\n",
|
139 |
+
"recommended_stock 3 26 13"
|
140 |
+
]
|
141 |
+
},
|
142 |
+
"execution_count": 38,
|
143 |
+
"metadata": {},
|
144 |
+
"output_type": "execute_result"
|
145 |
+
}
|
146 |
+
],
|
147 |
+
"source": [
|
148 |
+
"res_df"
|
149 |
+
]
|
150 |
+
},
|
151 |
+
{
|
152 |
+
"cell_type": "code",
|
153 |
+
"execution_count": 39,
|
154 |
+
"id": "c0e30697",
|
155 |
+
"metadata": {},
|
156 |
+
"outputs": [],
|
157 |
+
"source": [
|
158 |
+
"prob_table_df = pd.DataFrame(json.loads(res['probability_table']))"
|
159 |
+
]
|
160 |
+
},
|
161 |
+
{
|
162 |
+
"cell_type": "code",
|
163 |
+
"execution_count": 40,
|
164 |
+
"id": "0e465d87",
|
165 |
+
"metadata": {},
|
166 |
+
"outputs": [
|
167 |
+
{
|
168 |
+
"data": {
|
169 |
+
"text/html": [
|
170 |
+
"<div>\n",
|
171 |
+
"<style scoped>\n",
|
172 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
173 |
+
" vertical-align: middle;\n",
|
174 |
+
" }\n",
|
175 |
+
"\n",
|
176 |
+
" .dataframe tbody tr th {\n",
|
177 |
+
" vertical-align: top;\n",
|
178 |
+
" }\n",
|
179 |
+
"\n",
|
180 |
+
" .dataframe thead th {\n",
|
181 |
+
" text-align: right;\n",
|
182 |
+
" }\n",
|
183 |
+
"</style>\n",
|
184 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
185 |
+
" <thead>\n",
|
186 |
+
" <tr style=\"text-align: right;\">\n",
|
187 |
+
" <th></th>\n",
|
188 |
+
" <th>product</th>\n",
|
189 |
+
" <th>demand</th>\n",
|
190 |
+
" <th>probability</th>\n",
|
191 |
+
" </tr>\n",
|
192 |
+
" </thead>\n",
|
193 |
+
" <tbody>\n",
|
194 |
+
" <tr>\n",
|
195 |
+
" <th>263</th>\n",
|
196 |
+
" <td>Wedding Cake</td>\n",
|
197 |
+
" <td>33</td>\n",
|
198 |
+
" <td>0.036859</td>\n",
|
199 |
+
" </tr>\n",
|
200 |
+
" <tr>\n",
|
201 |
+
" <th>261</th>\n",
|
202 |
+
" <td>Wedding Cake</td>\n",
|
203 |
+
" <td>31</td>\n",
|
204 |
+
" <td>0.035949</td>\n",
|
205 |
+
" </tr>\n",
|
206 |
+
" <tr>\n",
|
207 |
+
" <th>259</th>\n",
|
208 |
+
" <td>Wedding Cake</td>\n",
|
209 |
+
" <td>29</td>\n",
|
210 |
+
" <td>0.034826</td>\n",
|
211 |
+
" </tr>\n",
|
212 |
+
" <tr>\n",
|
213 |
+
" <th>269</th>\n",
|
214 |
+
" <td>Wedding Cake</td>\n",
|
215 |
+
" <td>39</td>\n",
|
216 |
+
" <td>0.034518</td>\n",
|
217 |
+
" </tr>\n",
|
218 |
+
" <tr>\n",
|
219 |
+
" <th>264</th>\n",
|
220 |
+
" <td>Wedding Cake</td>\n",
|
221 |
+
" <td>34</td>\n",
|
222 |
+
" <td>0.033875</td>\n",
|
223 |
+
" </tr>\n",
|
224 |
+
" <tr>\n",
|
225 |
+
" <th>...</th>\n",
|
226 |
+
" <td>...</td>\n",
|
227 |
+
" <td>...</td>\n",
|
228 |
+
" <td>...</td>\n",
|
229 |
+
" </tr>\n",
|
230 |
+
" <tr>\n",
|
231 |
+
" <th>6</th>\n",
|
232 |
+
" <td>White Bread</td>\n",
|
233 |
+
" <td>6</td>\n",
|
234 |
+
" <td>0.000086</td>\n",
|
235 |
+
" </tr>\n",
|
236 |
+
" <tr>\n",
|
237 |
+
" <th>12</th>\n",
|
238 |
+
" <td>White Bread</td>\n",
|
239 |
+
" <td>12</td>\n",
|
240 |
+
" <td>0.000062</td>\n",
|
241 |
+
" </tr>\n",
|
242 |
+
" <tr>\n",
|
243 |
+
" <th>127</th>\n",
|
244 |
+
" <td>Special Cake</td>\n",
|
245 |
+
" <td>12</td>\n",
|
246 |
+
" <td>0.000062</td>\n",
|
247 |
+
" </tr>\n",
|
248 |
+
" <tr>\n",
|
249 |
+
" <th>125</th>\n",
|
250 |
+
" <td>Special Cake</td>\n",
|
251 |
+
" <td>10</td>\n",
|
252 |
+
" <td>0.000043</td>\n",
|
253 |
+
" </tr>\n",
|
254 |
+
" <tr>\n",
|
255 |
+
" <th>10</th>\n",
|
256 |
+
" <td>White Bread</td>\n",
|
257 |
+
" <td>10</td>\n",
|
258 |
+
" <td>0.000043</td>\n",
|
259 |
+
" </tr>\n",
|
260 |
+
" </tbody>\n",
|
261 |
+
"</table>\n",
|
262 |
+
"<p>302 rows × 3 columns</p>\n",
|
263 |
+
"</div>"
|
264 |
+
],
|
265 |
+
"text/plain": [
|
266 |
+
" product demand probability\n",
|
267 |
+
"263 Wedding Cake 33 0.036859\n",
|
268 |
+
"261 Wedding Cake 31 0.035949\n",
|
269 |
+
"259 Wedding Cake 29 0.034826\n",
|
270 |
+
"269 Wedding Cake 39 0.034518\n",
|
271 |
+
"264 Wedding Cake 34 0.033875\n",
|
272 |
+
".. ... ... ...\n",
|
273 |
+
"6 White Bread 6 0.000086\n",
|
274 |
+
"12 White Bread 12 0.000062\n",
|
275 |
+
"127 Special Cake 12 0.000062\n",
|
276 |
+
"125 Special Cake 10 0.000043\n",
|
277 |
+
"10 White Bread 10 0.000043\n",
|
278 |
+
"\n",
|
279 |
+
"[302 rows x 3 columns]"
|
280 |
+
]
|
281 |
+
},
|
282 |
+
"execution_count": 40,
|
283 |
+
"metadata": {},
|
284 |
+
"output_type": "execute_result"
|
285 |
+
}
|
286 |
+
],
|
287 |
+
"source": [
|
288 |
+
"prob_table_df"
|
289 |
+
]
|
290 |
+
},
|
291 |
+
{
|
292 |
+
"cell_type": "code",
|
293 |
+
"execution_count": 47,
|
294 |
+
"id": "b6f4c718",
|
295 |
+
"metadata": {},
|
296 |
+
"outputs": [],
|
297 |
+
"source": [
|
298 |
+
"w = prob_table_df[prob_table_df['product']==\"Wedding Cake\"]"
|
299 |
+
]
|
300 |
+
},
|
301 |
+
{
|
302 |
+
"cell_type": "code",
|
303 |
+
"execution_count": 48,
|
304 |
+
"id": "c1816949",
|
305 |
+
"metadata": {},
|
306 |
+
"outputs": [],
|
307 |
+
"source": [
|
308 |
+
"import matplotlib.pyplot as plt "
|
309 |
+
]
|
310 |
+
},
|
311 |
+
{
|
312 |
+
"cell_type": "code",
|
313 |
+
"execution_count": 49,
|
314 |
+
"id": "2458d35e",
|
315 |
+
"metadata": {},
|
316 |
+
"outputs": [
|
317 |
+
{
|
318 |
+
"data": {
|
319 |
+
"text/html": [
|
320 |
+
"<div>\n",
|
321 |
+
"<style scoped>\n",
|
322 |
+
" .dataframe tbody tr th:only-of-type {\n",
|
323 |
+
" vertical-align: middle;\n",
|
324 |
+
" }\n",
|
325 |
+
"\n",
|
326 |
+
" .dataframe tbody tr th {\n",
|
327 |
+
" vertical-align: top;\n",
|
328 |
+
" }\n",
|
329 |
+
"\n",
|
330 |
+
" .dataframe thead th {\n",
|
331 |
+
" text-align: right;\n",
|
332 |
+
" }\n",
|
333 |
+
"</style>\n",
|
334 |
+
"<table border=\"1\" class=\"dataframe\">\n",
|
335 |
+
" <thead>\n",
|
336 |
+
" <tr style=\"text-align: right;\">\n",
|
337 |
+
" <th></th>\n",
|
338 |
+
" <th>product</th>\n",
|
339 |
+
" <th>demand</th>\n",
|
340 |
+
" <th>probability</th>\n",
|
341 |
+
" </tr>\n",
|
342 |
+
" </thead>\n",
|
343 |
+
" <tbody>\n",
|
344 |
+
" <tr>\n",
|
345 |
+
" <th>263</th>\n",
|
346 |
+
" <td>Wedding Cake</td>\n",
|
347 |
+
" <td>33</td>\n",
|
348 |
+
" <td>0.036859</td>\n",
|
349 |
+
" </tr>\n",
|
350 |
+
" <tr>\n",
|
351 |
+
" <th>261</th>\n",
|
352 |
+
" <td>Wedding Cake</td>\n",
|
353 |
+
" <td>31</td>\n",
|
354 |
+
" <td>0.035949</td>\n",
|
355 |
+
" </tr>\n",
|
356 |
+
" <tr>\n",
|
357 |
+
" <th>259</th>\n",
|
358 |
+
" <td>Wedding Cake</td>\n",
|
359 |
+
" <td>29</td>\n",
|
360 |
+
" <td>0.034826</td>\n",
|
361 |
+
" </tr>\n",
|
362 |
+
" <tr>\n",
|
363 |
+
" <th>269</th>\n",
|
364 |
+
" <td>Wedding Cake</td>\n",
|
365 |
+
" <td>39</td>\n",
|
366 |
+
" <td>0.034518</td>\n",
|
367 |
+
" </tr>\n",
|
368 |
+
" <tr>\n",
|
369 |
+
" <th>264</th>\n",
|
370 |
+
" <td>Wedding Cake</td>\n",
|
371 |
+
" <td>34</td>\n",
|
372 |
+
" <td>0.033875</td>\n",
|
373 |
+
" </tr>\n",
|
374 |
+
" <tr>\n",
|
375 |
+
" <th>...</th>\n",
|
376 |
+
" <td>...</td>\n",
|
377 |
+
" <td>...</td>\n",
|
378 |
+
" <td>...</td>\n",
|
379 |
+
" </tr>\n",
|
380 |
+
" <tr>\n",
|
381 |
+
" <th>238</th>\n",
|
382 |
+
" <td>Wedding Cake</td>\n",
|
383 |
+
" <td>8</td>\n",
|
384 |
+
" <td>0.000205</td>\n",
|
385 |
+
" </tr>\n",
|
386 |
+
" <tr>\n",
|
387 |
+
" <th>239</th>\n",
|
388 |
+
" <td>Wedding Cake</td>\n",
|
389 |
+
" <td>9</td>\n",
|
390 |
+
" <td>0.000197</td>\n",
|
391 |
+
" </tr>\n",
|
392 |
+
" <tr>\n",
|
393 |
+
" <th>240</th>\n",
|
394 |
+
" <td>Wedding Cake</td>\n",
|
395 |
+
" <td>10</td>\n",
|
396 |
+
" <td>0.000192</td>\n",
|
397 |
+
" </tr>\n",
|
398 |
+
" <tr>\n",
|
399 |
+
" <th>236</th>\n",
|
400 |
+
" <td>Wedding Cake</td>\n",
|
401 |
+
" <td>6</td>\n",
|
402 |
+
" <td>0.000108</td>\n",
|
403 |
+
" </tr>\n",
|
404 |
+
" <tr>\n",
|
405 |
+
" <th>241</th>\n",
|
406 |
+
" <td>Wedding Cake</td>\n",
|
407 |
+
" <td>11</td>\n",
|
408 |
+
" <td>0.000088</td>\n",
|
409 |
+
" </tr>\n",
|
410 |
+
" </tbody>\n",
|
411 |
+
"</table>\n",
|
412 |
+
"<p>74 rows × 3 columns</p>\n",
|
413 |
+
"</div>"
|
414 |
+
],
|
415 |
+
"text/plain": [
|
416 |
+
" product demand probability\n",
|
417 |
+
"263 Wedding Cake 33 0.036859\n",
|
418 |
+
"261 Wedding Cake 31 0.035949\n",
|
419 |
+
"259 Wedding Cake 29 0.034826\n",
|
420 |
+
"269 Wedding Cake 39 0.034518\n",
|
421 |
+
"264 Wedding Cake 34 0.033875\n",
|
422 |
+
".. ... ... ...\n",
|
423 |
+
"238 Wedding Cake 8 0.000205\n",
|
424 |
+
"239 Wedding Cake 9 0.000197\n",
|
425 |
+
"240 Wedding Cake 10 0.000192\n",
|
426 |
+
"236 Wedding Cake 6 0.000108\n",
|
427 |
+
"241 Wedding Cake 11 0.000088\n",
|
428 |
+
"\n",
|
429 |
+
"[74 rows x 3 columns]"
|
430 |
+
]
|
431 |
+
},
|
432 |
+
"execution_count": 49,
|
433 |
+
"metadata": {},
|
434 |
+
"output_type": "execute_result"
|
435 |
+
}
|
436 |
+
],
|
437 |
+
"source": [
|
438 |
+
"w"
|
439 |
+
]
|
440 |
+
},
|
441 |
+
{
|
442 |
+
"cell_type": "code",
|
443 |
+
"execution_count": 50,
|
444 |
+
"id": "9b06145f",
|
445 |
+
"metadata": {},
|
446 |
+
"outputs": [
|
447 |
+
{
|
448 |
+
"data": {
|
449 |
+
"text/plain": [
|
450 |
+
"<matplotlib.collections.PathCollection at 0x12ba90350>"
|
451 |
+
]
|
452 |
+
},
|
453 |
+
"execution_count": 50,
|
454 |
+
"metadata": {},
|
455 |
+
"output_type": "execute_result"
|
456 |
+
},
|
457 |
+
{
|
458 |
+
"data": {
|
459 |
+
"image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/40lEQVR4nO3df3SU9Z3//deQX6NIIj80k1iEgN1CBItJKoaa2ruVYHC95SxukV0Fa/U+oe0iZDk3Au0BdNuA9etSVwhbhN5SWuTsohbWFIhVUloGWCChYFIXIRLFTHMStxnUQwLJdf+RzpjJzCQzk/l5zfNxzpxjrvnMXNcFOPPO5/P+vN8WwzAMAQAAJLhhsb4AAACAcCCoAQAApkBQAwAATIGgBgAAmAJBDQAAMAWCGgAAYAoENQAAwBQIagAAgCmkxvoCoqmnp0cfffSRRowYIYvFEuvLAQAAATAMQ5cuXVJubq6GDfM/H5NUQc1HH32ksWPHxvoyAABACD744AN94Qtf8Pt8UgU1I0aMkNT7h5KZmRnjqwEAAIFwOp0aO3as+3vcn6QKalxLTpmZmQQ1AAAkmMFSR0gUBgAApkBQAwAATIGgBgAAmAJBDQAAMAWCGgAAYAoENQAAwBQIagAAgCkQ1AAAAFNIquJ7AKKju8fQsaaP1Xrpsm4cYdUdeaOUMox+awAii6AGQFjtO9OitXsb1NJx2X0sJ8uq1ffn694pOTG8MgBmx/ITgLDZd6ZFi3ac9AhoJMnRcVmLdpzUvjMtMboyAMmAoAZAWHT3GFq7t0GGj+dcx9bubVB3j68RADB0BDUAwuJY08deMzR9GZJaOi7rWNPH0bsoAEmFoAZAWLRe8h/QhDIOAIJFUAMgLG4cYQ3rOAAIFkENgLC4I2+UcrKs8rdx26LeXVB35I2K5mUBSCIENQDCImWYRavvz5ckr8DG9fPq+/OpVwMgYghqAAyou8eQ/Vy7fl1/UfZz7QPuXrp3So6qHi6QLctzicmWZVXVwwXUqQEQURTfA+BXKIX07p2So5n5NioKA4g6i2EYSVM0wul0KisrSx0dHcrMzIz15QBxzVVIr/8HhCs0YeYFQLQE+v3N8hMALxTSA5CICGoAeKGQHoBERFADwAuF9AAkIoIaAF4opAcgERHUAPBCIT0AiYigBoAXCukBSEQhBTWbNm1SXl6erFarCgsLdejQoQHH19bWqrCwUFarVRMmTNDmzZs9nn/11VdVVFSk66+/XsOHD9e0adP0i1/8wmPMmjVrZLFYPB42my2UywcQAArpAUg0QRff27Vrl5YsWaJNmzbpq1/9qv793/9dZWVlamho0M033+w1vqmpSbNnz9YTTzyhHTt26A9/+IO++93v6oYbbtDcuXMlSaNGjdKqVas0adIkpaen67/+67/07W9/WzfeeKNmzZrlfq9bb71Vb775pvvnlJSUUO4ZSGrdPUbAhfEopAcgkQRdfG/69OkqKChQVVWV+9jkyZM1Z84cVVZWeo1fvny59uzZo8bGRvex8vJynTp1Sna73e95CgoKdN999+mZZ56R1DtT8/rrr6u+vj6Yy/VA8T0ku1AqBANArEWk+F5XV5dOnDih0tJSj+OlpaU6fPiwz9fY7Xav8bNmzdLx48d15coVr/GGYei3v/2t3n33XX3ta1/zeO7s2bPKzc1VXl6eHnroIZ0/f37A6+3s7JTT6fR4AMnKVSG4f/0ZR8dlLdpxUvvOtMToygAgPIIKatra2tTd3a3s7GyP49nZ2XI4HD5f43A4fI6/evWq2tra3Mc6Ojp03XXXKT09Xffdd5/+7d/+TTNnznQ/P336dG3fvl379+/Xli1b5HA4NGPGDLW3t/u93srKSmVlZbkfY8eODeZ2AdOgQnBwjTkBJKaQGlpaLJ7r6YZheB0bbHz/4yNGjFB9fb0++eQT/fa3v1VFRYUmTJigr3/965KksrIy99ipU6equLhYEydO1Msvv6yKigqf512xYoXHc06nk8AGSSmYCsHFE0dH78KihGU3IDkEFdSMGTNGKSkpXrMyra2tXrMxLjabzef41NRUjR79+YfnsGHDdMstt0iSpk2bpsbGRlVWVrqDmv6GDx+uqVOn6uzZs36vNyMjQxkZGYHcGmBqyVwh2F9jTteyGzu5APMIavkpPT1dhYWFqqmp8TheU1OjGTNm+HxNcXGx1/gDBw6oqKhIaWlpfs9lGIY6Ozv9Pt/Z2anGxkbl5PBhBAwmWSsEs+wGJJeg69RUVFTopZde0rZt29TY2KilS5equblZ5eXlknqXfBYsWOAeX15ergsXLqiiokKNjY3atm2btm7dqmXLlrnHVFZWqqamRufPn9ef/vQnPf/889q+fbsefvhh95hly5aptrZWTU1NOnr0qB588EE5nU4tXLhwKPcPJIVkrRBMY04guQSdUzNv3jy1t7fr6aefVktLi6ZMmaLq6mqNGzdOktTS0qLm5mb3+Ly8PFVXV2vp0qXauHGjcnNz9cILL7hr1EjSp59+qu9+97v68MMPdc0112jSpEnasWOH5s2b5x7z4Ycfav78+Wpra9MNN9ygO++8U0eOHHGfF4B/rgrBi3aclEXymLkwc4XgZF52A5JR0HVqEhl1apDsYp0wG0zhv3Cwn2vX/C1HBh2384k7TZkgDZhFoN/fIe1+ApCYYlkhOFoBVd/Aacx1GbJlZujPzk6feTUW9bZ9MNuyG5CsCGqAJJMyzBL1WYlo7UDyFThdf22aDCmplt2AZEWXbgARFa0dSP4qJnd81lu5POtaz92WNOYEzIeZGgARFY3Cf4MFThZJ16SlaON3CtT2aSeNOQGTIqgBTCraSbn+RGMHUqCB07BhFj0w7aaQzwMgvhHUACYU611OfUWj8B9btwFI5NQAphNv3bijUfgvWSsmA/BEUAOYSDy2BXAV/pPkFdiEawdSslZMBuCJoAYwkXhtC3DvlBxVPVwgW5bnTEm4diBFI3ACEP/IqQFMZCi5JZFOLI504T9X4NQ/l8gWo1wiANFHUAOYSKi5JdFKLI504b9YVkwGEHsENUCCG2pbgGhV+42WWFRMBhAfCGqABDbUtgCBFK1bu7dBM/NtzHYAiHskCgMJKhxtAeI1sRgAQsFMDZCAwtUWgKJ18VN5GcDQEdQACShcbQGSvWhdPFVeBjB0LD8BCShcMyzJXLQu3iovAxg6ghogAYVrhmWoReu6ewzZz7Xr1/UXZT/XHtVKxUMRj5WXAQwdy09AAnLNsDg6Lge8ddufUIvWJfLSTTAJ0mwPBxIHQQ2QgFwzLIt2nAxo6/Zggi1al+i1bUiQBsyJ5ScgQYW7n5KraN0D025S8cTRAy45JfrSTbInSANmxUwNkMBi0RbADEs34Vy+AxA/CGqABBfttgBmWLoJ9/IdgPjA8hOAoJhl6Sbcy3cAYo+ZGgBBicTSTayq+tLVGzAXghoAQQn30k2st4bT1RswD5afAAQtXEs3VPUFEE7M1AAIyVCXbgJpyrl2b4Nm5ttYDgIQEIIaACEbytJNoFvD/78/NGnMiAzyXQAMiqAGQEwEuuX7mTca3f+dKG0YAMQGOTUAYiKULd/k2gAYCEENgJhwbQ0PZjEpUdowAIgNghoAMeHaGi4p6MDG1YYBAPoiqAEQM/62hgcintswAIgNEoUBxFT/reFtlzo9koP9ifc2DACiL6SZmk2bNikvL09Wq1WFhYU6dOjQgONra2tVWFgoq9WqCRMmaPPmzR7Pv/rqqyoqKtL111+v4cOHa9q0afrFL34x5PMCSAyureEPTLtJj341b8BcG4t6d0HRQRtAf0EHNbt27dKSJUu0atUq1dXVqaSkRGVlZWpubvY5vqmpSbNnz1ZJSYnq6uq0cuVKLV68WLt373aPGTVqlFatWiW73a4//vGP+va3v61vf/vb2r9/f8jnBZCYBsq1oYM2gIFYDMMIagvB9OnTVVBQoKqqKvexyZMna86cOaqsrPQav3z5cu3Zs0eNjZ9PJ5eXl+vUqVOy2+1+z1NQUKD77rtPzzzzTEjn9cXpdCorK0sdHR3KzMwM6DUAYiPWPaEAxI9Av7+Dyqnp6urSiRMn9NRTT3kcLy0t1eHDh32+xm63q7S01OPYrFmztHXrVl25ckVpaWkezxmGobfeekvvvvuu1q9fH/J5Jamzs1OdnZ3un51O5+A3CSAu0EEbQLCCCmra2trU3d2t7Oxsj+PZ2dlyOBw+X+NwOHyOv3r1qtra2pST0/sbV0dHh2666SZ1dnYqJSVFmzZt0syZM0M+ryRVVlZq7dq1wdwigDhCB20AwQgpUdhi8fxNyTAMr2ODje9/fMSIEaqvr9d///d/60c/+pEqKip08ODBIZ13xYoV6ujocD8++OCDAe8LAAAkrqBmasaMGaOUlBSv2ZHW1lavWRQXm83mc3xqaqpGj/78N7Bhw4bplltukSRNmzZNjY2Nqqys1Ne//vWQzitJGRkZysjICOYWAQBAggpqpiY9PV2FhYWqqanxOF5TU6MZM2b4fE1xcbHX+AMHDqioqMgrn6YvwzDc+TChnBeAuXX3GLKfa9ev6y/Kfq6dtgkAgi++V1FRoUceeURFRUUqLi7Wz372MzU3N6u8vFxS75LPxYsXtX37dkm9O51efPFFVVRU6IknnpDdbtfWrVu1c+dO93tWVlaqqKhIEydOVFdXl6qrq7V9+3aPnU6DnRdA8mBnFABfgg5q5s2bp/b2dj399NNqaWnRlClTVF1drXHjxkmSWlpaPGrH5OXlqbq6WkuXLtXGjRuVm5urF154QXPnznWP+fTTT/Xd735XH374oa655hpNmjRJO3bs0Lx58wI+L4DksO9MixbtOKn+8zKuDt5VDxcQ2ABJKug6NYmMOjVAYuvuMXTX+rc8Zmj6skiyZVn1++XfYOs3YCKBfn/T0BJAwjjW9LHfgEaigzeQ7AhqACSMQDtz08EbSE4ENQASRqCduengDSSnoBOFASBW7sgbpZwsqxwdl70ShaXPc2rC0cG7u8egRQOQYAhqACQMVwfvRTtOyiJ5BDbh7ODNlnEgMbH8BCCh3DslR1UPF8iW5bnEZMuyhmU7t2vLeP+EZNeW8X1nWob0/gAih5kaIEGwHPK5SHXw7u4xtHZvg8+lLUO9s0Fr9zZoZr4taf/sgXhGUAMkAJZDvEWig3cwW8bpHg7EH5afgDjHckj0sGUcSGwENUAcG2w5ROpdDqGZY3iwZRxIbAQ1QByjgm50ubaM+8uWsah32S8cW8YBhB9BDRDHWA6JLteWcUlegU04t4wDiAyCGiCOsRwSfZHeMg4gctj9BMSxaFbQxecitWUcQGQR1ABxLFoVdOEtElvGAUQWy09AnGM5BAACw0wNkABYDgGAwRHUAHFkoFYILIcAwMAIaoA4QSuExBDOHlz08wLCi6AGiAOuVgj9dzi5WiGQOxMfwhl4EsQC4UeiMBBjtEJIDOHswUU/LyAyCGqAGKMVQvwLZ+BJEAtEDkENEGO0Qoh/4Qw8CWKByCGnBogxWiHEv3AGnpEIYkk4BnoR1AAxRiuE+BfOwDPcQSwJx8DnWH4CYozO0PHPFXj6+xuwqDeQCCTwDOd7kXAMeCKoAeIArRDiWzgDz3C9FwnHgDeLYRhJ8y/e6XQqKytLHR0dyszMjPXlAF7IjYhv8VSnxn6uXfO3HBl03M4n7qQSNRJeoN/f5NQAcYRWCPEtnD24hvpe7JoDvBHUAEAQwhl4DuW92DUHeCOnBgASUDgTjgGzIKgBgATErjnAG0ENACQods0BnsipAYAEFs7kZSDREdQAQILwt+WfXXNAr5CWnzZt2qS8vDxZrVYVFhbq0KFDA46vra1VYWGhrFarJkyYoM2bN3s8v2XLFpWUlGjkyJEaOXKk7rnnHh07dsxjzJo1a2SxWDweNpstlMsHgISz70yL7lr/luZvOaInX6nX/C1HdNf6t6gaDPQRdFCza9cuLVmyRKtWrVJdXZ1KSkpUVlam5uZmn+Obmpo0e/ZslZSUqK6uTitXrtTixYu1e/du95iDBw9q/vz5evvtt2W323XzzTertLRUFy9e9HivW2+9VS0tLe7H6dOng718AEg4tEMAAhN0ReHp06eroKBAVVVV7mOTJ0/WnDlzVFlZ6TV++fLl2rNnjxobG93HysvLderUKdntdp/n6O7u1siRI/Xiiy9qwYIFknpnal5//XXV19cHc7keqCgMINF09xi6a/1bXgGNi6vh6e+Xf4M8GphWoN/fQc3UdHV16cSJEyotLfU4XlpaqsOHD/t8jd1u9xo/a9YsHT9+XFeuXPH5ms8++0xXrlzRqFGe9RXOnj2r3Nxc5eXl6aGHHtL58+cHvN7Ozk45nU6PBwAkkmNNH/sNaKTePk8tHZd1rOnj6F0UEKeCCmra2trU3d2t7Oxsj+PZ2dlyOBw+X+NwOHyOv3r1qtra2ny+5qmnntJNN92ke+65x31s+vTp2r59u/bv368tW7bI4XBoxowZam9v93u9lZWVysrKcj/Gjh0b6K0CQFygHQIQuJAShS0WzylOwzC8jg023tdxSXr22We1c+dOvfrqq7JaP6+9UFZWprlz52rq1Km655579MYbb0iSXn75Zb/nXbFihTo6OtyPDz74YPCbA4A4QjsEIHBBbekeM2aMUlJSvGZlWltbvWZjXGw2m8/xqampGj3acwvic889px//+Md68803ddtttw14LcOHD9fUqVN19uxZv2MyMjKUkZEx4PsAQDxztUNwdFyWrwRIV04N7RCAIGdq0tPTVVhYqJqaGo/jNTU1mjFjhs/XFBcXe40/cOCAioqKlJaW5j72k5/8RM8884z27dunoqKiQa+ls7NTjY2NysmhYiYA86IdAhC4oJefKioq9NJLL2nbtm1qbGzU0qVL1dzcrPLyckm9Sz6uHUtS706nCxcuqKKiQo2Njdq2bZu2bt2qZcuWucc8++yz+sEPfqBt27Zp/Pjxcjgccjgc+uSTT9xjli1bptraWjU1Neno0aN68MEH5XQ6tXDhwqHcPwDEPdohAIEJuqLwvHnz1N7erqefflotLS2aMmWKqqurNW7cOElSS0uLR82avLw8VVdXa+nSpdq4caNyc3P1wgsvaO7cue4xmzZtUldXlx588EGPc61evVpr1qyRJH344YeaP3++2tradMMNN+jOO+/UkSNH3OcFADOjHQIwuKDr1CQy6tQg2vyVtQcABC7Q7296PwERsu9Mi9bubfCoMZKTZdXq+/NZLgCACAhpSzeAgVHWHgCij6AGCLPuHkNr9zb43H7rOrZ2b4O6e5Jm5RcAooKgBggzytoDQGwQ1ABhRll7AIgNghogzChrDwCxQVADhJmrrL2/jdsW9e6Coqw9AIQXQQ0QZpS1B4DYIKgBIoCy9gAQfRTfAyKEsvYAEF0ENUAEpQyzqHji6FhfBgAkBZafAACAKTBTAwARRmNTIDoIagAggmhsCkQPy08AECE0NgWii6AGACKAxqZA9BHUAEAE0NgUiD5yaoAYIHHU/GhsCkQfQQ0QZSSOJgcamwLRx/ITEEUkjiaPoTQ27e4xZD/Xrl/XX5T9XDt5N0CAmKkBomSwxFGLehNHZ+bbWIoyAVdj00U7Tsoiefy9D9TYlJk8IHTM1ABRQuJo8gm2sWkkZvKY9UEyYaYGiBISR5NToI1NIzGTx6wPkg0zNUCUkDiavFyNTR+YdpOKJ472GZSEeyaP/C0kI4IaIEqGkjgK8wvnTB6F/5CsCGqAKHEljkryCmwGShxFcgjnTB75W0hWBDVAFAWbOIrkEc6ZPPK3kKxIFAaiLNDEUSSXULeA+0L+FpIVMzVADASSOIrkE66ZPPK3kKyYqQGAOBKOmbxwzvoAicRiGEbSpL87nU5lZWWpo6NDmZmZsb4cAIgo6tTALAL9/mamBgBMivwtJBuCGgAwMVf+FpAMSBQGAACmEFJQs2nTJuXl5clqtaqwsFCHDh0acHxtba0KCwtltVo1YcIEbd682eP5LVu2qKSkRCNHjtTIkSN1zz336NixY0M+LwAASB5BBzW7du3SkiVLtGrVKtXV1amkpERlZWVqbm72Ob6pqUmzZ89WSUmJ6urqtHLlSi1evFi7d+92jzl48KDmz5+vt99+W3a7XTfffLNKS0t18eLFkM8LAACSS9C7n6ZPn66CggJVVVW5j02ePFlz5sxRZWWl1/jly5drz549amxsdB8rLy/XqVOnZLfbfZ6ju7tbI0eO1IsvvqgFCxaEdF5f2P0EAEDiCfT7O6iZmq6uLp04cUKlpaUex0tLS3X48GGfr7Hb7V7jZ82apePHj+vKlSs+X/PZZ5/pypUrGjVqVMjnBQAAySWo3U9tbW3q7u5Wdna2x/Hs7Gw5HA6fr3E4HD7HX716VW1tbcrJ8a6V8NRTT+mmm27SPffcE/J5Jamzs1OdnZ3un51O58A3CAAAElZIicIWi2eNA8MwvI4NNt7XcUl69tlntXPnTr366quyWj1LhQd73srKSmVlZbkfY8eO9TsWAAAktqCCmjFjxiglJcVrdqS1tdVrFsXFZrP5HJ+amqrRoz1rJzz33HP68Y9/rAMHDui2224b0nklacWKFero6HA/Pvjgg4DuEwAAJJ6ggpr09HQVFhaqpqbG43hNTY1mzJjh8zXFxcVe4w8cOKCioiKlpaW5j/3kJz/RM888o3379qmoqGjI55WkjIwMZWZmejwAAIA5BV1RuKKiQo888oiKiopUXFysn/3sZ2publZ5ebmk3tmRixcvavv27ZJ6dzq9+OKLqqio0BNPPCG73a6tW7dq586d7vd89tln9cMf/lC/+tWvNH78ePeMzHXXXafrrrsuoPMCAIDkFnRQM2/ePLW3t+vpp59WS0uLpkyZourqao0bN06S1NLS4lE7Ji8vT9XV1Vq6dKk2btyo3NxcvfDCC5o7d657zKZNm9TV1aUHH3zQ41yrV6/WmjVrAjovAABIbnTpBgAAcS0idWoAAADiFUENAAAwhaBzagAAvnX3GDrW9LFaL13WjSOsuiNvlFKG+a+lBSC8CGoAIAz2nWnR2r0Naum47D6Wk2XV6vvzde8U78rpAMKP5ScAGKJ9Z1q0aMdJj4BGkhwdl7Vox0ntO9MSoysDkgtBDQAMQXePobV7G+RrG6nr2Nq9DeruSZqNpkDMENQAwBAca/rYa4amL0NSS8dlHWv6OHoXBSQpghoAGILWS/4DmlDGAQgdQQ0ADMGNI6xhHQcgdAQ1ADAEd+SNUk6WVf42blvUuwvqjrxR0bwsICkR1ADAEKQMs2j1/fmS5BXYuH5efX8+9WqAKCCoAYAhundKjqoeLpAty3OJyZZlVdXDBdSpAaKE4nsAEAb3TsnRzHwbFYWBGCKoAYAwSRlmUfHE0bG+DCBpsfwEAABMgZkaAEhCNN+EGRHUAECSofkmzIrlJwBIIjTfhJkR1ABAkqD5JsyOoAYAkgTNN2F2BDUAkCRovgmzI1EYCAN2kiAR0HwTZkdQAwwRO0mQKFzNNx0dl33m1VjU29qB5ptIVCw/AUPAThIkEppvwuwIaoAQsZMEiYjmmzAzlp+AEAWzk4R+QIgnNN+EWRHUACFiJwkSGc03YUYsPwEhYicJAMQXghogRK6dJP4m7C3q3QXFThIAiA6CGiBE7CSBGXX3GLKfa9ev6y/Kfq6dRHckFHJqgCFw7STpX6fGRp0aJCBqLiHRWQzDSJow3Ol0KisrSx0dHcrMzIz15cBEqCiMROequdT/C8H1r5jt3oilQL+/makBwoCdJEhkg9Vcsqi35tLMfBvBOuIaOTUAkOTo3g2zYKYGCALLTDAjai7BLEKaqdm0aZPy8vJktVpVWFioQ4cODTi+trZWhYWFslqtmjBhgjZv3uzx/DvvvKO5c+dq/Pjxslgs2rBhg9d7rFmzRhaLxeNhs9lCuXwgJPvOtOiu9W9p/pYjevKVes3fckR3rX+L/k5IeNRcglkEHdTs2rVLS5Ys0apVq1RXV6eSkhKVlZWpubnZ5/impibNnj1bJSUlqqur08qVK7V48WLt3r3bPeazzz7ThAkTtG7dugEDlVtvvVUtLS3ux+nTp4O9fCAkNK6EmVFzCWYRdFDz/PPP6zvf+Y4ef/xxTZ48WRs2bNDYsWNVVVXlc/zmzZt18803a8OGDZo8ebIef/xxPfbYY3ruuefcY77yla/oJz/5iR566CFlZGT4PXdqaqpsNpv7ccMNNwR7+UDQaFwJs6PmEswiqKCmq6tLJ06cUGlpqcfx0tJSHT582Odr7Ha71/hZs2bp+PHjunLlSlAXe/bsWeXm5iovL08PPfSQzp8/P+D4zs5OOZ1OjwcQLJIokQwG6949M99GUT7EvaAShdva2tTd3a3s7GyP49nZ2XI4HD5f43A4fI6/evWq2tralJMTWN2D6dOna/v27fqbv/kb/fnPf9a//Mu/aMaMGXrnnXc0erTvrbSVlZVau3ZtQO8P+EMSJZKFv+7dNQ0O3bX+LYryIe6FlChssXhOQRqG4XVssPG+jg+krKxMc+fO1dSpU3XPPffojTfekCS9/PLLfl+zYsUKdXR0uB8ffPBBwOcDXEiiRDJx1Vx6YNpNKp44WjUNDvLJkDCCCmrGjBmjlJQUr1mZ1tZWr9kYF5vN5nN8amqq3xmWQAwfPlxTp07V2bNn/Y7JyMhQZmamxwMIFkmUSFbkkyHRBBXUpKenq7CwUDU1NR7Ha2pqNGPGDJ+vKS4u9hp/4MABFRUVKS0tLcjL/VxnZ6caGxsDXr4CQkUSJZIV+WRINEEvP1VUVOill17Stm3b1NjYqKVLl6q5uVnl5eWSepd8FixY4B5fXl6uCxcuqKKiQo2Njdq2bZu2bt2qZcuWucd0dXWpvr5e9fX16urq0sWLF1VfX6/33nvPPWbZsmWqra1VU1OTjh49qgcffFBOp1MLFy4cyv0DARksiZK8ApgR+WRINEFXFJ43b57a29v19NNPq6WlRVOmTFF1dbXGjRsnSWppafGoWZOXl6fq6motXbpUGzduVG5url544QXNnTvXPeajjz7S7bff7v75ueee03PPPae7775bBw8elCR9+OGHmj9/vtra2nTDDTfozjvv1JEjR9znBSLNXxIlMzQwK/LJkGjo0g0A8Km7x9Bd69+So+Oyz7wai3pnK3+//BsE94ioQL+/aWgJAPCJfDIkGoIaAIBf5JMhkdClGwAwIPLJkCgIagAAg3IV5QPiGctPAADAFAhqAACAKRDUAAAAUyCoAQAApkCiMAAgLnT3GOywwpAQ1AAAYm7fmRat3dvg0UAzJ8uq1ffnUwsHAWP5CQAQU/vOtGjRjpNeHcEdHZe1aMdJ7TvTEqMrQ6IhqAEAxEx3j6G1ext89pZyHVu7t0HdPUnTphBDQFADAIiZY00fe83Q9GVIaum4rGNNH0fvopCwCGoAADHTesl/QBPKOCQ3ghoAQMzcOMI6+KAgxiG5EdQAAGLmjrxRysmyyt/GbYt6d0HdkTcqmpeFBEVQAwCImZRhFq2+P1+SvAIb18+r78+nXg0CQlADAIipe6fkqOrhAtmyPJeYbFlWVT1cQJ0aBIziewCAmLt3So5m5tuoKIwhIagBAMSFlGEWFU8cHevLQAIjqAF8oAcNACQeghqgH3rQAEBiIlEY6IMeNACQuAhqgL+iBw0AJDaCGuCv6EEDREd3jyH7uXb9uv6i7Ofa+UUBYUNODfBX9KABIo+cNUQSMzXAX9GDBogsctYQaQQ1wF/RgwaIHHLWEA0ENcBf0YMGiBxy1hANBDVIWr6SFelBA0QGOWuIBhKFkZQGS1akBw0QXuSsIRoIapB0XMmK/VfuXcmKrhkZetAA4ePKWXN0XPaZV2NR74woOWsYCpafkFRIVgRig5w1RANBDZIKyYpA7JCzhkhj+QlJhWRFILbIWUMkhTRTs2nTJuXl5clqtaqwsFCHDh0acHxtba0KCwtltVo1YcIEbd682eP5d955R3PnztX48eNlsVi0YcOGsJwX6I9kRSC8Qml5kDLMouKJo/XAtJtUPHE0AQ3CJuigZteuXVqyZIlWrVqluro6lZSUqKysTM3NzT7HNzU1afbs2SopKVFdXZ1WrlypxYsXa/fu3e4xn332mSZMmKB169bJZrOF5byALxTYA8Jn35kW3bX+Lc3fckRPvlKv+VuO6K71b1EZGDFjMQwjqIzI6dOnq6CgQFVVVe5jkydP1pw5c1RZWek1fvny5dqzZ48aGxvdx8rLy3Xq1CnZ7Xav8ePHj9eSJUu0ZMmSIZ3XF6fTqaysLHV0dCgzMzOg18B8XLufJHkkDLsCHdb2gcH520XI/0eIhEC/v4Oaqenq6tKJEydUWlrqcby0tFSHDx/2+Rq73e41ftasWTp+/LiuXLkSsfNKUmdnp5xOp8cDIFkRGBp2ESJeBZUo3NbWpu7ubmVnZ3scz87OlsPh8Pkah8Phc/zVq1fV1tamnJzBv0BCOa8kVVZWau3atYO+P5IPyYpA6ILZRUi9J0RTSLufLBbPD37DMLyODTbe1/Fwn3fFihWqqKhw/+x0OjV27NigzgnzciUrAggOuwgRr4IKasaMGaOUlBSv2ZHW1lavWRQXm83mc3xqaqpGjw7sCyWU80pSRkaGMjIyAjoHACAw7CJEvAoqpyY9PV2FhYWqqanxOF5TU6MZM2b4fE1xcbHX+AMHDqioqEhpaWkROy8AIDLYRYh4FfSW7oqKCr300kvatm2bGhsbtXTpUjU3N6u8vFxS75LPggUL3OPLy8t14cIFVVRUqLGxUdu2bdPWrVu1bNky95iuri7V19ervr5eXV1dunjxourr6/Xee+8FfF4AQHTQ8gDxKugt3VJvEbxnn31WLS0tmjJliv71X/9VX/va1yRJjz76qN5//30dPHjQPb62tlZLly7VO++8o9zcXC1fvtwjGHn//feVl5fndZ67777b430GOm8g2NINAOEzWLd7IFwC/f4OKahJVAQ1ABBe3T0GuwgRcYF+f9P7CQAQsoF2ERLwINoIagAAYcfSFGIhpIaWAAD442qh0L9An6PjshbtOElvKEQMQQ0AIGxooYBYIqgBAIRNMC0UgHAjqAEAhA0tFBBLJAoDAMImEi0U2EWFQBHUAADCxtVCwdFx2WdejUWSLYgWCuyiQjBYfgIAhE04WyiwiwrBIqgBAITVvVNyVPVwgWxZnktMtiyrqh4uCGiGhV1UCAXLTwCAsLt3So5m5ttCzoUJZheVv4rGSD4ENQCAiBiohcJg2EWFULD8BACIO5HYRQXzI6gBAMQd1y4qf4tVFvXuggp0FxWSA0ENACDuhHMXFZIHQQ0AIC6FYxcVkguJwgCAuDXUXVRILgQ1AIC4NpRdVEguLD8BAABTIKgBAACmQFADAABMgaAGAACYAkENAAAwBXY/AQCSRnePwfZwEyOoAQAkhX1nWrR2b4NH9++cLKtW359PIT+TYPkJAGB6+860aNGOkx4BjSQ5Oi5r0Y6T2nemJUZXhnAiqAEAmFp3j6G1extk+HjOdWzt3gZ19/gagURCUAPT6+4xZD/Xrl/XX5T9XDsfXECSOdb0sdcMTV+GpJaOyzrW9HH0LgoRQU4NTI01dACtl/wHNKGMQ/xipgamxRo6kJz6z86OGZ4R0OvaLnUyo5vgmKmBKQ22hm5R7xr6zHwb2zkBE/E1O2vLtOr6a9PU8dkVn58JkjTMIj3zRqP7Z2Z0ExMzNTAl1tCB5ONvdvbPzsv6y18DGn+/wvSfmGFGNzER1MCUWEMHkksgs7Mjr01TdqbnUpS/iVp2RSUmlp9gSjeOsIZ1HID407c6cNulzkFnZ//3syv65ePTNcxicb+m75KTr9e4ZnSLJ44O/w0g7EKaqdm0aZPy8vJktVpVWFioQ4cODTi+trZWhYWFslqtmjBhgjZv3uw1Zvfu3crPz1dGRoby8/P12muveTy/Zs0aWSwWj4fNZgvl8pEE7sgbpZwsq9+pZot618zvyBsVzcsCECb7zrTorvVvaf6WI3rylfoBg5O+2j7pVPHE0Xpg2k0aMyKwBGJmdBNH0EHNrl27tGTJEq1atUp1dXUqKSlRWVmZmpubfY5vamrS7NmzVVJSorq6Oq1cuVKLFy/W7t273WPsdrvmzZunRx55RKdOndIjjzyib33rWzp69KjHe916661qaWlxP06fPh3s5SNJpAyzaPX9+ZK819BdP6++P58kYSAB+cudCUTf2dlAZ2rZFZU4LIZhBPU3NH36dBUUFKiqqsp9bPLkyZozZ44qKyu9xi9fvlx79uxRY+PnUXR5eblOnTolu90uSZo3b56cTqd+85vfuMfce++9GjlypHbu3Cmpd6bm9ddfV319fVA32JfT6VRWVpY6OjqUmZkZ8vsgcVCnBjCX7h5Dd61/K+iAxiLJlmXV75d/w/3LjOu9HB2XB9wV1TeO4fMjNgL9/g5qpqarq0snTpxQaWmpx/HS0lIdPnzY52vsdrvX+FmzZun48eO6cuXKgGP6v+fZs2eVm5urvLw8PfTQQzp//nwwl48kdO+UHP1++Te084k79dOHpmnnE3fq98u/wQcSkKAG29noi7/Z2YFmdF3YFZVYggpq2tra1N3drezsbI/j2dnZcjgcPl/jcDh8jr969ara2toGHNP3PadPn67t27dr//792rJlixwOh2bMmKH29na/19vZ2Smn0+nxQPJJGWZxr6EXTxzNkhOQwELJb7FlWVX1cIHPX2bunZKjqocLZMvyXIpiV1RiCmn3k8Xi+bdtGIbXscHG9z8+2HuWlZW5/3vq1KkqLi7WxIkT9fLLL6uiosLneSsrK7V27dpB7gYAkCgCzYP54X2TNWZEhm4c0bshYKBfZu6dkqOZ+TaPnVTsikpMQQU1Y8aMUUpKitesTGtrq9dMi4vNZvM5PjU1VaNHjx5wjL/3lKThw4dr6tSpOnv2rN8xK1as8Ah4nE6nxo4d63c8ACC+uXY2+suDceXOPPrVvKBmZV0zupL06/qLAb2GXVHxJ6jlp/T0dBUWFqqmpsbjeE1NjWbMmOHzNcXFxV7jDxw4oKKiIqWlpQ04xt97Sr1LS42NjcrJ8Z8bkZGRoczMTI8HACBxRWNnI3WuElfQW7orKir00ksvadu2bWpsbNTSpUvV3Nys8vJySb2zIwsWLHCPLy8v14ULF1RRUaHGxkZt27ZNW7du1bJly9xjnnzySR04cEDr16/Xn/70J61fv15vvvmmlixZ4h6zbNky1dbWqqmpSUePHtWDDz4op9OphQsXDuH2AQCJxl8ezEC5M8GgzlXiCjqnZt68eWpvb9fTTz+tlpYWTZkyRdXV1Ro3bpwkqaWlxaNmTV5enqqrq7V06VJt3LhRubm5euGFFzR37lz3mBkzZuiVV17RD37wA/3whz/UxIkTtWvXLk2fPt095sMPP9T8+fPV1tamG264QXfeeaeOHDniPi8AIHn0z4MJJHcmUK7ZoEU7TsoieSxzUecqvgVdpyaRUacGABAo6lzFj0C/v+n9BACAD5GcDUJkENQgbvVtVseHCYBY6LsrCvGPoAZxiWlfAECwQurSDUSSv2Z1lCcHAAyEoAZxpbvH0Nq9DT6LalGeHEC86O4xZD/XTvfuOMPyE+LKYM3qKE8OINZYHo9fzNQgrgRadpzy5ABigeXx+EZQg7hCeXIA8Yrl8fhHUIOoCHT9mfLkAOJVMMvjiA1yahBxwaw/D6U8OXVtAEQSy+Pxj6AGEeVaf+4/L+Naf974D7dr5PAMj0DE1ayufyBkGyARj8Q9AJHG8nj8o/cTIqa7x9Bd698acLp2mEXquxLVNxAJdObFX+DkGhmOrr0A4PpMc3Rc9plXY5GUnZmh//OtaWr7pJMZ4zAK9PuboAYRYz/XrvlbjgT1mmADkcECJ4t6Z3h+v/wbfLAAGDLXL1GS9/K4Ien6a9P0l8+uuI8zYxwegX5/kyiMiAllXTnYHQQk7gGIJtfyuC3Lc4kp69o0SfIIaKShbfWmwF/wyKlBxIS6rhxMgT0S9wBEW//u3WOGZ+if/+OUpCteYw31zuKs3dugmfm2gGeMB8oTpHO4fwQ1iBjX9mx/68+DCSQQIXEPQCz07d5tP9cuhzN8ldAH2mBRvuMkS1wDYPkJEePani3Jb92ZgfgLRPpOyfYYhmyZGdS1ARAz4ZwxDqTAXziXuMyGmRpElL/t2f13PfXlSu71FYj4mpK9/to09xRvMHVtACAcwjljPFieoC+hLnGZEUENIq7/+vONI6z630+79L1f+d5BIPkORPxNyXb89beWrH5TsgPVtQGAcBlsqd211bvHMPTr+osD5sGEmv9Hs99eBDWIir7rzy5VwwIvsDfYlKxF0jVpKdr4nQK1fUp9CADRM1gldEPS5as9+seXjrqP+8uDGWr+X7JviiCoQcz4msHxF4gEunV72DCLHph2UwSvGgC8+Vtqd80g+8uD6V+Ta6gbLJJ9UwRBjQklUg8kXzM4vrB1G0C8C3Wr9zcmZevEhf91f2b/8L7J+t6v6rxmfQYyUC5iMiGoMRmz9kBi6zaARBDKVu87K3+rjz/tch/PybLq//lanvacavHaFPGXz66wKWIABDUmMljzyETugRRIIh6/pQCIJ4HOHPcNaKTez+yf/a5JG/+hQCOHp3vMutc0OPzmIs7Mt8l+rj0hZukjhaDGJAJJpE3k7X6DJeJJ/JYCIL4Mpaq6RdIzbzR49a3zl4tY0+Dw6oNnhln6YFF8zySSoQeSv54rtixrQs9CATAn1wxzKL9qDfSZ7VriemDaTSqeOFo1DQ4t2nHS6zsgGYvyMVOTAAJJ/E2WRNpgdkwBQCwNNMMcqME+s80+Sx8sgpo4F2jibzIl0ga6YwoAYs3fVu9Rw9P08afeu6L6G+wzO5hZ+mT43CSoiWPBJP6SSAsA8cnXDHPhuJG6+ydvD/kzO1lm6QNFTk2cCqSp2dq9Der+awOlgZpHkkgLALHVPw8mPXVYWD6zk2mWPhAENUPUt2O0/Vy7O8gYqlASf0mkBYDEEY7P7MGSkS2SbH36ToXzeyoesfw0BKEUuhso6bfvc2f/fCmga+g/pRjrRNpEqmYMALE21M/scPad6svfZ3mwx6PNYhiGeUO2fpxOp7KystTR0aHMzMwhvZe/fBfXX+HGf7hdI4dnDFo0yfWPS5LXc4HY+cSdASd/BRpQhfoP0qzVjAEg3vn6/HVVIO7P9cle9XCB35o3vj7L/+8v53hVOR7oeDg/+wP9/iaoCUF3j+FV5Ki/YRap7wzfQP+4QvkLcLWy/z/fmqa2TwbvSj1QwCF5B1Q5fSpUBhKV/++nnfrer+r8BnksfwFAZPX9XHb1nfLXpsGi3mab1tQUjzH+vquCFe7PfoIaH8IV1NjPtWv+liNhvLLguAKh/v/4/EXGA80q+fvLH+gcvqLy/kFc//eyZVm9KmMCACIj1t9TUng/+wP9/g4pUXjTpk3Ky8uT1WpVYWGhDh06NOD42tpaFRYWymq1asKECdq8ebPXmN27dys/P18ZGRnKz8/Xa6+9NuTzRkqst8ZlXZsmSX5b2fetHhnILipfXM/1P0dLx2X9+++avGapBso7M0M1YwBIJLH+npJi89kfdFCza9cuLVmyRKtWrVJdXZ1KSkpUVlam5uZmn+Obmpo0e/ZslZSUqK6uTitXrtTixYu1e/du9xi73a558+bpkUce0alTp/TII4/oW9/6lo4e/TyxKdjzRlIstsZ9//+6RT99aJp++Z3psqam+Bzja6v3YLuooike/icDgGQQT1u4o/nZH3RQ8/zzz+s73/mOHn/8cU2ePFkbNmzQ2LFjVVVV5XP85s2bdfPNN2vDhg2aPHmyHn/8cT322GN67rnn3GM2bNigmTNnasWKFZo0aZJWrFihb37zm9qwYUPI542kofTzCNVXbxmjB6bdpGHDLAG1sndFxvEUSMTT/2QAYGax+J7yJ5qf/UEFNV1dXTpx4oRKS0s9jpeWlurw4cM+X2O3273Gz5o1S8ePH9eVK1cGHON6z1DOK0mdnZ1yOp0ej3AYqNBduFnUm8fiqioZbPXIeAgk+t8DACCyovk95U8sPvuDCmra2trU3d2t7Oxsj+PZ2dlyOBw+X+NwOHyOv3r1qtra2gYc43rPUM4rSZWVlcrKynI/xo4dG9iNBsBf0aRgc6Esfv677899q0oGWz0y1tE61YwBIDb8FvfLzND116ZF9HshVp/9IRXfs1g8L9AwDK9jg43vfzyQ9wz2vCtWrFBFRYX7Z6fTGfbApv+W5//9tEvf+9XJ3uvre+3yvZvINsC2apuP3UzB9ngKpDBT//8eiv67oHzdAwAgOvwV96tpcAz4vRDozld/x2P12R9UUDNmzBilpKR4zY60trZ6zaK42Gw2n+NTU1M1evToAce43jOU80pSRkaGMjIyAru5EPnqGF01zLsjq22Qui+SAqoqOViQInlHxv66xA4UULn+QQca7LjO9uL8Ao0cnh7zqpIAgF6+vqcG+17w9330/947Oajj0RZ0nZrp06ersLBQmzZtch/Lz8/XAw88oMrKSq/xy5cv1969e9XQ0OA+tmjRItXX18tut0uS5s2bp0uXLqm6uto9pqysTNdff7127twZ0nl9CWdF4cFEumR0JFs0hFpVkhkZAEgs8dLeYDABf38bQXrllVeMtLQ0Y+vWrUZDQ4OxZMkSY/jw4cb7779vGIZhPPXUU8YjjzziHn/+/Hnj2muvNZYuXWo0NDQYW7duNdLS0oz//M//dI/5wx/+YKSkpBjr1q0zGhsbjXXr1hmpqanGkSNHAj5vIDo6OgxJRkdHR7C3HZeudvcYh99rM16v+9A4/F6bcbW7J2rniMa5AQAwjMC/v4MOagzDMDZu3GiMGzfOSE9PNwoKCoza2lr3cwsXLjTuvvtuj/EHDx40br/9diM9Pd0YP368UVVV5fWe//Ef/2F86UtfMtLS0oxJkyYZu3fvDuq8gTBbUAMAQDII9PubNgkAACCuRbRNAgAAQLwhqAEAAKZAUAMAAEyBoAYAAJgCQQ0AADAFghoAAGAKBDUAAMAUCGoAAIAphNSlO1G56gw6nc4YXwkAAAiU63t7sHrBSRXUXLp0SZI0duzYGF8JAAAI1qVLl5SVleX3+aRqk9DT06OPPvpII0aMkMUSfBdSp9OpsWPH6oMPPkiqNgvcd/LcdzLes8R9c9/ml+j3bBiGLl26pNzcXA0b5j9zJqlmaoYNG6YvfOELQ36fzMzMhPxHMVTcd/JIxnuWuO9kk4z3ncj3PNAMjQuJwgAAwBQIagAAgCkQ1AQhIyNDq1evVkZGRqwvJaq47+S572S8Z4n75r7NL1nuOakShQEAgHkxUwMAAEyBoAYAAJgCQQ0AADAFghoAAGAKBDUB2rRpk/Ly8mS1WlVYWKhDhw7F+pLC6ne/+53uv/9+5ebmymKx6PXXX/d43jAMrVmzRrm5ubrmmmv09a9/Xe+8805sLjaMKisr9ZWvfEUjRozQjTfeqDlz5ujdd9/1GGO2e6+qqtJtt93mLsJVXFys3/zmN+7nzXa//lRWVspisWjJkiXuY2a89zVr1shisXg8bDab+3kz3rPLxYsX9fDDD2v06NG69tprNW3aNJ04ccL9vBnvffz48V5/3xaLRd/73vckmfOePRgY1CuvvGKkpaUZW7ZsMRoaGownn3zSGD58uHHhwoVYX1rYVFdXG6tWrTJ2795tSDJee+01j+fXrVtnjBgxwti9e7dx+vRpY968eUZOTo7hdDpjc8FhMmvWLOPnP/+5cebMGaO+vt647777jJtvvtn45JNP3GPMdu979uwx3njjDePdd9813n33XWPlypVGWlqacebMGcMwzHe/vhw7dswYP368cdtttxlPPvmk+7gZ73316tXGrbfearS0tLgfra2t7ufNeM+GYRgff/yxMW7cOOPRRx81jh49ajQ1NRlvvvmm8d5777nHmPHeW1tbPf6ua2pqDEnG22+/bRiGOe+5L4KaANxxxx1GeXm5x7FJkyYZTz31VIyuKLL6BzU9PT2GzWYz1q1b5z52+fJlIysry9i8eXMMrjByWltbDUlGbW2tYRjJc+8jR440XnrppaS430uXLhlf/OIXjZqaGuPuu+92BzVmvffVq1cbX/7yl30+Z9Z7NgzDWL58uXHXXXf5fd7M997Xk08+aUycONHo6elJintm+WkQXV1dOnHihEpLSz2Ol5aW6vDhwzG6quhqamqSw+Hw+DPIyMjQ3Xffbbo/g46ODknSqFGjJJn/3ru7u/XKK6/o008/VXFxsenvV5K+973v6b777tM999zjcdzM93727Fnl5uYqLy9PDz30kM6fPy/J3Pe8Z88eFRUV6e///u9144036vbbb9eWLVvcz5v53l26urq0Y8cOPfbYY7JYLElxzwQ1g2hra1N3d7eys7M9jmdnZ8vhcMToqqLLdZ9m/zMwDEMVFRW66667NGXKFEnmvffTp0/ruuuuU0ZGhsrLy/Xaa68pPz/ftPfr8sorr+jkyZOqrKz0es6s9z59+nRt375d+/fv15YtW+RwODRjxgy1t7eb9p4l6fz586qqqtIXv/hF7d+/X+Xl5Vq8eLG2b98uybx/3329/vrr+stf/qJHH31UUnLcc1J16R4Ki8Xi8bNhGF7HzM7sfwbf//739cc//lG///3vvZ4z271/6UtfUn19vf7yl79o9+7dWrhwoWpra93Pm+1+JemDDz7Qk08+qQMHDshqtfodZ7Z7Lysrc//31KlTVVxcrIkTJ+rll1/WnXfeKcl89yxJPT09Kioq0o9//GNJ0u2336533nlHVVVVWrBggXucGe/dZevWrSorK1Nubq7HcTPfMzM1gxgzZoxSUlK8otjW1lavaNesXDslzPxn8E//9E/as2eP3n77bX3hC19wHzfrvaenp+uWW25RUVGRKisr9eUvf1k//elPTXu/knTixAm1traqsLBQqampSk1NVW1trV544QWlpqa678+M997X8OHDNXXqVJ09e9bUf985OTnKz8/3ODZ58mQ1NzdLMu//2y4XLlzQm2++qccff9x9zOz3LBHUDCo9PV2FhYWqqanxOF5TU6MZM2bE6KqiKy8vTzabzePPoKurS7W1tQn/Z2AYhr7//e/r1Vdf1VtvvaW8vDyP5818730ZhqHOzk5T3+83v/lNnT59WvX19e5HUVGR/vEf/1H19fWaMGGCae+9r87OTjU2NionJ8fUf99f/epXvcoz/M///I/GjRsnyfz/b//85z/XjTfeqPvuu899zOz3LIkt3YFwbeneunWr0dDQYCxZssQYPny48f7778f60sLm0qVLRl1dnVFXV2dIMp5//nmjrq7OvW193bp1RlZWlvHqq68ap0+fNubPn2+KbYCLFi0ysrKyjIMHD3psg/zss8/cY8x27ytWrDB+97vfGU1NTcYf//hHY+XKlcawYcOMAwcOGIZhvvsdSN/dT4Zhznv/53/+Z+PgwYPG+fPnjSNHjhh/+7d/a4wYMcL9+WXGezaM3m37qampxo9+9CPj7Nmzxi9/+Uvj2muvNXbs2OEeY9Z77+7uNm6++WZj+fLlXs+Z9Z5dCGoCtHHjRmPcuHFGenq6UVBQ4N7yaxZvv/22IcnrsXDhQsMwerc/rl692rDZbEZGRobxta99zTh9+nRsLzoMfN2zJOPnP/+5e4zZ7v2xxx5z/1u+4YYbjG9+85vugMYwzHe/A+kf1Jjx3l11SNLS0ozc3Fzj7/7u74x33nnH/bwZ79ll7969xpQpU4yMjAxj0qRJxs9+9jOP58167/v37zckGe+++67Xc2a9ZxeLYRhGTKaIAAAAwoicGgAAYAoENQAAwBQIagAAgCkQ1AAAAFMgqAEAAKZAUAMAAEyBoAYAAJgCQQ0AADAFghoAAGAKBDUAAMAUCGoAAIApENQAAABT+P8B66dE3hSYDvsAAAAASUVORK5CYII=",
|
460 |
+
"text/plain": [
|
461 |
+
"<Figure size 640x480 with 1 Axes>"
|
462 |
+
]
|
463 |
+
},
|
464 |
+
"metadata": {},
|
465 |
+
"output_type": "display_data"
|
466 |
+
}
|
467 |
+
],
|
468 |
+
"source": [
|
469 |
+
"plt.scatter(w['demand'], w['probability'])"
|
470 |
+
]
|
471 |
+
},
|
472 |
+
{
|
473 |
+
"cell_type": "code",
|
474 |
+
"execution_count": 43,
|
475 |
+
"id": "d1bf1d32-58e6-4d03-89ca-129ee7371cff",
|
476 |
+
"metadata": {},
|
477 |
+
"outputs": [
|
478 |
+
{
|
479 |
+
"data": {
|
480 |
+
"text/plain": [
|
481 |
+
"{'product': {'263': 'Wedding Cake',\n",
|
482 |
+
" '261': 'Wedding Cake',\n",
|
483 |
+
" '259': 'Wedding Cake',\n",
|
484 |
+
" '269': 'Wedding Cake',\n",
|
485 |
+
" '264': 'Wedding Cake',\n",
|
486 |
+
" '268': 'Wedding Cake',\n",
|
487 |
+
" '258': 'Wedding Cake',\n",
|
488 |
+
" '260': 'Wedding Cake',\n",
|
489 |
+
" '257': 'Wedding Cake',\n",
|
490 |
+
" '270': 'Wedding Cake',\n",
|
491 |
+
" '262': 'Wedding Cake',\n",
|
492 |
+
" '265': 'Wedding Cake',\n",
|
493 |
+
" '266': 'Wedding Cake',\n",
|
494 |
+
" '267': 'Wedding Cake',\n",
|
495 |
+
" '271': 'Wedding Cake',\n",
|
496 |
+
" '161': 'Special Cake',\n",
|
497 |
+
" '46': 'White Bread',\n",
|
498 |
+
" '256': 'Wedding Cake',\n",
|
499 |
+
" '255': 'Wedding Cake',\n",
|
500 |
+
" '275': 'Wedding Cake',\n",
|
501 |
+
" '272': 'Wedding Cake',\n",
|
502 |
+
" '34': 'White Bread',\n",
|
503 |
+
" '149': 'Special Cake',\n",
|
504 |
+
" '278': 'Wedding Cake',\n",
|
505 |
+
" '159': 'Special Cake',\n",
|
506 |
+
" '44': 'White Bread',\n",
|
507 |
+
" '35': 'White Bread',\n",
|
508 |
+
" '150': 'Special Cake',\n",
|
509 |
+
" '277': 'Wedding Cake',\n",
|
510 |
+
" '36': 'White Bread',\n",
|
511 |
+
" '151': 'Special Cake',\n",
|
512 |
+
" '253': 'Wedding Cake',\n",
|
513 |
+
" '43': 'White Bread',\n",
|
514 |
+
" '158': 'Special Cake',\n",
|
515 |
+
" '274': 'Wedding Cake',\n",
|
516 |
+
" '157': 'Special Cake',\n",
|
517 |
+
" '42': 'White Bread',\n",
|
518 |
+
" '162': 'Special Cake',\n",
|
519 |
+
" '47': 'White Bread',\n",
|
520 |
+
" '254': 'Wedding Cake',\n",
|
521 |
+
" '154': 'Special Cake',\n",
|
522 |
+
" '39': 'White Bread',\n",
|
523 |
+
" '276': 'Wedding Cake',\n",
|
524 |
+
" '163': 'Special Cake',\n",
|
525 |
+
" '48': 'White Bread',\n",
|
526 |
+
" '279': 'Wedding Cake',\n",
|
527 |
+
" '153': 'Special Cake',\n",
|
528 |
+
" '38': 'White Bread',\n",
|
529 |
+
" '152': 'Special Cake',\n",
|
530 |
+
" '37': 'White Bread',\n",
|
531 |
+
" '45': 'White Bread',\n",
|
532 |
+
" '160': 'Special Cake',\n",
|
533 |
+
" '164': 'Special Cake',\n",
|
534 |
+
" '49': 'White Bread',\n",
|
535 |
+
" '40': 'White Bread',\n",
|
536 |
+
" '155': 'Special Cake',\n",
|
537 |
+
" '41': 'White Bread',\n",
|
538 |
+
" '156': 'Special Cake',\n",
|
539 |
+
" '166': 'Special Cake',\n",
|
540 |
+
" '51': 'White Bread',\n",
|
541 |
+
" '273': 'Wedding Cake',\n",
|
542 |
+
" '82': 'White Bread',\n",
|
543 |
+
" '197': 'Special Cake',\n",
|
544 |
+
" '79': 'White Bread',\n",
|
545 |
+
" '194': 'Special Cake',\n",
|
546 |
+
" '81': 'White Bread',\n",
|
547 |
+
" '196': 'Special Cake',\n",
|
548 |
+
" '182': 'Special Cake',\n",
|
549 |
+
" '67': 'White Bread',\n",
|
550 |
+
" '52': 'White Bread',\n",
|
551 |
+
" '167': 'Special Cake',\n",
|
552 |
+
" '50': 'White Bread',\n",
|
553 |
+
" '165': 'Special Cake',\n",
|
554 |
+
" '280': 'Wedding Cake',\n",
|
555 |
+
" '80': 'White Bread',\n",
|
556 |
+
" '195': 'Special Cake',\n",
|
557 |
+
" '252': 'Wedding Cake',\n",
|
558 |
+
" '85': 'White Bread',\n",
|
559 |
+
" '200': 'Special Cake',\n",
|
560 |
+
" '199': 'Special Cake',\n",
|
561 |
+
" '84': 'White Bread',\n",
|
562 |
+
" '281': 'Wedding Cake',\n",
|
563 |
+
" '183': 'Special Cake',\n",
|
564 |
+
" '68': 'White Bread',\n",
|
565 |
+
" '251': 'Wedding Cake',\n",
|
566 |
+
" '181': 'Special Cake',\n",
|
567 |
+
" '66': 'White Bread',\n",
|
568 |
+
" '282': 'Wedding Cake',\n",
|
569 |
+
" '171': 'Special Cake',\n",
|
570 |
+
" '56': 'White Bread',\n",
|
571 |
+
" '33': 'White Bread',\n",
|
572 |
+
" '148': 'Special Cake',\n",
|
573 |
+
" '53': 'White Bread',\n",
|
574 |
+
" '168': 'Special Cake',\n",
|
575 |
+
" '173': 'Special Cake',\n",
|
576 |
+
" '58': 'White Bread',\n",
|
577 |
+
" '172': 'Special Cake',\n",
|
578 |
+
" '57': 'White Bread',\n",
|
579 |
+
" '60': 'White Bread',\n",
|
580 |
+
" '175': 'Special Cake',\n",
|
581 |
+
" '286': 'Wedding Cake',\n",
|
582 |
+
" '174': 'Special Cake',\n",
|
583 |
+
" '59': 'White Bread',\n",
|
584 |
+
" '198': 'Special Cake',\n",
|
585 |
+
" '83': 'White Bread',\n",
|
586 |
+
" '169': 'Special Cake',\n",
|
587 |
+
" '54': 'White Bread',\n",
|
588 |
+
" '86': 'White Bread',\n",
|
589 |
+
" '201': 'Special Cake',\n",
|
590 |
+
" '185': 'Special Cake',\n",
|
591 |
+
" '70': 'White Bread',\n",
|
592 |
+
" '184': 'Special Cake',\n",
|
593 |
+
" '69': 'White Bread',\n",
|
594 |
+
" '78': 'White Bread',\n",
|
595 |
+
" '193': 'Special Cake',\n",
|
596 |
+
" '250': 'Wedding Cake',\n",
|
597 |
+
" '71': 'White Bread',\n",
|
598 |
+
" '186': 'Special Cake',\n",
|
599 |
+
" '192': 'Special Cake',\n",
|
600 |
+
" '77': 'White Bread',\n",
|
601 |
+
" '191': 'Special Cake',\n",
|
602 |
+
" '76': 'White Bread',\n",
|
603 |
+
" '285': 'Wedding Cake',\n",
|
604 |
+
" '176': 'Special Cake',\n",
|
605 |
+
" '61': 'White Bread',\n",
|
606 |
+
" '249': 'Wedding Cake',\n",
|
607 |
+
" '74': 'White Bread',\n",
|
608 |
+
" '189': 'Special Cake',\n",
|
609 |
+
" '170': 'Special Cake',\n",
|
610 |
+
" '55': 'White Bread',\n",
|
611 |
+
" '190': 'Special Cake',\n",
|
612 |
+
" '75': 'White Bread',\n",
|
613 |
+
" '177': 'Special Cake',\n",
|
614 |
+
" '62': 'White Bread',\n",
|
615 |
+
" '283': 'Wedding Cake',\n",
|
616 |
+
" '188': 'Special Cake',\n",
|
617 |
+
" '73': 'White Bread',\n",
|
618 |
+
" '65': 'White Bread',\n",
|
619 |
+
" '180': 'Special Cake',\n",
|
620 |
+
" '187': 'Special Cake',\n",
|
621 |
+
" '72': 'White Bread',\n",
|
622 |
+
" '284': 'Wedding Cake',\n",
|
623 |
+
" '203': 'Special Cake',\n",
|
624 |
+
" '88': 'White Bread',\n",
|
625 |
+
" '63': 'White Bread',\n",
|
626 |
+
" '178': 'Special Cake',\n",
|
627 |
+
" '287': 'Wedding Cake',\n",
|
628 |
+
" '87': 'White Bread',\n",
|
629 |
+
" '202': 'Special Cake',\n",
|
630 |
+
" '32': 'White Bread',\n",
|
631 |
+
" '147': 'Special Cake',\n",
|
632 |
+
" '207': 'Special Cake',\n",
|
633 |
+
" '92': 'White Bread',\n",
|
634 |
+
" '290': 'Wedding Cake',\n",
|
635 |
+
" '90': 'White Bread',\n",
|
636 |
+
" '205': 'Special Cake',\n",
|
637 |
+
" '248': 'Wedding Cake',\n",
|
638 |
+
" '211': 'Special Cake',\n",
|
639 |
+
" '96': 'White Bread',\n",
|
640 |
+
" '89': 'White Bread',\n",
|
641 |
+
" '204': 'Special Cake',\n",
|
642 |
+
" '289': 'Wedding Cake',\n",
|
643 |
+
" '291': 'Wedding Cake',\n",
|
644 |
+
" '146': 'Special Cake',\n",
|
645 |
+
" '31': 'White Bread',\n",
|
646 |
+
" '64': 'White Bread',\n",
|
647 |
+
" '179': 'Special Cake',\n",
|
648 |
+
" '209': 'Special Cake',\n",
|
649 |
+
" '94': 'White Bread',\n",
|
650 |
+
" '288': 'Wedding Cake',\n",
|
651 |
+
" '224': 'Special Cake',\n",
|
652 |
+
" '109': 'White Bread',\n",
|
653 |
+
" '292': 'Wedding Cake',\n",
|
654 |
+
" '28': 'White Bread',\n",
|
655 |
+
" '143': 'Special Cake',\n",
|
656 |
+
" '30': 'White Bread',\n",
|
657 |
+
" '145': 'Special Cake',\n",
|
658 |
+
" '29': 'White Bread',\n",
|
659 |
+
" '144': 'Special Cake',\n",
|
660 |
+
" '208': 'Special Cake',\n",
|
661 |
+
" '93': 'White Bread',\n",
|
662 |
+
" '206': 'Special Cake',\n",
|
663 |
+
" '91': 'White Bread',\n",
|
664 |
+
" '223': 'Special Cake',\n",
|
665 |
+
" '108': 'White Bread',\n",
|
666 |
+
" '222': 'Special Cake',\n",
|
667 |
+
" '107': 'White Bread',\n",
|
668 |
+
" '220': 'Special Cake',\n",
|
669 |
+
" '105': 'White Bread',\n",
|
670 |
+
" '27': 'White Bread',\n",
|
671 |
+
" '142': 'Special Cake',\n",
|
672 |
+
" '245': 'Wedding Cake',\n",
|
673 |
+
" '95': 'White Bread',\n",
|
674 |
+
" '210': 'Special Cake',\n",
|
675 |
+
" '106': 'White Bread',\n",
|
676 |
+
" '221': 'Special Cake',\n",
|
677 |
+
" '26': 'White Bread',\n",
|
678 |
+
" '141': 'Special Cake',\n",
|
679 |
+
" '293': 'Wedding Cake',\n",
|
680 |
+
" '110': 'White Bread',\n",
|
681 |
+
" '225': 'Special Cake',\n",
|
682 |
+
" '112': 'White Bread',\n",
|
683 |
+
" '227': 'Special Cake',\n",
|
684 |
+
" '243': 'Wedding Cake',\n",
|
685 |
+
" '247': 'Wedding Cake',\n",
|
686 |
+
" '25': 'White Bread',\n",
|
687 |
+
" '140': 'Special Cake',\n",
|
688 |
+
" '244': 'Wedding Cake',\n",
|
689 |
+
" '294': 'Wedding Cake',\n",
|
690 |
+
" '212': 'Special Cake',\n",
|
691 |
+
" '97': 'White Bread',\n",
|
692 |
+
" '297': 'Wedding Cake',\n",
|
693 |
+
" '226': 'Special Cake',\n",
|
694 |
+
" '111': 'White Bread',\n",
|
695 |
+
" '298': 'Wedding Cake',\n",
|
696 |
+
" '246': 'Wedding Cake',\n",
|
697 |
+
" '104': 'White Bread',\n",
|
698 |
+
" '219': 'Special Cake',\n",
|
699 |
+
" '15': 'White Bread',\n",
|
700 |
+
" '130': 'Special Cake',\n",
|
701 |
+
" '295': 'Wedding Cake',\n",
|
702 |
+
" '296': 'Wedding Cake',\n",
|
703 |
+
" '237': 'Wedding Cake',\n",
|
704 |
+
" '113': 'White Bread',\n",
|
705 |
+
" '228': 'Special Cake',\n",
|
706 |
+
" '139': 'Special Cake',\n",
|
707 |
+
" '24': 'White Bread',\n",
|
708 |
+
" '218': 'Special Cake',\n",
|
709 |
+
" '103': 'White Bread',\n",
|
710 |
+
" '137': 'Special Cake',\n",
|
711 |
+
" '22': 'White Bread',\n",
|
712 |
+
" '299': 'Wedding Cake',\n",
|
713 |
+
" '131': 'Special Cake',\n",
|
714 |
+
" '16': 'White Bread',\n",
|
715 |
+
" '235': 'Wedding Cake',\n",
|
716 |
+
" '213': 'Special Cake',\n",
|
717 |
+
" '98': 'White Bread',\n",
|
718 |
+
" '120': 'Special Cake',\n",
|
719 |
+
" '5': 'White Bread',\n",
|
720 |
+
" '23': 'White Bread',\n",
|
721 |
+
" '138': 'Special Cake',\n",
|
722 |
+
" '7': 'White Bread',\n",
|
723 |
+
" '122': 'Special Cake',\n",
|
724 |
+
" '132': 'Special Cake',\n",
|
725 |
+
" '17': 'White Bread',\n",
|
726 |
+
" '129': 'Special Cake',\n",
|
727 |
+
" '14': 'White Bread',\n",
|
728 |
+
" '231': 'Wedding Cake',\n",
|
729 |
+
" '300': 'Wedding Cake',\n",
|
730 |
+
" '136': 'Special Cake',\n",
|
731 |
+
" '21': 'White Bread',\n",
|
732 |
+
" '242': 'Wedding Cake',\n",
|
733 |
+
" '8': 'White Bread',\n",
|
734 |
+
" '123': 'Special Cake',\n",
|
735 |
+
" '302': 'Wedding Cake',\n",
|
736 |
+
" '101': 'White Bread',\n",
|
737 |
+
" '216': 'Special Cake',\n",
|
738 |
+
" '9': 'White Bread',\n",
|
739 |
+
" '124': 'Special Cake',\n",
|
740 |
+
" '1': 'White Bread',\n",
|
741 |
+
" '116': 'Special Cake',\n",
|
742 |
+
" '233': 'Wedding Cake',\n",
|
743 |
+
" '234': 'Wedding Cake',\n",
|
744 |
+
" '303': 'Wedding Cake',\n",
|
745 |
+
" '13': 'White Bread',\n",
|
746 |
+
" '128': 'Special Cake',\n",
|
747 |
+
" '304': 'Wedding Cake',\n",
|
748 |
+
" '215': 'Special Cake',\n",
|
749 |
+
" '100': 'White Bread',\n",
|
750 |
+
" '20': 'White Bread',\n",
|
751 |
+
" '135': 'Special Cake',\n",
|
752 |
+
" '133': 'Special Cake',\n",
|
753 |
+
" '18': 'White Bread',\n",
|
754 |
+
" '3': 'White Bread',\n",
|
755 |
+
" '118': 'Special Cake',\n",
|
756 |
+
" '214': 'Special Cake',\n",
|
757 |
+
" '99': 'White Bread',\n",
|
758 |
+
" '232': 'Wedding Cake',\n",
|
759 |
+
" '217': 'Special Cake',\n",
|
760 |
+
" '102': 'White Bread',\n",
|
761 |
+
" '301': 'Wedding Cake',\n",
|
762 |
+
" '238': 'Wedding Cake',\n",
|
763 |
+
" '239': 'Wedding Cake',\n",
|
764 |
+
" '240': 'Wedding Cake',\n",
|
765 |
+
" '134': 'Special Cake',\n",
|
766 |
+
" '19': 'White Bread',\n",
|
767 |
+
" '4': 'White Bread',\n",
|
768 |
+
" '119': 'Special Cake',\n",
|
769 |
+
" '126': 'Special Cake',\n",
|
770 |
+
" '11': 'White Bread',\n",
|
771 |
+
" '117': 'Special Cake',\n",
|
772 |
+
" '2': 'White Bread',\n",
|
773 |
+
" '114': 'White Bread',\n",
|
774 |
+
" '229': 'Special Cake',\n",
|
775 |
+
" '236': 'Wedding Cake',\n",
|
776 |
+
" '241': 'Wedding Cake',\n",
|
777 |
+
" '121': 'Special Cake',\n",
|
778 |
+
" '6': 'White Bread',\n",
|
779 |
+
" '12': 'White Bread',\n",
|
780 |
+
" '127': 'Special Cake',\n",
|
781 |
+
" '125': 'Special Cake',\n",
|
782 |
+
" '10': 'White Bread'},\n",
|
783 |
+
" 'demand': {'263': 33,\n",
|
784 |
+
" '261': 31,\n",
|
785 |
+
" '259': 29,\n",
|
786 |
+
" '269': 39,\n",
|
787 |
+
" '264': 34,\n",
|
788 |
+
" '268': 38,\n",
|
789 |
+
" '258': 28,\n",
|
790 |
+
" '260': 30,\n",
|
791 |
+
" '257': 27,\n",
|
792 |
+
" '270': 40,\n",
|
793 |
+
" '262': 32,\n",
|
794 |
+
" '265': 35,\n",
|
795 |
+
" '266': 36,\n",
|
796 |
+
" '267': 37,\n",
|
797 |
+
" '271': 41,\n",
|
798 |
+
" '161': 46,\n",
|
799 |
+
" '46': 46,\n",
|
800 |
+
" '256': 26,\n",
|
801 |
+
" '255': 25,\n",
|
802 |
+
" '275': 45,\n",
|
803 |
+
" '272': 42,\n",
|
804 |
+
" '34': 34,\n",
|
805 |
+
" '149': 34,\n",
|
806 |
+
" '278': 48,\n",
|
807 |
+
" '159': 44,\n",
|
808 |
+
" '44': 44,\n",
|
809 |
+
" '35': 35,\n",
|
810 |
+
" '150': 35,\n",
|
811 |
+
" '277': 47,\n",
|
812 |
+
" '36': 36,\n",
|
813 |
+
" '151': 36,\n",
|
814 |
+
" '253': 23,\n",
|
815 |
+
" '43': 43,\n",
|
816 |
+
" '158': 43,\n",
|
817 |
+
" '274': 44,\n",
|
818 |
+
" '157': 42,\n",
|
819 |
+
" '42': 42,\n",
|
820 |
+
" '162': 47,\n",
|
821 |
+
" '47': 47,\n",
|
822 |
+
" '254': 24,\n",
|
823 |
+
" '154': 39,\n",
|
824 |
+
" '39': 39,\n",
|
825 |
+
" '276': 46,\n",
|
826 |
+
" '163': 48,\n",
|
827 |
+
" '48': 48,\n",
|
828 |
+
" '279': 49,\n",
|
829 |
+
" '153': 38,\n",
|
830 |
+
" '38': 38,\n",
|
831 |
+
" '152': 37,\n",
|
832 |
+
" '37': 37,\n",
|
833 |
+
" '45': 45,\n",
|
834 |
+
" '160': 45,\n",
|
835 |
+
" '164': 49,\n",
|
836 |
+
" '49': 49,\n",
|
837 |
+
" '40': 40,\n",
|
838 |
+
" '155': 40,\n",
|
839 |
+
" '41': 41,\n",
|
840 |
+
" '156': 41,\n",
|
841 |
+
" '166': 51,\n",
|
842 |
+
" '51': 51,\n",
|
843 |
+
" '273': 43,\n",
|
844 |
+
" '82': 82,\n",
|
845 |
+
" '197': 82,\n",
|
846 |
+
" '79': 79,\n",
|
847 |
+
" '194': 79,\n",
|
848 |
+
" '81': 81,\n",
|
849 |
+
" '196': 81,\n",
|
850 |
+
" '182': 67,\n",
|
851 |
+
" '67': 67,\n",
|
852 |
+
" '52': 52,\n",
|
853 |
+
" '167': 52,\n",
|
854 |
+
" '50': 50,\n",
|
855 |
+
" '165': 50,\n",
|
856 |
+
" '280': 50,\n",
|
857 |
+
" '80': 80,\n",
|
858 |
+
" '195': 80,\n",
|
859 |
+
" '252': 22,\n",
|
860 |
+
" '85': 85,\n",
|
861 |
+
" '200': 85,\n",
|
862 |
+
" '199': 84,\n",
|
863 |
+
" '84': 84,\n",
|
864 |
+
" '281': 51,\n",
|
865 |
+
" '183': 68,\n",
|
866 |
+
" '68': 68,\n",
|
867 |
+
" '251': 21,\n",
|
868 |
+
" '181': 66,\n",
|
869 |
+
" '66': 66,\n",
|
870 |
+
" '282': 52,\n",
|
871 |
+
" '171': 56,\n",
|
872 |
+
" '56': 56,\n",
|
873 |
+
" '33': 33,\n",
|
874 |
+
" '148': 33,\n",
|
875 |
+
" '53': 53,\n",
|
876 |
+
" '168': 53,\n",
|
877 |
+
" '173': 58,\n",
|
878 |
+
" '58': 58,\n",
|
879 |
+
" '172': 57,\n",
|
880 |
+
" '57': 57,\n",
|
881 |
+
" '60': 60,\n",
|
882 |
+
" '175': 60,\n",
|
883 |
+
" '286': 56,\n",
|
884 |
+
" '174': 59,\n",
|
885 |
+
" '59': 59,\n",
|
886 |
+
" '198': 83,\n",
|
887 |
+
" '83': 83,\n",
|
888 |
+
" '169': 54,\n",
|
889 |
+
" '54': 54,\n",
|
890 |
+
" '86': 86,\n",
|
891 |
+
" '201': 86,\n",
|
892 |
+
" '185': 70,\n",
|
893 |
+
" '70': 70,\n",
|
894 |
+
" '184': 69,\n",
|
895 |
+
" '69': 69,\n",
|
896 |
+
" '78': 78,\n",
|
897 |
+
" '193': 78,\n",
|
898 |
+
" '250': 20,\n",
|
899 |
+
" '71': 71,\n",
|
900 |
+
" '186': 71,\n",
|
901 |
+
" '192': 77,\n",
|
902 |
+
" '77': 77,\n",
|
903 |
+
" '191': 76,\n",
|
904 |
+
" '76': 76,\n",
|
905 |
+
" '285': 55,\n",
|
906 |
+
" '176': 61,\n",
|
907 |
+
" '61': 61,\n",
|
908 |
+
" '249': 19,\n",
|
909 |
+
" '74': 74,\n",
|
910 |
+
" '189': 74,\n",
|
911 |
+
" '170': 55,\n",
|
912 |
+
" '55': 55,\n",
|
913 |
+
" '190': 75,\n",
|
914 |
+
" '75': 75,\n",
|
915 |
+
" '177': 62,\n",
|
916 |
+
" '62': 62,\n",
|
917 |
+
" '283': 53,\n",
|
918 |
+
" '188': 73,\n",
|
919 |
+
" '73': 73,\n",
|
920 |
+
" '65': 65,\n",
|
921 |
+
" '180': 65,\n",
|
922 |
+
" '187': 72,\n",
|
923 |
+
" '72': 72,\n",
|
924 |
+
" '284': 54,\n",
|
925 |
+
" '203': 88,\n",
|
926 |
+
" '88': 88,\n",
|
927 |
+
" '63': 63,\n",
|
928 |
+
" '178': 63,\n",
|
929 |
+
" '287': 57,\n",
|
930 |
+
" '87': 87,\n",
|
931 |
+
" '202': 87,\n",
|
932 |
+
" '32': 32,\n",
|
933 |
+
" '147': 32,\n",
|
934 |
+
" '207': 92,\n",
|
935 |
+
" '92': 92,\n",
|
936 |
+
" '290': 60,\n",
|
937 |
+
" '90': 90,\n",
|
938 |
+
" '205': 90,\n",
|
939 |
+
" '248': 18,\n",
|
940 |
+
" '211': 96,\n",
|
941 |
+
" '96': 96,\n",
|
942 |
+
" '89': 89,\n",
|
943 |
+
" '204': 89,\n",
|
944 |
+
" '289': 59,\n",
|
945 |
+
" '291': 61,\n",
|
946 |
+
" '146': 31,\n",
|
947 |
+
" '31': 31,\n",
|
948 |
+
" '64': 64,\n",
|
949 |
+
" '179': 64,\n",
|
950 |
+
" '209': 94,\n",
|
951 |
+
" '94': 94,\n",
|
952 |
+
" '288': 58,\n",
|
953 |
+
" '224': 109,\n",
|
954 |
+
" '109': 109,\n",
|
955 |
+
" '292': 62,\n",
|
956 |
+
" '28': 28,\n",
|
957 |
+
" '143': 28,\n",
|
958 |
+
" '30': 30,\n",
|
959 |
+
" '145': 30,\n",
|
960 |
+
" '29': 29,\n",
|
961 |
+
" '144': 29,\n",
|
962 |
+
" '208': 93,\n",
|
963 |
+
" '93': 93,\n",
|
964 |
+
" '206': 91,\n",
|
965 |
+
" '91': 91,\n",
|
966 |
+
" '223': 108,\n",
|
967 |
+
" '108': 108,\n",
|
968 |
+
" '222': 107,\n",
|
969 |
+
" '107': 107,\n",
|
970 |
+
" '220': 105,\n",
|
971 |
+
" '105': 105,\n",
|
972 |
+
" '27': 27,\n",
|
973 |
+
" '142': 27,\n",
|
974 |
+
" '245': 15,\n",
|
975 |
+
" '95': 95,\n",
|
976 |
+
" '210': 95,\n",
|
977 |
+
" '106': 106,\n",
|
978 |
+
" '221': 106,\n",
|
979 |
+
" '26': 26,\n",
|
980 |
+
" '141': 26,\n",
|
981 |
+
" '293': 63,\n",
|
982 |
+
" '110': 110,\n",
|
983 |
+
" '225': 110,\n",
|
984 |
+
" '112': 112,\n",
|
985 |
+
" '227': 112,\n",
|
986 |
+
" '243': 13,\n",
|
987 |
+
" '247': 17,\n",
|
988 |
+
" '25': 25,\n",
|
989 |
+
" '140': 25,\n",
|
990 |
+
" '244': 14,\n",
|
991 |
+
" '294': 64,\n",
|
992 |
+
" '212': 97,\n",
|
993 |
+
" '97': 97,\n",
|
994 |
+
" '297': 67,\n",
|
995 |
+
" '226': 111,\n",
|
996 |
+
" '111': 111,\n",
|
997 |
+
" '298': 68,\n",
|
998 |
+
" '246': 16,\n",
|
999 |
+
" '104': 104,\n",
|
1000 |
+
" '219': 104,\n",
|
1001 |
+
" '15': 15,\n",
|
1002 |
+
" '130': 15,\n",
|
1003 |
+
" '295': 65,\n",
|
1004 |
+
" '296': 66,\n",
|
1005 |
+
" '237': 7,\n",
|
1006 |
+
" '113': 113,\n",
|
1007 |
+
" '228': 113,\n",
|
1008 |
+
" '139': 24,\n",
|
1009 |
+
" '24': 24,\n",
|
1010 |
+
" '218': 103,\n",
|
1011 |
+
" '103': 103,\n",
|
1012 |
+
" '137': 22,\n",
|
1013 |
+
" '22': 22,\n",
|
1014 |
+
" '299': 69,\n",
|
1015 |
+
" '131': 16,\n",
|
1016 |
+
" '16': 16,\n",
|
1017 |
+
" '235': 5,\n",
|
1018 |
+
" '213': 98,\n",
|
1019 |
+
" '98': 98,\n",
|
1020 |
+
" '120': 5,\n",
|
1021 |
+
" '5': 5,\n",
|
1022 |
+
" '23': 23,\n",
|
1023 |
+
" '138': 23,\n",
|
1024 |
+
" '7': 7,\n",
|
1025 |
+
" '122': 7,\n",
|
1026 |
+
" '132': 17,\n",
|
1027 |
+
" '17': 17,\n",
|
1028 |
+
" '129': 14,\n",
|
1029 |
+
" '14': 14,\n",
|
1030 |
+
" '231': 1,\n",
|
1031 |
+
" '300': 70,\n",
|
1032 |
+
" '136': 21,\n",
|
1033 |
+
" '21': 21,\n",
|
1034 |
+
" '242': 12,\n",
|
1035 |
+
" '8': 8,\n",
|
1036 |
+
" '123': 8,\n",
|
1037 |
+
" '302': 72,\n",
|
1038 |
+
" '101': 101,\n",
|
1039 |
+
" '216': 101,\n",
|
1040 |
+
" '9': 9,\n",
|
1041 |
+
" '124': 9,\n",
|
1042 |
+
" '1': 1,\n",
|
1043 |
+
" '116': 1,\n",
|
1044 |
+
" '233': 3,\n",
|
1045 |
+
" '234': 4,\n",
|
1046 |
+
" '303': 73,\n",
|
1047 |
+
" '13': 13,\n",
|
1048 |
+
" '128': 13,\n",
|
1049 |
+
" '304': 74,\n",
|
1050 |
+
" '215': 100,\n",
|
1051 |
+
" '100': 100,\n",
|
1052 |
+
" '20': 20,\n",
|
1053 |
+
" '135': 20,\n",
|
1054 |
+
" '133': 18,\n",
|
1055 |
+
" '18': 18,\n",
|
1056 |
+
" '3': 3,\n",
|
1057 |
+
" '118': 3,\n",
|
1058 |
+
" '214': 99,\n",
|
1059 |
+
" '99': 99,\n",
|
1060 |
+
" '232': 2,\n",
|
1061 |
+
" '217': 102,\n",
|
1062 |
+
" '102': 102,\n",
|
1063 |
+
" '301': 71,\n",
|
1064 |
+
" '238': 8,\n",
|
1065 |
+
" '239': 9,\n",
|
1066 |
+
" '240': 10,\n",
|
1067 |
+
" '134': 19,\n",
|
1068 |
+
" '19': 19,\n",
|
1069 |
+
" '4': 4,\n",
|
1070 |
+
" '119': 4,\n",
|
1071 |
+
" '126': 11,\n",
|
1072 |
+
" '11': 11,\n",
|
1073 |
+
" '117': 2,\n",
|
1074 |
+
" '2': 2,\n",
|
1075 |
+
" '114': 114,\n",
|
1076 |
+
" '229': 114,\n",
|
1077 |
+
" '236': 6,\n",
|
1078 |
+
" '241': 11,\n",
|
1079 |
+
" '121': 6,\n",
|
1080 |
+
" '6': 6,\n",
|
1081 |
+
" '12': 12,\n",
|
1082 |
+
" '127': 12,\n",
|
1083 |
+
" '125': 10,\n",
|
1084 |
+
" '10': 10},\n",
|
1085 |
+
" 'probability': {'263': 0.0368592173,\n",
|
1086 |
+
" '261': 0.0359488332,\n",
|
1087 |
+
" '259': 0.034826178,\n",
|
1088 |
+
" '269': 0.0345176881,\n",
|
1089 |
+
" '264': 0.0338754672,\n",
|
1090 |
+
" '268': 0.0336984278,\n",
|
1091 |
+
" '258': 0.0333003656,\n",
|
1092 |
+
" '260': 0.032756232,\n",
|
1093 |
+
" '257': 0.0325301611,\n",
|
1094 |
+
" '270': 0.032197924,\n",
|
1095 |
+
" '262': 0.0318970326,\n",
|
1096 |
+
" '265': 0.0311347815,\n",
|
1097 |
+
" '266': 0.030689652,\n",
|
1098 |
+
" '267': 0.0290920836,\n",
|
1099 |
+
" '271': 0.0283928783,\n",
|
1100 |
+
" '161': 0.028135825,\n",
|
1101 |
+
" '46': 0.028135825,\n",
|
1102 |
+
" '256': 0.0280648941,\n",
|
1103 |
+
" '255': 0.026794912,\n",
|
1104 |
+
" '275': 0.0267789487,\n",
|
1105 |
+
" '272': 0.0266978264,\n",
|
1106 |
+
" '34': 0.02649434,\n",
|
1107 |
+
" '149': 0.02649434,\n",
|
1108 |
+
" '278': 0.0261790284,\n",
|
1109 |
+
" '159': 0.0260993218,\n",
|
1110 |
+
" '44': 0.0260993218,\n",
|
1111 |
+
" '35': 0.0258797103,\n",
|
1112 |
+
" '150': 0.0258797103,\n",
|
1113 |
+
" '277': 0.0249885005,\n",
|
1114 |
+
" '36': 0.0247542848,\n",
|
1115 |
+
" '151': 0.0247542848,\n",
|
1116 |
+
" '253': 0.0237528724,\n",
|
1117 |
+
" '43': 0.0227409136,\n",
|
1118 |
+
" '158': 0.0227409136,\n",
|
1119 |
+
" '274': 0.0223511295,\n",
|
1120 |
+
" '157': 0.0218458294,\n",
|
1121 |
+
" '42': 0.0218458294,\n",
|
1122 |
+
" '162': 0.0218256638,\n",
|
1123 |
+
" '47': 0.0218256638,\n",
|
1124 |
+
" '254': 0.0217967443,\n",
|
1125 |
+
" '154': 0.0216395613,\n",
|
1126 |
+
" '39': 0.0216395613,\n",
|
1127 |
+
" '276': 0.0216095805,\n",
|
1128 |
+
" '163': 0.0215321773,\n",
|
1129 |
+
" '48': 0.0215321773,\n",
|
1130 |
+
" '279': 0.0213346388,\n",
|
1131 |
+
" '153': 0.0203048915,\n",
|
1132 |
+
" '38': 0.0203048915,\n",
|
1133 |
+
" '152': 0.020051612,\n",
|
1134 |
+
" '37': 0.020051612,\n",
|
1135 |
+
" '45': 0.0199892913,\n",
|
1136 |
+
" '160': 0.0199892913,\n",
|
1137 |
+
" '164': 0.0195399323,\n",
|
1138 |
+
" '49': 0.0195399323,\n",
|
1139 |
+
" '40': 0.019229393,\n",
|
1140 |
+
" '155': 0.019229393,\n",
|
1141 |
+
" '41': 0.0190548591,\n",
|
1142 |
+
" '156': 0.0190548591,\n",
|
1143 |
+
" '166': 0.018913738,\n",
|
1144 |
+
" '51': 0.018913738,\n",
|
1145 |
+
" '273': 0.0184784305,\n",
|
1146 |
+
" '82': 0.0182737867,\n",
|
1147 |
+
" '197': 0.0182737867,\n",
|
1148 |
+
" '79': 0.0180723397,\n",
|
1149 |
+
" '194': 0.0180723397,\n",
|
1150 |
+
" '81': 0.0179847392,\n",
|
1151 |
+
" '196': 0.0179847392,\n",
|
1152 |
+
" '182': 0.0177538496,\n",
|
1153 |
+
" '67': 0.0177538496,\n",
|
1154 |
+
" '52': 0.017304322,\n",
|
1155 |
+
" '167': 0.017304322,\n",
|
1156 |
+
" '50': 0.0172683526,\n",
|
1157 |
+
" '165': 0.0172683526,\n",
|
1158 |
+
" '280': 0.017080318,\n",
|
1159 |
+
" '80': 0.0165558467,\n",
|
1160 |
+
" '195': 0.0165558467,\n",
|
1161 |
+
" '252': 0.0164150156,\n",
|
1162 |
+
" '85': 0.0163239057,\n",
|
1163 |
+
" '200': 0.0163239057,\n",
|
1164 |
+
" '199': 0.0155502511,\n",
|
1165 |
+
" '84': 0.0155502511,\n",
|
1166 |
+
" '281': 0.0155468033,\n",
|
1167 |
+
" '183': 0.0153482999,\n",
|
1168 |
+
" '68': 0.0153482999,\n",
|
1169 |
+
" '251': 0.0150519811,\n",
|
1170 |
+
" '181': 0.0149100957,\n",
|
1171 |
+
" '66': 0.0149100957,\n",
|
1172 |
+
" '282': 0.0145321593,\n",
|
1173 |
+
" '171': 0.0145073305,\n",
|
1174 |
+
" '56': 0.0145073305,\n",
|
1175 |
+
" '33': 0.0143434204,\n",
|
1176 |
+
" '148': 0.0143434204,\n",
|
1177 |
+
" '53': 0.0139978926,\n",
|
1178 |
+
" '168': 0.0139978926,\n",
|
1179 |
+
" '173': 0.0137575929,\n",
|
1180 |
+
" '58': 0.0137575929,\n",
|
1181 |
+
" '172': 0.0133753577,\n",
|
1182 |
+
" '57': 0.0133753577,\n",
|
1183 |
+
" '60': 0.0132917234,\n",
|
1184 |
+
" '175': 0.0132917234,\n",
|
1185 |
+
" '286': 0.0128341354,\n",
|
1186 |
+
" '174': 0.0125602164,\n",
|
1187 |
+
" '59': 0.0125602164,\n",
|
1188 |
+
" '198': 0.0122586994,\n",
|
1189 |
+
" '83': 0.0122586994,\n",
|
1190 |
+
" '169': 0.0121257892,\n",
|
1191 |
+
" '54': 0.0121257892,\n",
|
1192 |
+
" '86': 0.0121178443,\n",
|
1193 |
+
" '201': 0.0121178443,\n",
|
1194 |
+
" '185': 0.0117735274,\n",
|
1195 |
+
" '70': 0.0117735274,\n",
|
1196 |
+
" '184': 0.0117612458,\n",
|
1197 |
+
" '69': 0.0117612458,\n",
|
1198 |
+
" '78': 0.011635456,\n",
|
1199 |
+
" '193': 0.011635456,\n",
|
1200 |
+
" '250': 0.01154316,\n",
|
1201 |
+
" '71': 0.0112493485,\n",
|
1202 |
+
" '186': 0.0112493485,\n",
|
1203 |
+
" '192': 0.0111785296,\n",
|
1204 |
+
" '77': 0.0111785296,\n",
|
1205 |
+
" '191': 0.0111410438,\n",
|
1206 |
+
" '76': 0.0111410438,\n",
|
1207 |
+
" '285': 0.0110507398,\n",
|
1208 |
+
" '176': 0.0105914583,\n",
|
1209 |
+
" '61': 0.0105914583,\n",
|
1210 |
+
" '249': 0.0105420966,\n",
|
1211 |
+
" '74': 0.0105078101,\n",
|
1212 |
+
" '189': 0.0105078101,\n",
|
1213 |
+
" '170': 0.0103408676,\n",
|
1214 |
+
" '55': 0.0103408676,\n",
|
1215 |
+
" '190': 0.0100856266,\n",
|
1216 |
+
" '75': 0.0100856266,\n",
|
1217 |
+
" '177': 0.0100635496,\n",
|
1218 |
+
" '62': 0.0100635496,\n",
|
1219 |
+
" '283': 0.0098274898,\n",
|
1220 |
+
" '188': 0.009615686,\n",
|
1221 |
+
" '73': 0.009615686,\n",
|
1222 |
+
" '65': 0.0089209082,\n",
|
1223 |
+
" '180': 0.0089209082,\n",
|
1224 |
+
" '187': 0.0088669788,\n",
|
1225 |
+
" '72': 0.0088669788,\n",
|
1226 |
+
" '284': 0.008681397,\n",
|
1227 |
+
" '203': 0.0085985317,\n",
|
1228 |
+
" '88': 0.0085985317,\n",
|
1229 |
+
" '63': 0.0083903575,\n",
|
1230 |
+
" '178': 0.0083903575,\n",
|
1231 |
+
" '287': 0.0079844742,\n",
|
1232 |
+
" '87': 0.0075161459,\n",
|
1233 |
+
" '202': 0.0075161459,\n",
|
1234 |
+
" '32': 0.0065831021,\n",
|
1235 |
+
" '147': 0.0065831021,\n",
|
1236 |
+
" '207': 0.0063411487,\n",
|
1237 |
+
" '92': 0.0063411487,\n",
|
1238 |
+
" '290': 0.0061494519,\n",
|
1239 |
+
" '90': 0.0060437383,\n",
|
1240 |
+
" '205': 0.0060437383,\n",
|
1241 |
+
" '248': 0.0057253414,\n",
|
1242 |
+
" '211': 0.0057178973,\n",
|
1243 |
+
" '96': 0.0057178973,\n",
|
1244 |
+
" '89': 0.0056477112,\n",
|
1245 |
+
" '204': 0.0056477112,\n",
|
1246 |
+
" '289': 0.0055459619,\n",
|
1247 |
+
" '291': 0.0054795932,\n",
|
1248 |
+
" '146': 0.0054244868,\n",
|
1249 |
+
" '31': 0.0054244868,\n",
|
1250 |
+
" '64': 0.0053959746,\n",
|
1251 |
+
" '179': 0.0053959746,\n",
|
1252 |
+
" '209': 0.0051360659,\n",
|
1253 |
+
" '94': 0.0051360659,\n",
|
1254 |
+
" '288': 0.0050816214,\n",
|
1255 |
+
" '224': 0.0048954825,\n",
|
1256 |
+
" '109': 0.0048954825,\n",
|
1257 |
+
" '292': 0.0047980717,\n",
|
1258 |
+
" '28': 0.0045802571,\n",
|
1259 |
+
" '143': 0.0045802571,\n",
|
1260 |
+
" '30': 0.0044781409,\n",
|
1261 |
+
" '145': 0.0044781409,\n",
|
1262 |
+
" '29': 0.0043621607,\n",
|
1263 |
+
" '144': 0.0043621607,\n",
|
1264 |
+
" '208': 0.0043273171,\n",
|
1265 |
+
" '93': 0.0043273171,\n",
|
1266 |
+
" '206': 0.0041276299,\n",
|
1267 |
+
" '91': 0.0041276299,\n",
|
1268 |
+
" '223': 0.0040755787,\n",
|
1269 |
+
" '108': 0.0040755787,\n",
|
1270 |
+
" '222': 0.0039335012,\n",
|
1271 |
+
" '107': 0.0039335012,\n",
|
1272 |
+
" '220': 0.0038894774,\n",
|
1273 |
+
" '105': 0.0038894774,\n",
|
1274 |
+
" '27': 0.00385749,\n",
|
1275 |
+
" '142': 0.00385749,\n",
|
1276 |
+
" '245': 0.0036740912,\n",
|
1277 |
+
" '95': 0.0036275468,\n",
|
1278 |
+
" '210': 0.0036275468,\n",
|
1279 |
+
" '106': 0.0035281844,\n",
|
1280 |
+
" '221': 0.0035281844,\n",
|
1281 |
+
" '26': 0.0033199252,\n",
|
1282 |
+
" '141': 0.0033199252,\n",
|
1283 |
+
" '293': 0.0032641712,\n",
|
1284 |
+
" '110': 0.0031606894,\n",
|
1285 |
+
" '225': 0.0031606894,\n",
|
1286 |
+
" '112': 0.002931355,\n",
|
1287 |
+
" '227': 0.002931355,\n",
|
1288 |
+
" '243': 0.0029177054,\n",
|
1289 |
+
" '247': 0.0027665343,\n",
|
1290 |
+
" '25': 0.0026568393,\n",
|
1291 |
+
" '140': 0.0026568393,\n",
|
1292 |
+
" '244': 0.0026502146,\n",
|
1293 |
+
" '294': 0.0025965544,\n",
|
1294 |
+
" '212': 0.002554393,\n",
|
1295 |
+
" '97': 0.002554393,\n",
|
1296 |
+
" '297': 0.0022778517,\n",
|
1297 |
+
" '226': 0.0022694948,\n",
|
1298 |
+
" '111': 0.0022694948,\n",
|
1299 |
+
" '298': 0.0022332029,\n",
|
1300 |
+
" '246': 0.00198394,\n",
|
1301 |
+
" '104': 0.0019647995,\n",
|
1302 |
+
" '219': 0.0019647995,\n",
|
1303 |
+
" '15': 0.0019036542,\n",
|
1304 |
+
" '130': 0.0019036542,\n",
|
1305 |
+
" '295': 0.0018337038,\n",
|
1306 |
+
" '296': 0.0014691137,\n",
|
1307 |
+
" '237': 0.0014035503,\n",
|
1308 |
+
" '113': 0.0013588412,\n",
|
1309 |
+
" '228': 0.0013588412,\n",
|
1310 |
+
" '139': 0.0013444622,\n",
|
1311 |
+
" '24': 0.0013444622,\n",
|
1312 |
+
" '218': 0.001279575,\n",
|
1313 |
+
" '103': 0.001279575,\n",
|
1314 |
+
" '137': 0.0012722084,\n",
|
1315 |
+
" '22': 0.0012722084,\n",
|
1316 |
+
" '299': 0.0012112573,\n",
|
1317 |
+
" '131': 0.0009974778,\n",
|
1318 |
+
" '16': 0.0009974778,\n",
|
1319 |
+
" '235': 0.0009420068,\n",
|
1320 |
+
" '213': 0.000899227,\n",
|
1321 |
+
" '98': 0.000899227,\n",
|
1322 |
+
" '120': 0.0007732343,\n",
|
1323 |
+
" '5': 0.0007732343,\n",
|
1324 |
+
" '23': 0.0007673017,\n",
|
1325 |
+
" '138': 0.0007673017,\n",
|
1326 |
+
" '7': 0.000579398,\n",
|
1327 |
+
" '122': 0.000579398,\n",
|
1328 |
+
" '132': 0.0005463021,\n",
|
1329 |
+
" '17': 0.0005463021,\n",
|
1330 |
+
" '129': 0.0005379338,\n",
|
1331 |
+
" '14': 0.0005379338,\n",
|
1332 |
+
" '231': 0.0004810596,\n",
|
1333 |
+
" '300': 0.0004541821,\n",
|
1334 |
+
" '136': 0.0004143761,\n",
|
1335 |
+
" '21': 0.0004143761,\n",
|
1336 |
+
" '242': 0.0004077686,\n",
|
1337 |
+
" '8': 0.000402153,\n",
|
1338 |
+
" '123': 0.000402153,\n",
|
1339 |
+
" '302': 0.0003903984,\n",
|
1340 |
+
" '101': 0.0003871625,\n",
|
1341 |
+
" '216': 0.0003871625,\n",
|
1342 |
+
" '9': 0.0003653594,\n",
|
1343 |
+
" '124': 0.0003653594,\n",
|
1344 |
+
" '1': 0.0003608402,\n",
|
1345 |
+
" '116': 0.0003608402,\n",
|
1346 |
+
" '233': 0.0003515124,\n",
|
1347 |
+
" '234': 0.0003474865,\n",
|
1348 |
+
" '303': 0.0003399258,\n",
|
1349 |
+
" '13': 0.0003227829,\n",
|
1350 |
+
" '128': 0.0003227829,\n",
|
1351 |
+
" '304': 0.0003183052,\n",
|
1352 |
+
" '215': 0.0003102312,\n",
|
1353 |
+
" '100': 0.0003102312,\n",
|
1354 |
+
" '20': 0.0003036225,\n",
|
1355 |
+
" '135': 0.0003036225,\n",
|
1356 |
+
" '133': 0.0002644347,\n",
|
1357 |
+
" '18': 0.0002644347,\n",
|
1358 |
+
" '3': 0.0002636676,\n",
|
1359 |
+
" '118': 0.0002636676,\n",
|
1360 |
+
" '214': 0.0002458838,\n",
|
1361 |
+
" '99': 0.0002458838,\n",
|
1362 |
+
" '232': 0.0002280527,\n",
|
1363 |
+
" '217': 0.0002082343,\n",
|
1364 |
+
" '102': 0.0002082343,\n",
|
1365 |
+
" '301': 0.0002049358,\n",
|
1366 |
+
" '238': 0.0002048074,\n",
|
1367 |
+
" '239': 0.0001971212,\n",
|
1368 |
+
" '240': 0.0001920457,\n",
|
1369 |
+
" '134': 0.0001910985,\n",
|
1370 |
+
" '19': 0.0001910985,\n",
|
1371 |
+
" '4': 0.0001887357,\n",
|
1372 |
+
" '119': 0.0001887357,\n",
|
1373 |
+
" '126': 0.0001747752,\n",
|
1374 |
+
" '11': 0.0001747752,\n",
|
1375 |
+
" '117': 0.0001710611,\n",
|
1376 |
+
" '2': 0.0001710611,\n",
|
1377 |
+
" '114': 0.0001586266,\n",
|
1378 |
+
" '229': 0.0001586266,\n",
|
1379 |
+
" '236': 0.0001076846,\n",
|
1380 |
+
" '241': 8.84724e-05,\n",
|
1381 |
+
" '121': 8.60457e-05,\n",
|
1382 |
+
" '6': 8.60457e-05,\n",
|
1383 |
+
" '12': 6.17417e-05,\n",
|
1384 |
+
" '127': 6.17417e-05,\n",
|
1385 |
+
" '125': 4.30096e-05,\n",
|
1386 |
+
" '10': 4.30096e-05}}"
|
1387 |
+
]
|
1388 |
+
},
|
1389 |
+
"execution_count": 43,
|
1390 |
+
"metadata": {},
|
1391 |
+
"output_type": "execute_result"
|
1392 |
+
}
|
1393 |
+
],
|
1394 |
+
"source": [
|
1395 |
+
"import json\n",
|
1396 |
+
"json.loads(res['probability_table'])"
|
1397 |
+
]
|
1398 |
+
}
|
1399 |
+
],
|
1400 |
+
"metadata": {
|
1401 |
+
"kernelspec": {
|
1402 |
+
"display_name": "timeseries",
|
1403 |
+
"language": "python",
|
1404 |
+
"name": "timeseries"
|
1405 |
+
},
|
1406 |
+
"language_info": {
|
1407 |
+
"codemirror_mode": {
|
1408 |
+
"name": "ipython",
|
1409 |
+
"version": 3
|
1410 |
+
},
|
1411 |
+
"file_extension": ".py",
|
1412 |
+
"mimetype": "text/x-python",
|
1413 |
+
"name": "python",
|
1414 |
+
"nbconvert_exporter": "python",
|
1415 |
+
"pygments_lexer": "ipython3",
|
1416 |
+
"version": "3.11.4"
|
1417 |
+
}
|
1418 |
+
},
|
1419 |
+
"nbformat": 4,
|
1420 |
+
"nbformat_minor": 5
|
1421 |
+
}
|
requirements.txt
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
python-dotenv
|
src/.DS_Store
ADDED
Binary file (6.15 kB). View file
|
|
src/__init__.py
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
# from apis.idsc_login import get_idsc_apikey
|
src/__pycache__/GradioApp.cpython-310.pyc
ADDED
Binary file (1.1 kB). View file
|
|
src/__pycache__/GradioFns.cpython-310.pyc
ADDED
Binary file (469 Bytes). View file
|
|
src/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (178 Bytes). View file
|
|
src/__pycache__/gr_args.cpython-310.pyc
ADDED
Binary file (1.27 kB). View file
|
|
src/apis/__init__.py
ADDED
File without changes
|
src/apis/idsc_login.py
ADDED
@@ -0,0 +1,40 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import requests, yaml, datetime
|
2 |
+
|
3 |
+
def load_idsc_config():
|
4 |
+
with open('../configs/idsc_config', 'r') as file:
|
5 |
+
config = yaml.save_load(file)
|
6 |
+
return config
|
7 |
+
|
8 |
+
def save_idsc_config(config):
|
9 |
+
with open('../configs/idsc_config', 'w') as file:
|
10 |
+
yaml.dump(config, file, default_flow_style=False)
|
11 |
+
|
12 |
+
def get_idsc_apikey():
|
13 |
+
config = load_idsc_config()
|
14 |
+
expire = config.expire
|
15 |
+
expire_date = datetime.strptime(expire)
|
16 |
+
now = datetime.now()
|
17 |
+
|
18 |
+
if expire_date < now:
|
19 |
+
return config.apikey
|
20 |
+
|
21 |
+
new_expire = (now + datetime.timedelta(days=3)).strftime()
|
22 |
+
config.apikey = idsc_login()
|
23 |
+
config.expire = new_expire
|
24 |
+
save_idsc_config(config)
|
25 |
+
|
26 |
+
def idsc_login(email, password):
|
27 |
+
|
28 |
+
json = {"email": email,
|
29 |
+
"pwd": password}
|
30 |
+
|
31 |
+
login_resp = requests.post(
|
32 |
+
'https://idsc.com.sg/user/login',
|
33 |
+
json=json )
|
34 |
+
|
35 |
+
if login_resp.status_code == 200:
|
36 |
+
apikey = login_resp.json()["API_key"]
|
37 |
+
return apikey
|
38 |
+
else:
|
39 |
+
raise Exception(login_resp.json())
|
40 |
+
|
src/apis/inventory.py
ADDED
File without changes
|
src/demo_data/example_inventory.csv
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SKU,demand,price,cost,space_per_unit,budgetary_cost,replenishment_rate
|
2 |
+
Item_A,1262,50,11,1.5,10,0.1
|
3 |
+
Item_B,68,120,19,3,20,0.1
|
4 |
+
Item_C,179,60,9.5,5,10,0.1
|
5 |
+
Item_D,516,10,8,2,8,0.1
|
6 |
+
Item_E,563,30,13,1,15,0.1
|
src/demo_data/example_rm.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
SKU,demand,price,cost,space_per_unit,budgetary_cost,replenishment_rate
|
2 |
+
Raw Material A,5000,2,1.1,0.5,1,0.1
|
3 |
+
Raw Material B,3000,3,1.9,0.2,2,0.1
|
src/demo_data/example_wip.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
SKU,demand,price,cost,space_per_unit,replenishment_rate,budgetary_cost
|
2 |
+
Item C,500,3,2,1,0.1,2
|
3 |
+
Item B,2000,4,2,2,0.1,2
|
4 |
+
Item A,1500,5,3,3,0.1,3
|
src/gr/GradioApp.py
ADDED
@@ -0,0 +1,376 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import pandas as pd
|
3 |
+
from ..idsc.idsc_apis import IDSC_API
|
4 |
+
import matplotlib.pyplot as plt
|
5 |
+
from .GradioFns import GradioFns
|
6 |
+
|
7 |
+
fns = GradioFns()
|
8 |
+
|
9 |
+
|
10 |
+
class GradioApp():
|
11 |
+
def __init__(self):
|
12 |
+
# [Constents] #
|
13 |
+
self.inventory_input_demo_path = 'src/demo_data/example_inventory.csv'
|
14 |
+
self.rm_input_demo_path = 'src/demo_data/example_rm.csv'
|
15 |
+
self.wip_input_demo_path = 'src/demo_data/example_wip.csv'
|
16 |
+
|
17 |
+
self.idsc = IDSC_API()
|
18 |
+
|
19 |
+
# [Inventory Values] #
|
20 |
+
self.inventory_input_df__value = pd.DataFrame()
|
21 |
+
self.inv_recom_df__value = pd.DataFrame()
|
22 |
+
|
23 |
+
self.inventory_storage_capacity__value = 0
|
24 |
+
self.inventory_budget_constraint__value = 0
|
25 |
+
|
26 |
+
self.inv_total_profit_md__val = 0
|
27 |
+
self.inv_total_capacity_usage_md__val = 0
|
28 |
+
self.inv_total_budget_usage_md__val = 0
|
29 |
+
self.inv_total_margin_md__val = 0
|
30 |
+
|
31 |
+
self.inv_plot__fig = plt.plot()
|
32 |
+
|
33 |
+
# [Raw Inventory Values] #
|
34 |
+
self.rm_input_df__value = pd.DataFrame()
|
35 |
+
self.rm_recom_df__value = pd.DataFrame()
|
36 |
+
|
37 |
+
self.rm_storage_capacity__value = 0
|
38 |
+
self.rm_budget_constraint__value = 0
|
39 |
+
|
40 |
+
self.rm_total_capacity_usage_md__val = 0
|
41 |
+
self.rm_total_budget_usage_md__val = 0
|
42 |
+
|
43 |
+
# [WIP Inventory Values] #
|
44 |
+
self.wip_input_df__value = pd.DataFrame()
|
45 |
+
self.wip_recom_df__value = pd.DataFrame()
|
46 |
+
|
47 |
+
self.wip_storage_capacity__value = 0
|
48 |
+
self.wip_budget_constraint__value = 0
|
49 |
+
|
50 |
+
self.wip_total_capacity_usage_md__val = 0
|
51 |
+
self.wip_total_budget_usage_md__val = 0
|
52 |
+
|
53 |
+
# =============== #
|
54 |
+
# Event Listeners #
|
55 |
+
# =============== #
|
56 |
+
|
57 |
+
def demo_data_btn__click(self):
|
58 |
+
print('Load inventory input demo.')
|
59 |
+
self.inventory_input_df__value = pd.read_csv(
|
60 |
+
self.inventory_input_demo_path)
|
61 |
+
self.inventory_storage_capacity__value = 5000
|
62 |
+
self.inventory_budget_constraint__value = 25000
|
63 |
+
return (
|
64 |
+
self.update__inventory_input_df(),
|
65 |
+
self.update__inventory_storage_capacity(),
|
66 |
+
self.update__inventory_budget_constraint())
|
67 |
+
|
68 |
+
def inventory_file__upload(self, file):
|
69 |
+
self.inventory_input_df__value = pd.read_csv(file.name)
|
70 |
+
return self.update__inventory_input_df()
|
71 |
+
|
72 |
+
def inventory_storage_capacity__change(self, value):
|
73 |
+
self.inventory_storage_capacity__value = value
|
74 |
+
|
75 |
+
def inventory_budget_constraint__change(self, value):
|
76 |
+
self.inventory_budget_constraint__value = value
|
77 |
+
|
78 |
+
def inventory_btn__click(self):
|
79 |
+
inventory_input_df = self.inventory_input_df__value
|
80 |
+
|
81 |
+
self.idsc.product_mix(
|
82 |
+
inventory_input_df.to_json(),
|
83 |
+
self.inventory_storage_capacity__value,
|
84 |
+
self.inventory_budget_constraint__value)
|
85 |
+
|
86 |
+
self.__update_inventory_res()
|
87 |
+
|
88 |
+
return (
|
89 |
+
self.update__inv_recom_df(),
|
90 |
+
self.update__inv_total_profit_md(),
|
91 |
+
self.update__inv_total_capacity_usage_md(),
|
92 |
+
self.update__inv_total_budget_usage_md(),
|
93 |
+
self.update__inv_total_margin_md(),
|
94 |
+
self.update__inv_plot())
|
95 |
+
|
96 |
+
def __update_inventory_res(self):
|
97 |
+
if self.idsc.product_mix__res:
|
98 |
+
# API call success
|
99 |
+
res = self.idsc.product_mix__res
|
100 |
+
print(res)
|
101 |
+
self.inv_recom_df__value = fns.format__inv_recom_df(
|
102 |
+
self.idsc.get_product_mix_recommendations_df(),
|
103 |
+
self.inventory_input_df__value)
|
104 |
+
|
105 |
+
self.inv_total_profit_md__val = res['total_profit']
|
106 |
+
self.inv_total_capacity_usage_md__val = res['total_capacity_usage']
|
107 |
+
self.inv_total_budget_usage_md__val = res['total_budget_usage']
|
108 |
+
self.inv_total_margin_md__val = \
|
109 |
+
round((res['total_profit'] - res['total_budget_usage']
|
110 |
+
) / res['total_profit'] * 100, 2)
|
111 |
+
|
112 |
+
self.inv_plot__fig = fns.plot__inv_res(
|
113 |
+
res,
|
114 |
+
self.inventory_storage_capacity__value,
|
115 |
+
self.inventory_budget_constraint__value,
|
116 |
+
self.inv_recom_df__value)
|
117 |
+
|
118 |
+
else:
|
119 |
+
self.inv_recom_df__value = pd.DataFrame()
|
120 |
+
|
121 |
+
self.inv_total_profit_md__val = '-'
|
122 |
+
self.inv_total_capacity_usage_md__val = '-'
|
123 |
+
self.inv_total_budget_usage_md__val = '-'
|
124 |
+
self.inv_total_margin_md__val = '-'
|
125 |
+
|
126 |
+
self.inv_plot__fig = plt.plot()
|
127 |
+
|
128 |
+
# ======== #
|
129 |
+
# Updaters #
|
130 |
+
# ======== #
|
131 |
+
|
132 |
+
def update__inventory_input_df(self):
|
133 |
+
return gr.Dataframe.update(
|
134 |
+
value=self.inventory_input_df__value)
|
135 |
+
|
136 |
+
def update__inv_recom_df(self):
|
137 |
+
return gr.Dataframe.update(
|
138 |
+
value=self.inv_recom_df__value)
|
139 |
+
|
140 |
+
def update__inventory_storage_capacity(self):
|
141 |
+
return gr.Number.update(
|
142 |
+
value=self.inventory_storage_capacity__value)
|
143 |
+
|
144 |
+
def update__inventory_budget_constraint(self):
|
145 |
+
return gr.Number.update(
|
146 |
+
value=self.inventory_budget_constraint__value)
|
147 |
+
|
148 |
+
def update__inv_total_profit_md(self):
|
149 |
+
return gr.Markdown.update(
|
150 |
+
value=f'### Total Profit: \n # {self.inv_total_profit_md__val:,}')
|
151 |
+
|
152 |
+
def update__inv_total_capacity_usage_md(self):
|
153 |
+
return gr.Markdown.update(
|
154 |
+
value=f'### Total Capacity Usage: \n # {self.inv_total_capacity_usage_md__val:,}')
|
155 |
+
|
156 |
+
def update__inv_total_budget_usage_md(self):
|
157 |
+
return gr.Markdown.update(
|
158 |
+
value=f'### Total Budget Usage: \n # {self.inv_total_budget_usage_md__val:,}')
|
159 |
+
|
160 |
+
def update__inv_total_margin_md(self):
|
161 |
+
return gr.Markdown.update(
|
162 |
+
value=f'### Total Margin: \n # {self.inv_total_margin_md__val}%')
|
163 |
+
|
164 |
+
def update__inv_plot(self):
|
165 |
+
return gr.Plot.update(value=self.inv_plot__fig)
|
166 |
+
|
167 |
+
# ============================ #
|
168 |
+
# Raw Material Event Listeners #
|
169 |
+
# ============================ #
|
170 |
+
|
171 |
+
def rm_demo_data_btn__click(self):
|
172 |
+
print('Load raw material input demo.')
|
173 |
+
self.rm_input_df__value = pd.read_csv(
|
174 |
+
self.rm_input_demo_path)
|
175 |
+
self.rm_storage_capacity__value = 4000
|
176 |
+
self.rm_budget_constraint__value = 10000
|
177 |
+
return (
|
178 |
+
self.update__rm_input_df(),
|
179 |
+
self.update__rm_storage_capacity(),
|
180 |
+
self.update__rm_budget_constraint())
|
181 |
+
|
182 |
+
def rm_file__upload(self, file):
|
183 |
+
self.rm_input_df__value = pd.read_csv(file.name)
|
184 |
+
return self.update__rm_input_df()
|
185 |
+
|
186 |
+
def rm_storage_capacity__change(self, value):
|
187 |
+
self.rm_storage_capacity__value = value
|
188 |
+
|
189 |
+
def rm_budget_constraint__change(self, value):
|
190 |
+
self.rm_budget_constraint__value = value
|
191 |
+
|
192 |
+
def rm_btn__click(self):
|
193 |
+
self.idsc.product_mix(
|
194 |
+
self.rm_input_df__value.to_json(),
|
195 |
+
self.rm_storage_capacity__value,
|
196 |
+
self.rm_budget_constraint__value)
|
197 |
+
|
198 |
+
self.__update_rm_res()
|
199 |
+
|
200 |
+
return (
|
201 |
+
self.update__rm_recom_df(),
|
202 |
+
self.update__rm_total_capacity_usage_md(),
|
203 |
+
self.update__rm_total_budget_usage_md(),
|
204 |
+
self.update__rm_plot())
|
205 |
+
|
206 |
+
def __update_rm_res(self):
|
207 |
+
if self.idsc.product_mix__res:
|
208 |
+
res = self.idsc.product_mix__res
|
209 |
+
|
210 |
+
self.rm_recom_df__value = fns.format__inv_recom_df(
|
211 |
+
self.idsc.get_product_mix_recommendations_df(),
|
212 |
+
self.rm_input_df__value
|
213 |
+
)
|
214 |
+
self.rm_total_capacity_usage_md__val = res['total_capacity_usage']
|
215 |
+
self.rm_total_budget_usage_md__val = res['total_budget_usage']
|
216 |
+
|
217 |
+
self.rm_plot__fig = fns.plot__rm_res(
|
218 |
+
res,
|
219 |
+
self.rm_storage_capacity__value,
|
220 |
+
self.rm_budget_constraint__value,
|
221 |
+
self.rm_recom_df__value)
|
222 |
+
|
223 |
+
else:
|
224 |
+
self.rm_recom_df__value = pd.DataFrame()
|
225 |
+
self.rm_total_capacity_usage_md__val = '-'
|
226 |
+
self.rm_total_budget_usage_md__val = '-'
|
227 |
+
|
228 |
+
self.rm_plot__fig = plt.plot()
|
229 |
+
|
230 |
+
# ===================== #
|
231 |
+
# Raw Material Updaters #
|
232 |
+
# ===================== #
|
233 |
+
|
234 |
+
def update__rm_input_df(self):
|
235 |
+
|
236 |
+
df = self.rm_input_df__value.rename(
|
237 |
+
columns={'price': 'transfer price'})
|
238 |
+
# df = df.drop(columns=['replenishment_rate'])
|
239 |
+
|
240 |
+
return gr.Dataframe.update(
|
241 |
+
value=df)
|
242 |
+
|
243 |
+
def update__rm_recom_df(self):
|
244 |
+
df = self.rm_recom_df__value.rename(
|
245 |
+
columns={'price': 'transfer price'})
|
246 |
+
df = df.drop(columns=['potential_lost_sales', 'expected_sales',
|
247 |
+
'soldout_probability', 'revenue', 'margin (%)'])
|
248 |
+
return gr.Dataframe.update(
|
249 |
+
value=df)
|
250 |
+
|
251 |
+
def update__rm_storage_capacity(self):
|
252 |
+
return gr.Number.update(
|
253 |
+
value=self.rm_storage_capacity__value)
|
254 |
+
|
255 |
+
def update__rm_budget_constraint(self):
|
256 |
+
return gr.Number.update(
|
257 |
+
value=self.rm_budget_constraint__value)
|
258 |
+
|
259 |
+
def update__rm_total_capacity_usage_md(self):
|
260 |
+
return gr.Markdown.update(
|
261 |
+
value=f'### Total Capacity Usage: \n # {self.rm_total_capacity_usage_md__val:,}')
|
262 |
+
|
263 |
+
def update__rm_total_budget_usage_md(self):
|
264 |
+
return gr.Markdown.update(
|
265 |
+
value=f'### Total Budget Usage: \n # {self.rm_total_budget_usage_md__val:,}')
|
266 |
+
|
267 |
+
def update__rm_plot(self):
|
268 |
+
return gr.Plot.update(value=self.rm_plot__fig)
|
269 |
+
|
270 |
+
# =================== #
|
271 |
+
# WIP Event Listeners #
|
272 |
+
# =================== #
|
273 |
+
|
274 |
+
def wip_demo_data_btn__click(self):
|
275 |
+
print('Load raw material input demo.')
|
276 |
+
self.wip_input_df__value = pd.read_csv(
|
277 |
+
self.wip_input_demo_path)
|
278 |
+
self.wip_storage_capacity__value = 13000
|
279 |
+
self.wip_budget_constraint__value = 14000
|
280 |
+
|
281 |
+
return (
|
282 |
+
self.update__wip_input_df(),
|
283 |
+
self.update__wip_storage_capacity(),
|
284 |
+
self.update__wip_budget_constraint())
|
285 |
+
|
286 |
+
def wip_file__upload(self, file):
|
287 |
+
self.wip_input_df__value = pd.read_csv(file.name)
|
288 |
+
return self.update__wip_input_df()
|
289 |
+
|
290 |
+
def wip_storage_capacity__change(self, value):
|
291 |
+
self.wip_storage_capacity__value = value
|
292 |
+
|
293 |
+
def wip_budget_constraint__change(self, value):
|
294 |
+
self.wip_budget_constraint__value = value
|
295 |
+
|
296 |
+
def wip_btn__click(self):
|
297 |
+
|
298 |
+
self.idsc.product_mix(
|
299 |
+
self.wip_input_df__value.to_json(),
|
300 |
+
self.wip_storage_capacity__value,
|
301 |
+
self.wip_budget_constraint__value)
|
302 |
+
|
303 |
+
self.__update_wip_res()
|
304 |
+
|
305 |
+
return (
|
306 |
+
self.update__wip_recom_df(),
|
307 |
+
self.update__wip_total_capacity_usage_md(),
|
308 |
+
self.update__wip_total_budget_usage_md(),
|
309 |
+
self.update__wip_plot())
|
310 |
+
|
311 |
+
def __update_wip_res(self):
|
312 |
+
if self.idsc.product_mix__res:
|
313 |
+
res = self.idsc.product_mix__res
|
314 |
+
|
315 |
+
print('__update_wip_res')
|
316 |
+
print(res)
|
317 |
+
|
318 |
+
self.wip_recom_df__value = fns.format__inv_recom_df(
|
319 |
+
self.idsc.get_product_mix_recommendations_df(),
|
320 |
+
self.wip_input_df__value
|
321 |
+
)
|
322 |
+
self.wip_total_capacity_usage_md__val = res['total_capacity_usage']
|
323 |
+
self.wip_total_budget_usage_md__val = res['total_budget_usage']
|
324 |
+
|
325 |
+
self.wip_plot__fig = fns.plot__wip_res(
|
326 |
+
res,
|
327 |
+
self.wip_storage_capacity__value,
|
328 |
+
self.wip_budget_constraint__value,
|
329 |
+
self.wip_recom_df__value)
|
330 |
+
|
331 |
+
else:
|
332 |
+
self.wip_recom_df__value = pd.DataFrame()
|
333 |
+
self.wip_total_capacity_usage_md__val = '-'
|
334 |
+
self.wip_total_budget_usage_md__val = '-'
|
335 |
+
|
336 |
+
self.wip_plot__fig = plt.plot()
|
337 |
+
|
338 |
+
# ============ #
|
339 |
+
# WIP Updaters #
|
340 |
+
# ============ #
|
341 |
+
|
342 |
+
def update__wip_input_df(self):
|
343 |
+
|
344 |
+
df = self.wip_input_df__value.rename(
|
345 |
+
columns={'price': 'transfer price'})
|
346 |
+
# df = df.drop(columns=['replenishment_rate', 'budgetary_cost'])
|
347 |
+
|
348 |
+
return gr.Dataframe.update(
|
349 |
+
value=df)
|
350 |
+
|
351 |
+
def update__wip_recom_df(self):
|
352 |
+
df = self.wip_recom_df__value.rename(
|
353 |
+
columns={'price': 'transfer price', 'inventory_level': 'WIP'})
|
354 |
+
df = df.drop(columns=['potential_lost_sales', 'expected_sales',
|
355 |
+
'soldout_probability', 'revenue', 'margin (%)'])
|
356 |
+
return gr.Dataframe.update(
|
357 |
+
value=df)
|
358 |
+
|
359 |
+
def update__wip_storage_capacity(self):
|
360 |
+
return gr.Number.update(
|
361 |
+
value=self.wip_storage_capacity__value)
|
362 |
+
|
363 |
+
def update__wip_budget_constraint(self):
|
364 |
+
return gr.Number.update(
|
365 |
+
value=self.wip_budget_constraint__value)
|
366 |
+
|
367 |
+
def update__wip_total_capacity_usage_md(self):
|
368 |
+
return gr.Markdown.update(
|
369 |
+
value=f'### Total Capacity Usage: \n # {self.wip_total_capacity_usage_md__val:,}')
|
370 |
+
|
371 |
+
def update__wip_total_budget_usage_md(self):
|
372 |
+
return gr.Markdown.update(
|
373 |
+
value=f'### Total Budget Usage: \n # {self.wip_total_budget_usage_md__val:,}')
|
374 |
+
|
375 |
+
def update__wip_plot(self):
|
376 |
+
return gr.Plot.update(value=self.wip_plot__fig)
|
src/gr/GradioFns.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import matplotlib.pyplot as plt
|
2 |
+
|
3 |
+
plt.rcParams['font.size'] = '18'
|
4 |
+
|
5 |
+
|
6 |
+
class GradioFns():
|
7 |
+
def __init__(self) -> None:
|
8 |
+
pass
|
9 |
+
|
10 |
+
def format__inv_recom_df(self, inv_recom_df, inv_input_df):
|
11 |
+
inv_recom_df_cp = inv_recom_df.copy()
|
12 |
+
|
13 |
+
inv_recom_df_cp['revenue'] = 0
|
14 |
+
inv_recom_df_cp['cost'] = 0
|
15 |
+
# inv_recom_df_cp['margin'] = 0
|
16 |
+
inv_recom_df_cp['margin (%)'] = 0
|
17 |
+
inv_recom_df_cp['space_usage'] = 0
|
18 |
+
|
19 |
+
for i, row in inv_recom_df_cp.iterrows():
|
20 |
+
# print('row', row)
|
21 |
+
sku = row['SKU']
|
22 |
+
|
23 |
+
cost = float(inv_input_df[inv_input_df['SKU'] == sku]['cost'])
|
24 |
+
price = float(inv_input_df[inv_input_df['SKU'] == sku]['price'])
|
25 |
+
space = float(inv_input_df[inv_input_df['SKU']
|
26 |
+
== sku]['space_per_unit'])
|
27 |
+
margin = float(row['expected_sales'] * (price - cost))
|
28 |
+
|
29 |
+
revenue = row['expected_sales'] * price
|
30 |
+
|
31 |
+
inv_recom_df_cp.at[i, 'revenue'] = revenue
|
32 |
+
inv_recom_df_cp.at[i, 'cost'] = row['expected_sales'] * cost
|
33 |
+
|
34 |
+
# inv_recom_df_cp.at[i, 'margin'] = margin
|
35 |
+
|
36 |
+
if revenue > 0:
|
37 |
+
inv_recom_df_cp.at[i, 'margin (%)'] = round(
|
38 |
+
(margin / revenue) * 100, 2)
|
39 |
+
inv_recom_df_cp.at[i,
|
40 |
+
'space_usage'] = row['expected_sales'] * space
|
41 |
+
|
42 |
+
return inv_recom_df_cp
|
43 |
+
|
44 |
+
def plot__inv_res(self, inv_res, storage, budget, inv_recom_df):
|
45 |
+
|
46 |
+
fig, ax = plt.subplots(1, 3, figsize=(24, 7))
|
47 |
+
|
48 |
+
space_left = storage - inv_res['total_capacity_usage']
|
49 |
+
|
50 |
+
space_left = 0 if space_left < 0 else space_left
|
51 |
+
|
52 |
+
space_labels = [
|
53 |
+
f'{row["SKU"]}\n{row["space_usage"]}' for idx, row in inv_recom_df.iterrows()]
|
54 |
+
|
55 |
+
ax[0].pie([space_left] + inv_recom_df['space_usage'].tolist(),
|
56 |
+
labels=[
|
57 |
+
f'Storage Left\n{ int(space_left)}'] + space_labels,
|
58 |
+
autopct='%.0f%%')
|
59 |
+
|
60 |
+
cost_left = budget - inv_res['total_budget_usage']
|
61 |
+
cost_left = 0 if cost_left < 0 else cost_left
|
62 |
+
cost_labels = [
|
63 |
+
f'{row["SKU"]}\n{row["cost"]}' for idx, row in inv_recom_df.iterrows()]
|
64 |
+
|
65 |
+
ax[1].pie([cost_left] + inv_recom_df['cost'].tolist(),
|
66 |
+
labels=[f'Budget Left\n{int(cost_left)}'] + cost_labels,
|
67 |
+
autopct='%.0f%%')
|
68 |
+
ax[2].bar(inv_recom_df['SKU'],
|
69 |
+
inv_recom_df['inventory_level'], width=0.3)
|
70 |
+
|
71 |
+
ax[0].set_title('Forecasted Storage Space Usage')
|
72 |
+
ax[1].set_title('Costs')
|
73 |
+
ax[2].set_title('Forecasted Inventory Level')
|
74 |
+
|
75 |
+
fig.tight_layout()
|
76 |
+
return fig
|
77 |
+
|
78 |
+
def plot__rm_res(self, inv_res, storage, budget, inv_recom_df):
|
79 |
+
|
80 |
+
fig, ax = plt.subplots(1, 3, figsize=(24, 7))
|
81 |
+
|
82 |
+
space_left = storage - inv_res['total_capacity_usage']
|
83 |
+
|
84 |
+
space_left = 0 if space_left < 0 else space_left
|
85 |
+
|
86 |
+
space_labels = [
|
87 |
+
f'{row["SKU"]}\n{row["space_usage"]}' for idx, row in inv_recom_df.iterrows()]
|
88 |
+
|
89 |
+
ax[0].pie([space_left] + inv_recom_df['space_usage'].tolist(),
|
90 |
+
labels=[
|
91 |
+
f'Storage Left\n{ int(space_left)}'] + space_labels,
|
92 |
+
autopct='%.0f%%')
|
93 |
+
|
94 |
+
cost_left = budget - inv_res['total_budget_usage']
|
95 |
+
cost_left = 0 if cost_left < 0 else cost_left
|
96 |
+
cost_labels = [
|
97 |
+
f'{row["SKU"]}\n{row["cost"]}' for idx, row in inv_recom_df.iterrows()]
|
98 |
+
|
99 |
+
ax[1].pie([cost_left] + inv_recom_df['cost'].tolist(),
|
100 |
+
labels=[f'Budget Left\n{int(cost_left)}'] + cost_labels,
|
101 |
+
autopct='%.0f%%')
|
102 |
+
ax[2].bar(inv_recom_df['SKU'],
|
103 |
+
inv_recom_df['inventory_level'], width=0.3)
|
104 |
+
|
105 |
+
ax[0].set_title('Forecasted Storage Space Usage')
|
106 |
+
ax[1].set_title('Raw Material Costs')
|
107 |
+
ax[2].set_title('Forecasted Raw Material Inventory Level')
|
108 |
+
|
109 |
+
fig.tight_layout()
|
110 |
+
return fig
|
111 |
+
|
112 |
+
def plot__wip_res(self, inv_res, storage, budget, inv_recom_df):
|
113 |
+
|
114 |
+
fig, ax = plt.subplots(1, 3, figsize=(24, 7))
|
115 |
+
|
116 |
+
space_left = storage - inv_res['total_capacity_usage']
|
117 |
+
|
118 |
+
space_left = 0 if space_left < 0 else space_left
|
119 |
+
|
120 |
+
space_labels = [
|
121 |
+
f'{row["SKU"]}\n{row["space_usage"]}' for idx, row in inv_recom_df.iterrows()]
|
122 |
+
|
123 |
+
ax[0].pie([space_left] + inv_recom_df['space_usage'].tolist(),
|
124 |
+
labels=[
|
125 |
+
f'Capacity Left\n{ int(space_left)}'] + space_labels,
|
126 |
+
autopct='%.0f%%')
|
127 |
+
|
128 |
+
cost_left = budget - inv_res['total_budget_usage']
|
129 |
+
cost_left = 0 if cost_left < 0 else cost_left
|
130 |
+
cost_labels = [
|
131 |
+
f'{row["SKU"]}\n{row["cost"]}' for idx, row in inv_recom_df.iterrows()]
|
132 |
+
|
133 |
+
ax[1].pie([cost_left] + inv_recom_df['cost'].tolist(),
|
134 |
+
labels=[f'Budget Left\n{int(cost_left)}'] + cost_labels,
|
135 |
+
autopct='%.0f%%')
|
136 |
+
ax[2].bar(inv_recom_df['SKU'],
|
137 |
+
inv_recom_df['inventory_level'], width=0.3)
|
138 |
+
|
139 |
+
ax[0].set_title('Forecasted WIP Capacity Usage')
|
140 |
+
ax[1].set_title('WIP Costs')
|
141 |
+
ax[2].set_title('WIP Level')
|
142 |
+
|
143 |
+
fig.tight_layout()
|
144 |
+
return fig
|
src/gr/__init__.py
ADDED
File without changes
|
src/gr/__pycache__/GradioApp.cpython-310.pyc
ADDED
Binary file (10.7 kB). View file
|
|
src/gr/__pycache__/GradioFns.cpython-310.pyc
ADDED
Binary file (3.34 kB). View file
|
|
src/gr/__pycache__/__init__.cpython-310.pyc
ADDED
Binary file (181 Bytes). View file
|
|
src/gr/__pycache__/gr_args.cpython-310.pyc
ADDED
Binary file (2.23 kB). View file
|
|
src/gr/gr_args.py
ADDED
@@ -0,0 +1,132 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
main_block = {
|
4 |
+
'css': '''
|
5 |
+
footer {visibility: hidden}
|
6 |
+
|
7 |
+
/* Modify the forecast button size */
|
8 |
+
.btn {width: 260px !important; margin: auto !important}
|
9 |
+
'''
|
10 |
+
}
|
11 |
+
|
12 |
+
inventory_md = {
|
13 |
+
'value': """
|
14 |
+
# Finishend Goods Optimization
|
15 |
+
- Data must contains column 'SKU', 'demand', 'price', 'cost', 'space_per_unit', 'budgetary_cost'
|
16 |
+
- Optional column : 'replenishment_rate'
|
17 |
+
- Fill in "Finishend Goods Storage Capacity" and "Finished Goods Budget" before Optimize Inventory
|
18 |
+
"""
|
19 |
+
}
|
20 |
+
|
21 |
+
rm_md = {
|
22 |
+
'value': """
|
23 |
+
# Raw Material Optimization
|
24 |
+
Optimize raw material purchasing based on the allocated storage space and purchase budget.
|
25 |
+
"""
|
26 |
+
}
|
27 |
+
|
28 |
+
wip_md = {
|
29 |
+
'value': """
|
30 |
+
# WIP Optimization
|
31 |
+
Optimize working in progress items based on the production space and production budget.
|
32 |
+
"""
|
33 |
+
}
|
34 |
+
|
35 |
+
|
36 |
+
demo_data_btn = {
|
37 |
+
'value': 'Load Demo Dataset',
|
38 |
+
'elem_classes': 'btn'
|
39 |
+
}
|
40 |
+
|
41 |
+
rm_demo_data_btn = {
|
42 |
+
'value': 'Load Demo Dataset',
|
43 |
+
'elem_classes': 'btn'
|
44 |
+
}
|
45 |
+
|
46 |
+
wip_demo_data_btn = {
|
47 |
+
'value': 'Load Demo Dataset',
|
48 |
+
'elem_classes': 'btn'
|
49 |
+
}
|
50 |
+
|
51 |
+
inventory_btn = {
|
52 |
+
'value': 'Optimize Inventory',
|
53 |
+
'elem_classes': 'btn',
|
54 |
+
'variant': 'primary',
|
55 |
+
}
|
56 |
+
|
57 |
+
rm_btn = {
|
58 |
+
'value': 'Optimize Raw Material Inventory',
|
59 |
+
'elem_classes': 'btn',
|
60 |
+
'variant': 'primary',
|
61 |
+
}
|
62 |
+
|
63 |
+
wip_btn = {
|
64 |
+
'value': 'Optimize WIP Inventory',
|
65 |
+
'elem_classes': 'btn',
|
66 |
+
'variant': 'primary',
|
67 |
+
}
|
68 |
+
|
69 |
+
#
|
70 |
+
# File Inputs
|
71 |
+
|
72 |
+
inventory_file = {
|
73 |
+
'file_types': ['.csv'],
|
74 |
+
'label': 'Finishend Goods Demand Data'
|
75 |
+
}
|
76 |
+
|
77 |
+
rm_file = {
|
78 |
+
'file_types': ['.csv'],
|
79 |
+
'label': 'Raw Material Demand Data'
|
80 |
+
}
|
81 |
+
|
82 |
+
wip_file = {
|
83 |
+
'file_types': ['.csv'],
|
84 |
+
'label': 'Working In Progress Data'
|
85 |
+
}
|
86 |
+
# ======= #
|
87 |
+
# Numbers #
|
88 |
+
# ======= #
|
89 |
+
inventory_storage_capacity = {
|
90 |
+
'label': 'FG Storage Capacity',
|
91 |
+
'interactive': True}
|
92 |
+
|
93 |
+
inventory_budget_constraint = {
|
94 |
+
'label': 'FG Budget',
|
95 |
+
'interactive': True}
|
96 |
+
|
97 |
+
rm_storage_capacity = {
|
98 |
+
'label': 'Raw Material Storage Capacity',
|
99 |
+
'interactive': True}
|
100 |
+
|
101 |
+
rm_budget_constraint = {
|
102 |
+
'label': 'Raw Material Budget',
|
103 |
+
'interactive': True}
|
104 |
+
|
105 |
+
wip_storage_capacity = {
|
106 |
+
'label': 'WIP Capacity',
|
107 |
+
'interactive': True}
|
108 |
+
|
109 |
+
wip_budget_constraint = {
|
110 |
+
'label': 'WIP Budget',
|
111 |
+
'interactive': True}
|
112 |
+
|
113 |
+
# =========== #
|
114 |
+
# Data Frames #
|
115 |
+
# =========== #
|
116 |
+
inventory_input_df = {
|
117 |
+
'value': pd.DataFrame(columns=['SKU', 'demand', 'price', 'cost', 'space_per_unit', 'budgetary_cost']),
|
118 |
+
'label': 'Inventory Optimization Input',
|
119 |
+
'height': 300,
|
120 |
+
}
|
121 |
+
|
122 |
+
rm_input_df = {
|
123 |
+
'value': pd.DataFrame(columns=['SKU', 'demand', 'price', 'cost']),
|
124 |
+
'label': 'Inventory Optimization Input',
|
125 |
+
'height': 300,
|
126 |
+
}
|
127 |
+
|
128 |
+
wip_input_df = {
|
129 |
+
'value': pd.DataFrame(columns=['SKU', 'demand', 'space_per_unit']),
|
130 |
+
'label': 'Inventory Optimization Input',
|
131 |
+
'height': 300,
|
132 |
+
}
|
src/idsc/__pycache__/idsc_apis.cpython-310.pyc
ADDED
Binary file (3.48 kB). View file
|
|
src/idsc/idsc_apis.py
ADDED
@@ -0,0 +1,134 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import yaml
|
2 |
+
import requests
|
3 |
+
import os
|
4 |
+
import pandas as pd
|
5 |
+
|
6 |
+
from datetime import datetime, timedelta
|
7 |
+
from dotenv import load_dotenv
|
8 |
+
load_dotenv()
|
9 |
+
|
10 |
+
|
11 |
+
class IDSC_API():
|
12 |
+
'''
|
13 |
+
Wrapper class for all IDSC apis
|
14 |
+
'''
|
15 |
+
|
16 |
+
def __init__(self):
|
17 |
+
__location__ = os.path.realpath(
|
18 |
+
os.path.join(os.getcwd(), os.path.dirname(__file__)))
|
19 |
+
|
20 |
+
self.config_path = os.path.join(__location__, 'idsc_config.yaml')
|
21 |
+
self.logged_in = False
|
22 |
+
self.timeformat = '%m/%d/%Y, %H:%M:%S'
|
23 |
+
with open(self.config_path, 'r') as file:
|
24 |
+
self.config = yaml.safe_load(file)
|
25 |
+
|
26 |
+
self.expire = self.config['apikey_expire']
|
27 |
+
self.apikey = self.config['apikey']
|
28 |
+
|
29 |
+
self.login()
|
30 |
+
|
31 |
+
self.product_mix__res = None # Save product_mix api response
|
32 |
+
|
33 |
+
def login(self):
|
34 |
+
|
35 |
+
now = datetime.now()
|
36 |
+
expire_date = datetime.strptime(self.expire, self.timeformat)
|
37 |
+
|
38 |
+
if now >= expire_date:
|
39 |
+
print('apikey expired, requesting new one.')
|
40 |
+
self.apikey = self.fetch_apikey()
|
41 |
+
self.update_config()
|
42 |
+
else:
|
43 |
+
print('apikey still available, logged in')
|
44 |
+
|
45 |
+
self.logged_in = True
|
46 |
+
|
47 |
+
def fetch_apikey(self):
|
48 |
+
# print(os.environ)
|
49 |
+
json = {
|
50 |
+
# "email": self.config['email'],
|
51 |
+
# "pwd": self.config['password']
|
52 |
+
'email': os.getenv('IDSC_ACC'),
|
53 |
+
'pwd': os.getenv('IDSC_PASS')
|
54 |
+
}
|
55 |
+
|
56 |
+
print('IDSC Logging in ...')
|
57 |
+
login_resp = requests.post(
|
58 |
+
'https://idsc.com.sg/user/login',
|
59 |
+
json=json)
|
60 |
+
|
61 |
+
if login_resp.status_code == 200:
|
62 |
+
apikey = login_resp.json()["API_key"]
|
63 |
+
return apikey
|
64 |
+
else:
|
65 |
+
raise Exception(login_resp.json())
|
66 |
+
|
67 |
+
def update_config(self):
|
68 |
+
now = datetime.now()
|
69 |
+
expire = (now + timedelta(days=3)).strftime(self.timeformat)
|
70 |
+
self.config['apikey'] = self.apikey
|
71 |
+
self.config['apikey_expire'] = expire
|
72 |
+
with open(self.config_path, 'w') as f:
|
73 |
+
yaml.dump(self.config, f, default_flow_style=False)
|
74 |
+
|
75 |
+
# =========== #
|
76 |
+
# Product mix #
|
77 |
+
# =========== #
|
78 |
+
|
79 |
+
def product_mix(
|
80 |
+
self,
|
81 |
+
product_data,
|
82 |
+
storage_capacity,
|
83 |
+
budget_constraint):
|
84 |
+
|
85 |
+
endpint = 'https://idsc.com.sg/optimax/product-mix/product-mix'
|
86 |
+
json = {'product_data': product_data,
|
87 |
+
'storage_capacity': storage_capacity,
|
88 |
+
'budget_constraint': budget_constraint
|
89 |
+
}
|
90 |
+
|
91 |
+
print('storage_capacity', storage_capacity)
|
92 |
+
print('budget_constraint', budget_constraint)
|
93 |
+
|
94 |
+
self.login()
|
95 |
+
|
96 |
+
headers = {'api-key': self.apikey}
|
97 |
+
|
98 |
+
res = requests.post(endpint, json=json, headers=headers)
|
99 |
+
|
100 |
+
parsed_res = self._parse_response(res)
|
101 |
+
|
102 |
+
self.product_mix__res = parsed_res
|
103 |
+
|
104 |
+
return self.product_mix__res
|
105 |
+
|
106 |
+
def _parse_response(self, res):
|
107 |
+
if res.status_code != 200:
|
108 |
+
print(f'API call failed. {res.text}')
|
109 |
+
return False
|
110 |
+
return res.json()
|
111 |
+
|
112 |
+
def get_product_mix_recommendations_df(self):
|
113 |
+
|
114 |
+
try:
|
115 |
+
recommendations = self.product_mix__res['product_mix_recommendations']
|
116 |
+
except Exception:
|
117 |
+
return None
|
118 |
+
|
119 |
+
df_arr = []
|
120 |
+
for k, v in recommendations.items():
|
121 |
+
df = pd.DataFrame(v, index=[k])
|
122 |
+
df['SKU'] = k
|
123 |
+
|
124 |
+
# Make sure expected sales is always integer
|
125 |
+
df['expected_sales'] = int(df['expected_sales'])
|
126 |
+
|
127 |
+
# Rearrange the order, so 'SKU' columns is the first
|
128 |
+
cols = df.columns.tolist()
|
129 |
+
cols = cols[-1:] + cols[:-1]
|
130 |
+
df = df[cols]
|
131 |
+
|
132 |
+
df_arr.append(df)
|
133 |
+
|
134 |
+
return pd.concat(df_arr, ignore_index=True)
|
src/idsc/idsc_config.yaml
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
apikey: f83c59b23ab2afbbabad60b305e00b16a46d0920
|
2 |
+
apikey_expire: 11/17/2023, 15:27:25
|