zhang qiao commited on
Commit
49ba314
·
1 Parent(s): f3054b6

Upload folder using huggingface_hub

Browse files
.DS_Store ADDED
Binary file (6.15 kB). View file
 
.env ADDED
@@ -0,0 +1,2 @@
 
 
 
1
2
+ IDSC_PASS=APItest1412
.gitignore ADDED
@@ -0,0 +1,160 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Byte-compiled / optimized / DLL files
2
+ __pycache__/
3
+ *.py[cod]
4
+ *$py.class
5
+
6
+ # C extensions
7
+ *.so
8
+
9
+ # Distribution / packaging
10
+ .Python
11
+ build/
12
+ develop-eggs/
13
+ dist/
14
+ downloads/
15
+ eggs/
16
+ .eggs/
17
+ lib/
18
+ lib64/
19
+ parts/
20
+ sdist/
21
+ var/
22
+ wheels/
23
+ share/python-wheels/
24
+ *.egg-info/
25
+ .installed.cfg
26
+ *.egg
27
+ MANIFEST
28
+
29
+ # PyInstaller
30
+ # Usually these files are written by a python script from a template
31
+ # before PyInstaller builds the exe, so as to inject date/other infos into it.
32
+ *.manifest
33
+ *.spec
34
+
35
+ # Installer logs
36
+ pip-log.txt
37
+ pip-delete-this-directory.txt
38
+
39
+ # Unit test / coverage reports
40
+ htmlcov/
41
+ .tox/
42
+ .nox/
43
+ .coverage
44
+ .coverage.*
45
+ .cache
46
+ nosetests.xml
47
+ coverage.xml
48
+ *.cover
49
+ *.py,cover
50
+ .hypothesis/
51
+ .pytest_cache/
52
+ cover/
53
+
54
+ # Translations
55
+ *.mo
56
+ *.pot
57
+
58
+ # Django stuff:
59
+ *.log
60
+ local_settings.py
61
+ db.sqlite3
62
+ db.sqlite3-journal
63
+
64
+ # Flask stuff:
65
+ instance/
66
+ .webassets-cache
67
+
68
+ # Scrapy stuff:
69
+ .scrapy
70
+
71
+ # Sphinx documentation
72
+ docs/_build/
73
+
74
+ # PyBuilder
75
+ .pybuilder/
76
+ target/
77
+
78
+ # Jupyter Notebook
79
+ .ipynb_checkpoints
80
+
81
+ # IPython
82
+ profile_default/
83
+ ipython_config.py
84
+
85
+ # pyenv
86
+ # For a library or package, you might want to ignore these files since the code is
87
+ # intended to run in multiple environments; otherwise, check them in:
88
+ # .python-version
89
+
90
+ # pipenv
91
+ # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92
+ # However, in case of collaboration, if having platform-specific dependencies or dependencies
93
+ # having no cross-platform support, pipenv may install dependencies that don't work, or not
94
+ # install all needed dependencies.
95
+ #Pipfile.lock
96
+
97
+ # poetry
98
+ # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99
+ # This is especially recommended for binary packages to ensure reproducibility, and is more
100
+ # commonly ignored for libraries.
101
+ # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102
+ #poetry.lock
103
+
104
+ # pdm
105
+ # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106
+ #pdm.lock
107
+ # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108
+ # in version control.
109
+ # https://pdm.fming.dev/#use-with-ide
110
+ .pdm.toml
111
+
112
+ # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113
+ __pypackages__/
114
+
115
+ # Celery stuff
116
+ celerybeat-schedule
117
+ celerybeat.pid
118
+
119
+ # SageMath parsed files
120
+ *.sage.py
121
+
122
+ # Environments
123
+ .env
124
+ .venv
125
+ env/
126
+ venv/
127
+ ENV/
128
+ env.bak/
129
+ venv.bak/
130
+
131
+ # Spyder project settings
132
+ .spyderproject
133
+ .spyproject
134
+
135
+ # Rope project settings
136
+ .ropeproject
137
+
138
+ # mkdocs documentation
139
+ /site
140
+
141
+ # mypy
142
+ .mypy_cache/
143
+ .dmypy.json
144
+ dmypy.json
145
+
146
+ # Pyre type checker
147
+ .pyre/
148
+
149
+ # pytype static type analyzer
150
+ .pytype/
151
+
152
+ # Cython debug symbols
153
+ cython_debug/
154
+
155
+ # PyCharm
156
+ # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157
+ # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158
+ # and can be added to the global gitignore or merged into this file. For a more nuclear
159
+ # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160
+ #.idea/
.vscode/settings.json ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ {
2
+ "[python]": {
3
+ "editor.defaultFormatter": "ms-python.autopep8"
4
+ },
5
+ "python.formatting.provider": "none"
6
+ }
README.md CHANGED
@@ -1,12 +1,6 @@
1
  ---
2
- title: Inventory Optimization Demo
3
- emoji: 👀
4
- colorFrom: yellow
5
- colorTo: blue
6
  sdk: gradio
7
- sdk_version: 4.3.0
8
- app_file: app.py
9
- pinned: false
10
  ---
11
-
12
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
1
  ---
2
+ title: inventory-optimization-demo
3
+ app_file: gr_app.py
 
 
4
  sdk: gradio
5
+ sdk_version: 3.41.0
 
 
6
  ---
 
 
__pycache__/gr_app.cpython-310.pyc ADDED
Binary file (3.72 kB). View file
 
configs/idsc_config.yaml ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ apikey: 61ef23ae00df4f91417ec0d45fe7b03319f1bdc7
2
+ apikey_expire: 08/17/2023, 13:54:15
3
4
+ password: APItest1412
data/mock/demand_table.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ product,demand
2
+ White Bread,40
3
+ Special Cake,40
4
+ Wedding Cake,30
data/mock/product_table.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ product,price,cost,required_space_per_unit,inventory_consideration_range
2
+ White Bread,100,70,3,0.1
3
+ Special Cake,100,60,2,0.1
4
+ Wedding Cake,100,50,3,0.1
gr_app.py ADDED
@@ -0,0 +1,235 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ from src.gr.GradioApp import GradioApp
4
+ from src.gr import gr_args
5
+
6
+ # =============================== #
7
+ # Inventory Optimization Demo App #
8
+ # =============================== #
9
+
10
+ app = GradioApp()
11
+
12
+ demo = gr.Blocks(**gr_args.main_block)
13
+
14
+ with demo:
15
+
16
+ gr.Markdown('# Inventory Optimization')
17
+
18
+ with gr.Tabs() as tabs:
19
+
20
+ # ============================ #
21
+ # Raw Material Optimization #
22
+ # ============================ #
23
+ with gr.TabItem('Raw Material Optimization', id=0):
24
+ with gr.Row():
25
+ with gr.Column():
26
+
27
+ # Inventory Optimization #
28
+ rm_md = gr.Markdown(**gr_args.rm_md)
29
+
30
+ with gr.Row():
31
+
32
+ # [ Load Demo Dataset ] #
33
+ rm_demo_data_btn = gr.Button(
34
+ **gr_args.rm_demo_data_btn)
35
+
36
+ rm_file = gr.File(**gr_args.rm_file)
37
+
38
+ # [Inventory Optimization Input] #
39
+ rm_input_df = gr.Dataframe(**gr_args.rm_input_df)
40
+
41
+ with gr.Row():
42
+
43
+ # [FG Storage Capacity] #
44
+ rm_storage_capacity = gr.Number(
45
+ **gr_args.rm_storage_capacity)
46
+
47
+ # [FG Budget] #
48
+ rm_budget_constraint = gr.Number(
49
+ **gr_args.rm_budget_constraint)
50
+
51
+ # [Optimize Raw Material Inventory] #
52
+ rm_btn = gr.Button(**gr_args.rm_btn)
53
+
54
+ gr.Markdown('# Raw Material Inventory Recommendations')
55
+ with gr.Row():
56
+ rm_total_capacity_usage_md = gr.Markdown()
57
+ rm_total_budget_usage_md = gr.Markdown()
58
+
59
+ rm_recom_df = gr.Dataframe()
60
+
61
+ rm_plot = gr.Plot()
62
+
63
+ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
64
+ # Raw Material Event Listeners #
65
+ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
66
+ rm_demo_data_btn.click(
67
+ app.rm_demo_data_btn__click,
68
+ [], [rm_input_df, rm_storage_capacity, rm_budget_constraint])
69
+
70
+ rm_file.upload(
71
+ app.rm_file__upload,
72
+ [rm_file], [rm_input_df])
73
+
74
+ rm_storage_capacity.change(
75
+ app.rm_storage_capacity__change,
76
+ [rm_storage_capacity], [])
77
+
78
+ rm_budget_constraint.change(
79
+ app.rm_budget_constraint__change,
80
+ [rm_budget_constraint], [])
81
+
82
+ rm_btn.click(
83
+ app.rm_btn__click,
84
+ [],
85
+ [rm_recom_df,
86
+ rm_total_capacity_usage_md,
87
+ rm_total_budget_usage_md,
88
+ rm_plot])
89
+
90
+ # ================ #
91
+ # WIP Optimization #
92
+ # ================ #
93
+ with gr.TabItem('WIP Optimization', id=1):
94
+
95
+ with gr.Row():
96
+ with gr.Column():
97
+
98
+ # Inventory Optimization #
99
+ wip_md = gr.Markdown(**gr_args.wip_md)
100
+
101
+ with gr.Row():
102
+
103
+ # [ Load Demo Dataset ] #
104
+ wip_demo_data_btn = gr.Button(
105
+ **gr_args.wip_demo_data_btn)
106
+
107
+ wip_file = gr.File(**gr_args.wip_file)
108
+
109
+ # [Inventory Optimization Input] #
110
+ wip_input_df = gr.Dataframe(**gr_args.wip_input_df)
111
+
112
+ with gr.Row():
113
+
114
+ # [FG Storage Capacity] #
115
+ wip_storage_capacity = gr.Number(
116
+ **gr_args.wip_storage_capacity)
117
+
118
+ # [FG Budget] #
119
+ wip_budget_constraint = gr.Number(
120
+ **gr_args.wip_budget_constraint)
121
+
122
+ # [Optimize Raw Material Inventory] #
123
+ wip_btn = gr.Button(**gr_args.wip_btn)
124
+
125
+ gr.Markdown('# WIP Inventory Recommendations')
126
+ with gr.Row():
127
+ wip_total_capacity_usage_md = gr.Markdown()
128
+ wip_total_budget_usage_md = gr.Markdown()
129
+
130
+ wip_recom_df = gr.Dataframe()
131
+
132
+ wip_plot = gr.Plot()
133
+
134
+ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
135
+ # WIP Event Listeners #
136
+ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
137
+ wip_demo_data_btn.click(
138
+ app.wip_demo_data_btn__click,
139
+ [], [wip_input_df, wip_storage_capacity, wip_budget_constraint])
140
+
141
+ wip_file.upload(
142
+ app.wip_file__upload,
143
+ [wip_file], [wip_input_df])
144
+
145
+ wip_storage_capacity.change(
146
+ app.wip_storage_capacity__change,
147
+ [wip_storage_capacity], [])
148
+
149
+ wip_budget_constraint.change(
150
+ app.wip_budget_constraint__change,
151
+ [wip_budget_constraint], [])
152
+
153
+ wip_btn.click(
154
+ app.wip_btn__click,
155
+ [],
156
+ [wip_recom_df,
157
+ wip_total_capacity_usage_md,
158
+ wip_total_budget_usage_md,
159
+ wip_plot])
160
+
161
+ # ============================ #
162
+ # Finishend Goods Optimization #
163
+ # ============================ #
164
+ with gr.TabItem('FG Optimization', id=2):
165
+ with gr.Row():
166
+ with gr.Column():
167
+
168
+ # Inventory Optimization #
169
+ inventory_md = gr.Markdown(**gr_args.inventory_md)
170
+
171
+ with gr.Row():
172
+
173
+ # [ Load Demo Dataset ] #
174
+ demo_data_btn = gr.Button(**gr_args.demo_data_btn)
175
+
176
+ inventory_file = gr.File(**gr_args.inventory_file)
177
+
178
+ # [Inventory Optimization Input] #
179
+ inventory_input_df = gr.Dataframe(**gr_args.inventory_input_df)
180
+
181
+ with gr.Row():
182
+
183
+ # [FG Storage Capacity] #
184
+ inventory_storage_capacity = gr.Number(
185
+ **gr_args.inventory_storage_capacity)
186
+
187
+ # [FG Budget] #
188
+ inventory_budget_constraint = gr.Number(
189
+ **gr_args.inventory_budget_constraint)
190
+
191
+ # [Optimize Inventory] #
192
+ inventory_btn = gr.Button(**gr_args.inventory_btn)
193
+
194
+ gr.Markdown('# Inventory Recommendations')
195
+ with gr.Row():
196
+ inv_total_profit_md = gr.Markdown()
197
+ inv_total_capacity_usage_md = gr.Markdown()
198
+ inv_total_budget_usage_md = gr.Markdown()
199
+ inv_total_margin_md = gr.Markdown()
200
+
201
+ inv_recom_df = gr.Dataframe()
202
+
203
+ inv_plot = gr.Plot()
204
+
205
+ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
206
+ # FG Optimization Event Listeners #
207
+ # ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ #
208
+ demo_data_btn.click(
209
+ app.demo_data_btn__click,
210
+ [], [inventory_input_df, inventory_storage_capacity, inventory_budget_constraint])
211
+
212
+ inventory_file.upload(
213
+ app.inventory_file__upload,
214
+ [inventory_file], [inventory_input_df])
215
+
216
+ inventory_storage_capacity.change(
217
+ app.inventory_storage_capacity__change,
218
+ [inventory_storage_capacity], [])
219
+
220
+ inventory_budget_constraint.change(
221
+ app.inventory_budget_constraint__change,
222
+ [inventory_budget_constraint], [])
223
+
224
+ inventory_btn.click(
225
+ app.inventory_btn__click,
226
+ [],
227
+ [inv_recom_df,
228
+ inv_total_profit_md,
229
+ inv_total_capacity_usage_md,
230
+ inv_total_budget_usage_md,
231
+ inv_total_margin_md,
232
+ inv_plot])
233
+
234
+
235
+ demo.launch()
gradio/calculator.py ADDED
@@ -0,0 +1,33 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+
3
+ def calculator(num1, operation, num2):
4
+ if operation == "add":
5
+ return num1 + num2
6
+ elif operation == "subtract":
7
+ return num1 - num2
8
+ elif operation == "multiply":
9
+ return num1 * num2
10
+ elif operation == "divide":
11
+ if num2 == 0:
12
+ raise gr.Error("Cannot divide by zero!")
13
+ return num1 / num2
14
+
15
+ demo = gr.Interface(
16
+ calculator,
17
+ [
18
+ "number",
19
+ gr.Radio(["add", "subtract", "multiply", "divide"]),
20
+ "number"
21
+ ],
22
+ "number",
23
+ examples=[
24
+ [5, "add", 3],
25
+ [4, "divide", 2],
26
+ [-4, "multiply", 2.5],
27
+ [0, "subtract", 1.2],
28
+ ],
29
+ title="Toy Calculator",
30
+ description="Here's a sample toy calculator. Allows you to calculate things like $2+2=4$",
31
+ )
32
+ if __name__ == "__main__":
33
+ demo.launch()
gradio/hello.py ADDED
@@ -0,0 +1,59 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import sys, os, io
3
+ import pandas as pd
4
+ sys.path.append(os.path.abspath('../src'))
5
+
6
+ from idsc.idsc_apis import idsc_apis
7
+
8
+ idsc = idsc_apis()
9
+
10
+
11
+ def forecast(demand_table, product_table, storage_capacity):
12
+ demand_table_df = pd.read_csv(demand_table.name)
13
+ product_table_df = pd.read_csv(product_table.name)
14
+
15
+ res = idsc.product_mix(
16
+ demand_table_df.to_json(),
17
+ product_table_df.to_json(),
18
+ storage_capacity)
19
+ return res
20
+
21
+ def upload_file(file):
22
+ return file.name
23
+
24
+ def show():
25
+ return gr.update(visible=True)
26
+
27
+ # demo = gr.Interface(
28
+ # fn=forecast,
29
+ # inputs=[
30
+ # demand_table_upload_btn,
31
+ # product_table_upload_btn,
32
+ # storage_capacity_input],
33
+ # outputs="text")
34
+
35
+ with gr.Blocks() as demo:
36
+ demand_table_file = gr.File(visible=False)
37
+ demand_table_upload_btn = gr.UploadButton(
38
+ 'Demand Table',
39
+ file_types=['.csv'])
40
+
41
+ product_table_file = gr.File()
42
+ product_table_upload_btn = gr.UploadButton(
43
+ 'Product Table',
44
+ file_types=['.csv'])
45
+
46
+ storage_capacity_input = gr.Number(
47
+ label='Storage Capacity',
48
+ minimum=0)
49
+
50
+ optimize_inventory_btn = gr.Button('Optimize')
51
+
52
+ demand_table_upload_btn.upload(
53
+ upload_file,
54
+ demand_table_upload_btn,
55
+ demand_table_file)
56
+
57
+ demand_table_file.change(fn=show)
58
+
59
+ demo.launch()
notebooks/inventory.ipynb ADDED
@@ -0,0 +1,1421 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "cells": [
3
+ {
4
+ "cell_type": "code",
5
+ "execution_count": 33,
6
+ "id": "b60aa108",
7
+ "metadata": {},
8
+ "outputs": [],
9
+ "source": [
10
+ "import requests, yaml\n",
11
+ "import sys\n",
12
+ "import os\n",
13
+ "sys.path.append(os.path.abspath('../src'))\n",
14
+ "import pandas as pd\n",
15
+ "\n",
16
+ "from idsc.idsc_apis import idsc_apis"
17
+ ]
18
+ },
19
+ {
20
+ "cell_type": "code",
21
+ "execution_count": 34,
22
+ "id": "5c549960",
23
+ "metadata": {},
24
+ "outputs": [
25
+ {
26
+ "name": "stdout",
27
+ "output_type": "stream",
28
+ "text": [
29
+ "apikey still available, logged in\n"
30
+ ]
31
+ }
32
+ ],
33
+ "source": [
34
+ "idsc = idsc_apis()"
35
+ ]
36
+ },
37
+ {
38
+ "cell_type": "code",
39
+ "execution_count": 35,
40
+ "id": "258034d8-ab4f-49cb-b4eb-e61bda31babc",
41
+ "metadata": {},
42
+ "outputs": [],
43
+ "source": [
44
+ "demand_table = pd.read_csv('../data/mock/demand_table.csv')\n",
45
+ "product_table = pd.read_csv('../data/mock/product_table.csv')"
46
+ ]
47
+ },
48
+ {
49
+ "cell_type": "code",
50
+ "execution_count": 36,
51
+ "id": "afb53f04",
52
+ "metadata": {},
53
+ "outputs": [],
54
+ "source": [
55
+ "res = idsc.product_mix(demand_table.to_json(), product_table.to_json(), 100)"
56
+ ]
57
+ },
58
+ {
59
+ "cell_type": "code",
60
+ "execution_count": 51,
61
+ "id": "b33feb18",
62
+ "metadata": {},
63
+ "outputs": [
64
+ {
65
+ "data": {
66
+ "text/plain": [
67
+ "{'product_mix_result': {'White Bread': {'recommended_stock': 3},\n",
68
+ " 'Special Cake': {'recommended_stock': 26},\n",
69
+ " 'Wedding Cake': {'recommended_stock': 13}},\n",
70
+ " 'engine_code': 'optimax_product_mix',\n",
71
+ " 'probability_table': '{\"product\":{\"263\":\"Wedding Cake\",\"261\":\"Wedding Cake\",\"259\":\"Wedding Cake\",\"269\":\"Wedding Cake\",\"264\":\"Wedding Cake\",\"268\":\"Wedding Cake\",\"258\":\"Wedding Cake\",\"260\":\"Wedding Cake\",\"257\":\"Wedding Cake\",\"270\":\"Wedding Cake\",\"262\":\"Wedding Cake\",\"265\":\"Wedding Cake\",\"266\":\"Wedding Cake\",\"267\":\"Wedding Cake\",\"271\":\"Wedding Cake\",\"161\":\"Special Cake\",\"46\":\"White Bread\",\"256\":\"Wedding Cake\",\"255\":\"Wedding Cake\",\"275\":\"Wedding Cake\",\"272\":\"Wedding Cake\",\"34\":\"White Bread\",\"149\":\"Special Cake\",\"278\":\"Wedding Cake\",\"159\":\"Special Cake\",\"44\":\"White Bread\",\"35\":\"White Bread\",\"150\":\"Special Cake\",\"277\":\"Wedding Cake\",\"36\":\"White Bread\",\"151\":\"Special Cake\",\"253\":\"Wedding Cake\",\"43\":\"White Bread\",\"158\":\"Special Cake\",\"274\":\"Wedding Cake\",\"157\":\"Special Cake\",\"42\":\"White Bread\",\"162\":\"Special Cake\",\"47\":\"White Bread\",\"254\":\"Wedding Cake\",\"154\":\"Special Cake\",\"39\":\"White Bread\",\"276\":\"Wedding Cake\",\"163\":\"Special Cake\",\"48\":\"White Bread\",\"279\":\"Wedding Cake\",\"153\":\"Special Cake\",\"38\":\"White Bread\",\"152\":\"Special Cake\",\"37\":\"White Bread\",\"45\":\"White Bread\",\"160\":\"Special Cake\",\"164\":\"Special Cake\",\"49\":\"White Bread\",\"40\":\"White Bread\",\"155\":\"Special Cake\",\"41\":\"White Bread\",\"156\":\"Special Cake\",\"166\":\"Special Cake\",\"51\":\"White Bread\",\"273\":\"Wedding Cake\",\"82\":\"White Bread\",\"197\":\"Special Cake\",\"79\":\"White Bread\",\"194\":\"Special Cake\",\"81\":\"White Bread\",\"196\":\"Special Cake\",\"182\":\"Special Cake\",\"67\":\"White Bread\",\"52\":\"White Bread\",\"167\":\"Special Cake\",\"50\":\"White Bread\",\"165\":\"Special Cake\",\"280\":\"Wedding Cake\",\"80\":\"White Bread\",\"195\":\"Special Cake\",\"252\":\"Wedding Cake\",\"85\":\"White Bread\",\"200\":\"Special Cake\",\"199\":\"Special Cake\",\"84\":\"White Bread\",\"281\":\"Wedding Cake\",\"183\":\"Special Cake\",\"68\":\"White Bread\",\"251\":\"Wedding Cake\",\"181\":\"Special Cake\",\"66\":\"White Bread\",\"282\":\"Wedding Cake\",\"171\":\"Special Cake\",\"56\":\"White Bread\",\"33\":\"White Bread\",\"148\":\"Special Cake\",\"53\":\"White Bread\",\"168\":\"Special Cake\",\"173\":\"Special Cake\",\"58\":\"White Bread\",\"172\":\"Special Cake\",\"57\":\"White Bread\",\"60\":\"White Bread\",\"175\":\"Special Cake\",\"286\":\"Wedding Cake\",\"174\":\"Special Cake\",\"59\":\"White Bread\",\"198\":\"Special Cake\",\"83\":\"White Bread\",\"169\":\"Special Cake\",\"54\":\"White Bread\",\"86\":\"White Bread\",\"201\":\"Special Cake\",\"185\":\"Special Cake\",\"70\":\"White Bread\",\"184\":\"Special Cake\",\"69\":\"White Bread\",\"78\":\"White Bread\",\"193\":\"Special Cake\",\"250\":\"Wedding Cake\",\"71\":\"White Bread\",\"186\":\"Special Cake\",\"192\":\"Special Cake\",\"77\":\"White Bread\",\"191\":\"Special Cake\",\"76\":\"White Bread\",\"285\":\"Wedding Cake\",\"176\":\"Special Cake\",\"61\":\"White Bread\",\"249\":\"Wedding Cake\",\"74\":\"White Bread\",\"189\":\"Special Cake\",\"170\":\"Special Cake\",\"55\":\"White Bread\",\"190\":\"Special Cake\",\"75\":\"White Bread\",\"177\":\"Special Cake\",\"62\":\"White Bread\",\"283\":\"Wedding Cake\",\"188\":\"Special Cake\",\"73\":\"White Bread\",\"65\":\"White Bread\",\"180\":\"Special Cake\",\"187\":\"Special Cake\",\"72\":\"White Bread\",\"284\":\"Wedding Cake\",\"203\":\"Special Cake\",\"88\":\"White Bread\",\"63\":\"White Bread\",\"178\":\"Special Cake\",\"287\":\"Wedding Cake\",\"87\":\"White Bread\",\"202\":\"Special Cake\",\"32\":\"White Bread\",\"147\":\"Special Cake\",\"207\":\"Special Cake\",\"92\":\"White Bread\",\"290\":\"Wedding Cake\",\"90\":\"White Bread\",\"205\":\"Special Cake\",\"248\":\"Wedding Cake\",\"211\":\"Special Cake\",\"96\":\"White Bread\",\"89\":\"White Bread\",\"204\":\"Special Cake\",\"289\":\"Wedding Cake\",\"291\":\"Wedding Cake\",\"146\":\"Special Cake\",\"31\":\"White Bread\",\"64\":\"White Bread\",\"179\":\"Special Cake\",\"209\":\"Special Cake\",\"94\":\"White Bread\",\"288\":\"Wedding Cake\",\"224\":\"Special Cake\",\"109\":\"White Bread\",\"292\":\"Wedding Cake\",\"28\":\"White Bread\",\"143\":\"Special Cake\",\"30\":\"White Bread\",\"145\":\"Special Cake\",\"29\":\"White Bread\",\"144\":\"Special Cake\",\"208\":\"Special Cake\",\"93\":\"White Bread\",\"206\":\"Special Cake\",\"91\":\"White Bread\",\"223\":\"Special Cake\",\"108\":\"White Bread\",\"222\":\"Special Cake\",\"107\":\"White Bread\",\"220\":\"Special Cake\",\"105\":\"White Bread\",\"27\":\"White Bread\",\"142\":\"Special Cake\",\"245\":\"Wedding Cake\",\"95\":\"White Bread\",\"210\":\"Special Cake\",\"106\":\"White Bread\",\"221\":\"Special Cake\",\"26\":\"White Bread\",\"141\":\"Special Cake\",\"293\":\"Wedding Cake\",\"110\":\"White Bread\",\"225\":\"Special Cake\",\"112\":\"White Bread\",\"227\":\"Special Cake\",\"243\":\"Wedding Cake\",\"247\":\"Wedding Cake\",\"25\":\"White Bread\",\"140\":\"Special Cake\",\"244\":\"Wedding Cake\",\"294\":\"Wedding Cake\",\"212\":\"Special Cake\",\"97\":\"White Bread\",\"297\":\"Wedding Cake\",\"226\":\"Special Cake\",\"111\":\"White Bread\",\"298\":\"Wedding Cake\",\"246\":\"Wedding Cake\",\"104\":\"White Bread\",\"219\":\"Special Cake\",\"15\":\"White Bread\",\"130\":\"Special Cake\",\"295\":\"Wedding Cake\",\"296\":\"Wedding Cake\",\"237\":\"Wedding Cake\",\"113\":\"White Bread\",\"228\":\"Special Cake\",\"139\":\"Special Cake\",\"24\":\"White Bread\",\"218\":\"Special Cake\",\"103\":\"White Bread\",\"137\":\"Special Cake\",\"22\":\"White Bread\",\"299\":\"Wedding Cake\",\"131\":\"Special Cake\",\"16\":\"White Bread\",\"235\":\"Wedding Cake\",\"213\":\"Special Cake\",\"98\":\"White Bread\",\"120\":\"Special Cake\",\"5\":\"White Bread\",\"23\":\"White Bread\",\"138\":\"Special Cake\",\"7\":\"White Bread\",\"122\":\"Special Cake\",\"132\":\"Special Cake\",\"17\":\"White Bread\",\"129\":\"Special Cake\",\"14\":\"White Bread\",\"231\":\"Wedding Cake\",\"300\":\"Wedding Cake\",\"136\":\"Special Cake\",\"21\":\"White Bread\",\"242\":\"Wedding Cake\",\"8\":\"White Bread\",\"123\":\"Special Cake\",\"302\":\"Wedding Cake\",\"101\":\"White Bread\",\"216\":\"Special Cake\",\"9\":\"White Bread\",\"124\":\"Special Cake\",\"1\":\"White Bread\",\"116\":\"Special Cake\",\"233\":\"Wedding Cake\",\"234\":\"Wedding Cake\",\"303\":\"Wedding Cake\",\"13\":\"White Bread\",\"128\":\"Special Cake\",\"304\":\"Wedding Cake\",\"215\":\"Special Cake\",\"100\":\"White Bread\",\"20\":\"White Bread\",\"135\":\"Special Cake\",\"133\":\"Special Cake\",\"18\":\"White Bread\",\"3\":\"White Bread\",\"118\":\"Special Cake\",\"214\":\"Special Cake\",\"99\":\"White Bread\",\"232\":\"Wedding Cake\",\"217\":\"Special Cake\",\"102\":\"White Bread\",\"301\":\"Wedding Cake\",\"238\":\"Wedding Cake\",\"239\":\"Wedding Cake\",\"240\":\"Wedding Cake\",\"134\":\"Special Cake\",\"19\":\"White Bread\",\"4\":\"White Bread\",\"119\":\"Special Cake\",\"126\":\"Special Cake\",\"11\":\"White Bread\",\"117\":\"Special Cake\",\"2\":\"White Bread\",\"114\":\"White Bread\",\"229\":\"Special Cake\",\"236\":\"Wedding Cake\",\"241\":\"Wedding Cake\",\"121\":\"Special Cake\",\"6\":\"White Bread\",\"12\":\"White Bread\",\"127\":\"Special Cake\",\"125\":\"Special Cake\",\"10\":\"White Bread\"},\"demand\":{\"263\":33,\"261\":31,\"259\":29,\"269\":39,\"264\":34,\"268\":38,\"258\":28,\"260\":30,\"257\":27,\"270\":40,\"262\":32,\"265\":35,\"266\":36,\"267\":37,\"271\":41,\"161\":46,\"46\":46,\"256\":26,\"255\":25,\"275\":45,\"272\":42,\"34\":34,\"149\":34,\"278\":48,\"159\":44,\"44\":44,\"35\":35,\"150\":35,\"277\":47,\"36\":36,\"151\":36,\"253\":23,\"43\":43,\"158\":43,\"274\":44,\"157\":42,\"42\":42,\"162\":47,\"47\":47,\"254\":24,\"154\":39,\"39\":39,\"276\":46,\"163\":48,\"48\":48,\"279\":49,\"153\":38,\"38\":38,\"152\":37,\"37\":37,\"45\":45,\"160\":45,\"164\":49,\"49\":49,\"40\":40,\"155\":40,\"41\":41,\"156\":41,\"166\":51,\"51\":51,\"273\":43,\"82\":82,\"197\":82,\"79\":79,\"194\":79,\"81\":81,\"196\":81,\"182\":67,\"67\":67,\"52\":52,\"167\":52,\"50\":50,\"165\":50,\"280\":50,\"80\":80,\"195\":80,\"252\":22,\"85\":85,\"200\":85,\"199\":84,\"84\":84,\"281\":51,\"183\":68,\"68\":68,\"251\":21,\"181\":66,\"66\":66,\"282\":52,\"171\":56,\"56\":56,\"33\":33,\"148\":33,\"53\":53,\"168\":53,\"173\":58,\"58\":58,\"172\":57,\"57\":57,\"60\":60,\"175\":60,\"286\":56,\"174\":59,\"59\":59,\"198\":83,\"83\":83,\"169\":54,\"54\":54,\"86\":86,\"201\":86,\"185\":70,\"70\":70,\"184\":69,\"69\":69,\"78\":78,\"193\":78,\"250\":20,\"71\":71,\"186\":71,\"192\":77,\"77\":77,\"191\":76,\"76\":76,\"285\":55,\"176\":61,\"61\":61,\"249\":19,\"74\":74,\"189\":74,\"170\":55,\"55\":55,\"190\":75,\"75\":75,\"177\":62,\"62\":62,\"283\":53,\"188\":73,\"73\":73,\"65\":65,\"180\":65,\"187\":72,\"72\":72,\"284\":54,\"203\":88,\"88\":88,\"63\":63,\"178\":63,\"287\":57,\"87\":87,\"202\":87,\"32\":32,\"147\":32,\"207\":92,\"92\":92,\"290\":60,\"90\":90,\"205\":90,\"248\":18,\"211\":96,\"96\":96,\"89\":89,\"204\":89,\"289\":59,\"291\":61,\"146\":31,\"31\":31,\"64\":64,\"179\":64,\"209\":94,\"94\":94,\"288\":58,\"224\":109,\"109\":109,\"292\":62,\"28\":28,\"143\":28,\"30\":30,\"145\":30,\"29\":29,\"144\":29,\"208\":93,\"93\":93,\"206\":91,\"91\":91,\"223\":108,\"108\":108,\"222\":107,\"107\":107,\"220\":105,\"105\":105,\"27\":27,\"142\":27,\"245\":15,\"95\":95,\"210\":95,\"106\":106,\"221\":106,\"26\":26,\"141\":26,\"293\":63,\"110\":110,\"225\":110,\"112\":112,\"227\":112,\"243\":13,\"247\":17,\"25\":25,\"140\":25,\"244\":14,\"294\":64,\"212\":97,\"97\":97,\"297\":67,\"226\":111,\"111\":111,\"298\":68,\"246\":16,\"104\":104,\"219\":104,\"15\":15,\"130\":15,\"295\":65,\"296\":66,\"237\":7,\"113\":113,\"228\":113,\"139\":24,\"24\":24,\"218\":103,\"103\":103,\"137\":22,\"22\":22,\"299\":69,\"131\":16,\"16\":16,\"235\":5,\"213\":98,\"98\":98,\"120\":5,\"5\":5,\"23\":23,\"138\":23,\"7\":7,\"122\":7,\"132\":17,\"17\":17,\"129\":14,\"14\":14,\"231\":1,\"300\":70,\"136\":21,\"21\":21,\"242\":12,\"8\":8,\"123\":8,\"302\":72,\"101\":101,\"216\":101,\"9\":9,\"124\":9,\"1\":1,\"116\":1,\"233\":3,\"234\":4,\"303\":73,\"13\":13,\"128\":13,\"304\":74,\"215\":100,\"100\":100,\"20\":20,\"135\":20,\"133\":18,\"18\":18,\"3\":3,\"118\":3,\"214\":99,\"99\":99,\"232\":2,\"217\":102,\"102\":102,\"301\":71,\"238\":8,\"239\":9,\"240\":10,\"134\":19,\"19\":19,\"4\":4,\"119\":4,\"126\":11,\"11\":11,\"117\":2,\"2\":2,\"114\":114,\"229\":114,\"236\":6,\"241\":11,\"121\":6,\"6\":6,\"12\":12,\"127\":12,\"125\":10,\"10\":10},\"probability\":{\"263\":0.0368592173,\"261\":0.0359488332,\"259\":0.034826178,\"269\":0.0345176881,\"264\":0.0338754672,\"268\":0.0336984278,\"258\":0.0333003656,\"260\":0.032756232,\"257\":0.0325301611,\"270\":0.032197924,\"262\":0.0318970326,\"265\":0.0311347815,\"266\":0.030689652,\"267\":0.0290920836,\"271\":0.0283928783,\"161\":0.028135825,\"46\":0.028135825,\"256\":0.0280648941,\"255\":0.026794912,\"275\":0.0267789487,\"272\":0.0266978264,\"34\":0.02649434,\"149\":0.02649434,\"278\":0.0261790284,\"159\":0.0260993218,\"44\":0.0260993218,\"35\":0.0258797103,\"150\":0.0258797103,\"277\":0.0249885005,\"36\":0.0247542848,\"151\":0.0247542848,\"253\":0.0237528724,\"43\":0.0227409136,\"158\":0.0227409136,\"274\":0.0223511295,\"157\":0.0218458294,\"42\":0.0218458294,\"162\":0.0218256638,\"47\":0.0218256638,\"254\":0.0217967443,\"154\":0.0216395613,\"39\":0.0216395613,\"276\":0.0216095805,\"163\":0.0215321773,\"48\":0.0215321773,\"279\":0.0213346388,\"153\":0.0203048915,\"38\":0.0203048915,\"152\":0.020051612,\"37\":0.020051612,\"45\":0.0199892913,\"160\":0.0199892913,\"164\":0.0195399323,\"49\":0.0195399323,\"40\":0.019229393,\"155\":0.019229393,\"41\":0.0190548591,\"156\":0.0190548591,\"166\":0.018913738,\"51\":0.018913738,\"273\":0.0184784305,\"82\":0.0182737867,\"197\":0.0182737867,\"79\":0.0180723397,\"194\":0.0180723397,\"81\":0.0179847392,\"196\":0.0179847392,\"182\":0.0177538496,\"67\":0.0177538496,\"52\":0.017304322,\"167\":0.017304322,\"50\":0.0172683526,\"165\":0.0172683526,\"280\":0.017080318,\"80\":0.0165558467,\"195\":0.0165558467,\"252\":0.0164150156,\"85\":0.0163239057,\"200\":0.0163239057,\"199\":0.0155502511,\"84\":0.0155502511,\"281\":0.0155468033,\"183\":0.0153482999,\"68\":0.0153482999,\"251\":0.0150519811,\"181\":0.0149100957,\"66\":0.0149100957,\"282\":0.0145321593,\"171\":0.0145073305,\"56\":0.0145073305,\"33\":0.0143434204,\"148\":0.0143434204,\"53\":0.0139978926,\"168\":0.0139978926,\"173\":0.0137575929,\"58\":0.0137575929,\"172\":0.0133753577,\"57\":0.0133753577,\"60\":0.0132917234,\"175\":0.0132917234,\"286\":0.0128341354,\"174\":0.0125602164,\"59\":0.0125602164,\"198\":0.0122586994,\"83\":0.0122586994,\"169\":0.0121257892,\"54\":0.0121257892,\"86\":0.0121178443,\"201\":0.0121178443,\"185\":0.0117735274,\"70\":0.0117735274,\"184\":0.0117612458,\"69\":0.0117612458,\"78\":0.011635456,\"193\":0.011635456,\"250\":0.01154316,\"71\":0.0112493485,\"186\":0.0112493485,\"192\":0.0111785296,\"77\":0.0111785296,\"191\":0.0111410438,\"76\":0.0111410438,\"285\":0.0110507398,\"176\":0.0105914583,\"61\":0.0105914583,\"249\":0.0105420966,\"74\":0.0105078101,\"189\":0.0105078101,\"170\":0.0103408676,\"55\":0.0103408676,\"190\":0.0100856266,\"75\":0.0100856266,\"177\":0.0100635496,\"62\":0.0100635496,\"283\":0.0098274898,\"188\":0.009615686,\"73\":0.009615686,\"65\":0.0089209082,\"180\":0.0089209082,\"187\":0.0088669788,\"72\":0.0088669788,\"284\":0.008681397,\"203\":0.0085985317,\"88\":0.0085985317,\"63\":0.0083903575,\"178\":0.0083903575,\"287\":0.0079844742,\"87\":0.0075161459,\"202\":0.0075161459,\"32\":0.0065831021,\"147\":0.0065831021,\"207\":0.0063411487,\"92\":0.0063411487,\"290\":0.0061494519,\"90\":0.0060437383,\"205\":0.0060437383,\"248\":0.0057253414,\"211\":0.0057178973,\"96\":0.0057178973,\"89\":0.0056477112,\"204\":0.0056477112,\"289\":0.0055459619,\"291\":0.0054795932,\"146\":0.0054244868,\"31\":0.0054244868,\"64\":0.0053959746,\"179\":0.0053959746,\"209\":0.0051360659,\"94\":0.0051360659,\"288\":0.0050816214,\"224\":0.0048954825,\"109\":0.0048954825,\"292\":0.0047980717,\"28\":0.0045802571,\"143\":0.0045802571,\"30\":0.0044781409,\"145\":0.0044781409,\"29\":0.0043621607,\"144\":0.0043621607,\"208\":0.0043273171,\"93\":0.0043273171,\"206\":0.0041276299,\"91\":0.0041276299,\"223\":0.0040755787,\"108\":0.0040755787,\"222\":0.0039335012,\"107\":0.0039335012,\"220\":0.0038894774,\"105\":0.0038894774,\"27\":0.00385749,\"142\":0.00385749,\"245\":0.0036740912,\"95\":0.0036275468,\"210\":0.0036275468,\"106\":0.0035281844,\"221\":0.0035281844,\"26\":0.0033199252,\"141\":0.0033199252,\"293\":0.0032641712,\"110\":0.0031606894,\"225\":0.0031606894,\"112\":0.002931355,\"227\":0.002931355,\"243\":0.0029177054,\"247\":0.0027665343,\"25\":0.0026568393,\"140\":0.0026568393,\"244\":0.0026502146,\"294\":0.0025965544,\"212\":0.002554393,\"97\":0.002554393,\"297\":0.0022778517,\"226\":0.0022694948,\"111\":0.0022694948,\"298\":0.0022332029,\"246\":0.00198394,\"104\":0.0019647995,\"219\":0.0019647995,\"15\":0.0019036542,\"130\":0.0019036542,\"295\":0.0018337038,\"296\":0.0014691137,\"237\":0.0014035503,\"113\":0.0013588412,\"228\":0.0013588412,\"139\":0.0013444622,\"24\":0.0013444622,\"218\":0.001279575,\"103\":0.001279575,\"137\":0.0012722084,\"22\":0.0012722084,\"299\":0.0012112573,\"131\":0.0009974778,\"16\":0.0009974778,\"235\":0.0009420068,\"213\":0.000899227,\"98\":0.000899227,\"120\":0.0007732343,\"5\":0.0007732343,\"23\":0.0007673017,\"138\":0.0007673017,\"7\":0.000579398,\"122\":0.000579398,\"132\":0.0005463021,\"17\":0.0005463021,\"129\":0.0005379338,\"14\":0.0005379338,\"231\":0.0004810596,\"300\":0.0004541821,\"136\":0.0004143761,\"21\":0.0004143761,\"242\":0.0004077686,\"8\":0.000402153,\"123\":0.000402153,\"302\":0.0003903984,\"101\":0.0003871625,\"216\":0.0003871625,\"9\":0.0003653594,\"124\":0.0003653594,\"1\":0.0003608402,\"116\":0.0003608402,\"233\":0.0003515124,\"234\":0.0003474865,\"303\":0.0003399258,\"13\":0.0003227829,\"128\":0.0003227829,\"304\":0.0003183052,\"215\":0.0003102312,\"100\":0.0003102312,\"20\":0.0003036225,\"135\":0.0003036225,\"133\":0.0002644347,\"18\":0.0002644347,\"3\":0.0002636676,\"118\":0.0002636676,\"214\":0.0002458838,\"99\":0.0002458838,\"232\":0.0002280527,\"217\":0.0002082343,\"102\":0.0002082343,\"301\":0.0002049358,\"238\":0.0002048074,\"239\":0.0001971212,\"240\":0.0001920457,\"134\":0.0001910985,\"19\":0.0001910985,\"4\":0.0001887357,\"119\":0.0001887357,\"126\":0.0001747752,\"11\":0.0001747752,\"117\":0.0001710611,\"2\":0.0001710611,\"114\":0.0001586266,\"229\":0.0001586266,\"236\":0.0001076846,\"241\":0.0000884724,\"121\":0.0000860457,\"6\":0.0000860457,\"12\":0.0000617417,\"127\":0.0000617417,\"125\":0.0000430096,\"10\":0.0000430096}}',\n",
72
+ " 'plan_timestamp': '2023-08-15 16:24:11'}"
73
+ ]
74
+ },
75
+ "execution_count": 51,
76
+ "metadata": {},
77
+ "output_type": "execute_result"
78
+ }
79
+ ],
80
+ "source": [
81
+ "res"
82
+ ]
83
+ },
84
+ {
85
+ "cell_type": "code",
86
+ "execution_count": 37,
87
+ "id": "87f7d882",
88
+ "metadata": {},
89
+ "outputs": [],
90
+ "source": [
91
+ "res_df = pd.DataFrame(res['product_mix_result'])"
92
+ ]
93
+ },
94
+ {
95
+ "cell_type": "code",
96
+ "execution_count": 38,
97
+ "id": "93b21c64",
98
+ "metadata": {},
99
+ "outputs": [
100
+ {
101
+ "data": {
102
+ "text/html": [
103
+ "<div>\n",
104
+ "<style scoped>\n",
105
+ " .dataframe tbody tr th:only-of-type {\n",
106
+ " vertical-align: middle;\n",
107
+ " }\n",
108
+ "\n",
109
+ " .dataframe tbody tr th {\n",
110
+ " vertical-align: top;\n",
111
+ " }\n",
112
+ "\n",
113
+ " .dataframe thead th {\n",
114
+ " text-align: right;\n",
115
+ " }\n",
116
+ "</style>\n",
117
+ "<table border=\"1\" class=\"dataframe\">\n",
118
+ " <thead>\n",
119
+ " <tr style=\"text-align: right;\">\n",
120
+ " <th></th>\n",
121
+ " <th>White Bread</th>\n",
122
+ " <th>Special Cake</th>\n",
123
+ " <th>Wedding Cake</th>\n",
124
+ " </tr>\n",
125
+ " </thead>\n",
126
+ " <tbody>\n",
127
+ " <tr>\n",
128
+ " <th>recommended_stock</th>\n",
129
+ " <td>3</td>\n",
130
+ " <td>26</td>\n",
131
+ " <td>13</td>\n",
132
+ " </tr>\n",
133
+ " </tbody>\n",
134
+ "</table>\n",
135
+ "</div>"
136
+ ],
137
+ "text/plain": [
138
+ " White Bread Special Cake Wedding Cake\n",
139
+ "recommended_stock 3 26 13"
140
+ ]
141
+ },
142
+ "execution_count": 38,
143
+ "metadata": {},
144
+ "output_type": "execute_result"
145
+ }
146
+ ],
147
+ "source": [
148
+ "res_df"
149
+ ]
150
+ },
151
+ {
152
+ "cell_type": "code",
153
+ "execution_count": 39,
154
+ "id": "c0e30697",
155
+ "metadata": {},
156
+ "outputs": [],
157
+ "source": [
158
+ "prob_table_df = pd.DataFrame(json.loads(res['probability_table']))"
159
+ ]
160
+ },
161
+ {
162
+ "cell_type": "code",
163
+ "execution_count": 40,
164
+ "id": "0e465d87",
165
+ "metadata": {},
166
+ "outputs": [
167
+ {
168
+ "data": {
169
+ "text/html": [
170
+ "<div>\n",
171
+ "<style scoped>\n",
172
+ " .dataframe tbody tr th:only-of-type {\n",
173
+ " vertical-align: middle;\n",
174
+ " }\n",
175
+ "\n",
176
+ " .dataframe tbody tr th {\n",
177
+ " vertical-align: top;\n",
178
+ " }\n",
179
+ "\n",
180
+ " .dataframe thead th {\n",
181
+ " text-align: right;\n",
182
+ " }\n",
183
+ "</style>\n",
184
+ "<table border=\"1\" class=\"dataframe\">\n",
185
+ " <thead>\n",
186
+ " <tr style=\"text-align: right;\">\n",
187
+ " <th></th>\n",
188
+ " <th>product</th>\n",
189
+ " <th>demand</th>\n",
190
+ " <th>probability</th>\n",
191
+ " </tr>\n",
192
+ " </thead>\n",
193
+ " <tbody>\n",
194
+ " <tr>\n",
195
+ " <th>263</th>\n",
196
+ " <td>Wedding Cake</td>\n",
197
+ " <td>33</td>\n",
198
+ " <td>0.036859</td>\n",
199
+ " </tr>\n",
200
+ " <tr>\n",
201
+ " <th>261</th>\n",
202
+ " <td>Wedding Cake</td>\n",
203
+ " <td>31</td>\n",
204
+ " <td>0.035949</td>\n",
205
+ " </tr>\n",
206
+ " <tr>\n",
207
+ " <th>259</th>\n",
208
+ " <td>Wedding Cake</td>\n",
209
+ " <td>29</td>\n",
210
+ " <td>0.034826</td>\n",
211
+ " </tr>\n",
212
+ " <tr>\n",
213
+ " <th>269</th>\n",
214
+ " <td>Wedding Cake</td>\n",
215
+ " <td>39</td>\n",
216
+ " <td>0.034518</td>\n",
217
+ " </tr>\n",
218
+ " <tr>\n",
219
+ " <th>264</th>\n",
220
+ " <td>Wedding Cake</td>\n",
221
+ " <td>34</td>\n",
222
+ " <td>0.033875</td>\n",
223
+ " </tr>\n",
224
+ " <tr>\n",
225
+ " <th>...</th>\n",
226
+ " <td>...</td>\n",
227
+ " <td>...</td>\n",
228
+ " <td>...</td>\n",
229
+ " </tr>\n",
230
+ " <tr>\n",
231
+ " <th>6</th>\n",
232
+ " <td>White Bread</td>\n",
233
+ " <td>6</td>\n",
234
+ " <td>0.000086</td>\n",
235
+ " </tr>\n",
236
+ " <tr>\n",
237
+ " <th>12</th>\n",
238
+ " <td>White Bread</td>\n",
239
+ " <td>12</td>\n",
240
+ " <td>0.000062</td>\n",
241
+ " </tr>\n",
242
+ " <tr>\n",
243
+ " <th>127</th>\n",
244
+ " <td>Special Cake</td>\n",
245
+ " <td>12</td>\n",
246
+ " <td>0.000062</td>\n",
247
+ " </tr>\n",
248
+ " <tr>\n",
249
+ " <th>125</th>\n",
250
+ " <td>Special Cake</td>\n",
251
+ " <td>10</td>\n",
252
+ " <td>0.000043</td>\n",
253
+ " </tr>\n",
254
+ " <tr>\n",
255
+ " <th>10</th>\n",
256
+ " <td>White Bread</td>\n",
257
+ " <td>10</td>\n",
258
+ " <td>0.000043</td>\n",
259
+ " </tr>\n",
260
+ " </tbody>\n",
261
+ "</table>\n",
262
+ "<p>302 rows × 3 columns</p>\n",
263
+ "</div>"
264
+ ],
265
+ "text/plain": [
266
+ " product demand probability\n",
267
+ "263 Wedding Cake 33 0.036859\n",
268
+ "261 Wedding Cake 31 0.035949\n",
269
+ "259 Wedding Cake 29 0.034826\n",
270
+ "269 Wedding Cake 39 0.034518\n",
271
+ "264 Wedding Cake 34 0.033875\n",
272
+ ".. ... ... ...\n",
273
+ "6 White Bread 6 0.000086\n",
274
+ "12 White Bread 12 0.000062\n",
275
+ "127 Special Cake 12 0.000062\n",
276
+ "125 Special Cake 10 0.000043\n",
277
+ "10 White Bread 10 0.000043\n",
278
+ "\n",
279
+ "[302 rows x 3 columns]"
280
+ ]
281
+ },
282
+ "execution_count": 40,
283
+ "metadata": {},
284
+ "output_type": "execute_result"
285
+ }
286
+ ],
287
+ "source": [
288
+ "prob_table_df"
289
+ ]
290
+ },
291
+ {
292
+ "cell_type": "code",
293
+ "execution_count": 47,
294
+ "id": "b6f4c718",
295
+ "metadata": {},
296
+ "outputs": [],
297
+ "source": [
298
+ "w = prob_table_df[prob_table_df['product']==\"Wedding Cake\"]"
299
+ ]
300
+ },
301
+ {
302
+ "cell_type": "code",
303
+ "execution_count": 48,
304
+ "id": "c1816949",
305
+ "metadata": {},
306
+ "outputs": [],
307
+ "source": [
308
+ "import matplotlib.pyplot as plt "
309
+ ]
310
+ },
311
+ {
312
+ "cell_type": "code",
313
+ "execution_count": 49,
314
+ "id": "2458d35e",
315
+ "metadata": {},
316
+ "outputs": [
317
+ {
318
+ "data": {
319
+ "text/html": [
320
+ "<div>\n",
321
+ "<style scoped>\n",
322
+ " .dataframe tbody tr th:only-of-type {\n",
323
+ " vertical-align: middle;\n",
324
+ " }\n",
325
+ "\n",
326
+ " .dataframe tbody tr th {\n",
327
+ " vertical-align: top;\n",
328
+ " }\n",
329
+ "\n",
330
+ " .dataframe thead th {\n",
331
+ " text-align: right;\n",
332
+ " }\n",
333
+ "</style>\n",
334
+ "<table border=\"1\" class=\"dataframe\">\n",
335
+ " <thead>\n",
336
+ " <tr style=\"text-align: right;\">\n",
337
+ " <th></th>\n",
338
+ " <th>product</th>\n",
339
+ " <th>demand</th>\n",
340
+ " <th>probability</th>\n",
341
+ " </tr>\n",
342
+ " </thead>\n",
343
+ " <tbody>\n",
344
+ " <tr>\n",
345
+ " <th>263</th>\n",
346
+ " <td>Wedding Cake</td>\n",
347
+ " <td>33</td>\n",
348
+ " <td>0.036859</td>\n",
349
+ " </tr>\n",
350
+ " <tr>\n",
351
+ " <th>261</th>\n",
352
+ " <td>Wedding Cake</td>\n",
353
+ " <td>31</td>\n",
354
+ " <td>0.035949</td>\n",
355
+ " </tr>\n",
356
+ " <tr>\n",
357
+ " <th>259</th>\n",
358
+ " <td>Wedding Cake</td>\n",
359
+ " <td>29</td>\n",
360
+ " <td>0.034826</td>\n",
361
+ " </tr>\n",
362
+ " <tr>\n",
363
+ " <th>269</th>\n",
364
+ " <td>Wedding Cake</td>\n",
365
+ " <td>39</td>\n",
366
+ " <td>0.034518</td>\n",
367
+ " </tr>\n",
368
+ " <tr>\n",
369
+ " <th>264</th>\n",
370
+ " <td>Wedding Cake</td>\n",
371
+ " <td>34</td>\n",
372
+ " <td>0.033875</td>\n",
373
+ " </tr>\n",
374
+ " <tr>\n",
375
+ " <th>...</th>\n",
376
+ " <td>...</td>\n",
377
+ " <td>...</td>\n",
378
+ " <td>...</td>\n",
379
+ " </tr>\n",
380
+ " <tr>\n",
381
+ " <th>238</th>\n",
382
+ " <td>Wedding Cake</td>\n",
383
+ " <td>8</td>\n",
384
+ " <td>0.000205</td>\n",
385
+ " </tr>\n",
386
+ " <tr>\n",
387
+ " <th>239</th>\n",
388
+ " <td>Wedding Cake</td>\n",
389
+ " <td>9</td>\n",
390
+ " <td>0.000197</td>\n",
391
+ " </tr>\n",
392
+ " <tr>\n",
393
+ " <th>240</th>\n",
394
+ " <td>Wedding Cake</td>\n",
395
+ " <td>10</td>\n",
396
+ " <td>0.000192</td>\n",
397
+ " </tr>\n",
398
+ " <tr>\n",
399
+ " <th>236</th>\n",
400
+ " <td>Wedding Cake</td>\n",
401
+ " <td>6</td>\n",
402
+ " <td>0.000108</td>\n",
403
+ " </tr>\n",
404
+ " <tr>\n",
405
+ " <th>241</th>\n",
406
+ " <td>Wedding Cake</td>\n",
407
+ " <td>11</td>\n",
408
+ " <td>0.000088</td>\n",
409
+ " </tr>\n",
410
+ " </tbody>\n",
411
+ "</table>\n",
412
+ "<p>74 rows × 3 columns</p>\n",
413
+ "</div>"
414
+ ],
415
+ "text/plain": [
416
+ " product demand probability\n",
417
+ "263 Wedding Cake 33 0.036859\n",
418
+ "261 Wedding Cake 31 0.035949\n",
419
+ "259 Wedding Cake 29 0.034826\n",
420
+ "269 Wedding Cake 39 0.034518\n",
421
+ "264 Wedding Cake 34 0.033875\n",
422
+ ".. ... ... ...\n",
423
+ "238 Wedding Cake 8 0.000205\n",
424
+ "239 Wedding Cake 9 0.000197\n",
425
+ "240 Wedding Cake 10 0.000192\n",
426
+ "236 Wedding Cake 6 0.000108\n",
427
+ "241 Wedding Cake 11 0.000088\n",
428
+ "\n",
429
+ "[74 rows x 3 columns]"
430
+ ]
431
+ },
432
+ "execution_count": 49,
433
+ "metadata": {},
434
+ "output_type": "execute_result"
435
+ }
436
+ ],
437
+ "source": [
438
+ "w"
439
+ ]
440
+ },
441
+ {
442
+ "cell_type": "code",
443
+ "execution_count": 50,
444
+ "id": "9b06145f",
445
+ "metadata": {},
446
+ "outputs": [
447
+ {
448
+ "data": {
449
+ "text/plain": [
450
+ "<matplotlib.collections.PathCollection at 0x12ba90350>"
451
+ ]
452
+ },
453
+ "execution_count": 50,
454
+ "metadata": {},
455
+ "output_type": "execute_result"
456
+ },
457
+ {
458
+ "data": {
459
+ "image/png": "iVBORw0KGgoAAAANSUhEUgAAAjUAAAGdCAYAAADqsoKGAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjcuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/bCgiHAAAACXBIWXMAAA9hAAAPYQGoP6dpAAA/40lEQVR4nO3df3SU9Z3//deQX6NIIj80k1iEgN1CBItJKoaa2ruVYHC95SxukV0Fa/U+oe0iZDk3Au0BdNuA9etSVwhbhN5SWuTsohbWFIhVUloGWCChYFIXIRLFTHMStxnUQwLJdf+RzpjJzCQzk/l5zfNxzpxjrvnMXNcFOPPO5/P+vN8WwzAMAQAAJLhhsb4AAACAcCCoAQAApkBQAwAATIGgBgAAmAJBDQAAMAWCGgAAYAoENQAAwBQIagAAgCmkxvoCoqmnp0cfffSRRowYIYvFEuvLAQAAATAMQ5cuXVJubq6GDfM/H5NUQc1HH32ksWPHxvoyAABACD744AN94Qtf8Pt8UgU1I0aMkNT7h5KZmRnjqwEAAIFwOp0aO3as+3vcn6QKalxLTpmZmQQ1AAAkmMFSR0gUBgAApkBQAwAATIGgBgAAmAJBDQAAMAWCGgAAYAoENQAAwBQIagAAgCkQ1AAAAFNIquJ7AKKju8fQsaaP1Xrpsm4cYdUdeaOUMox+awAii6AGQFjtO9OitXsb1NJx2X0sJ8uq1ffn694pOTG8MgBmx/ITgLDZd6ZFi3ac9AhoJMnRcVmLdpzUvjMtMboyAMmAoAZAWHT3GFq7t0GGj+dcx9bubVB3j68RADB0BDUAwuJY08deMzR9GZJaOi7rWNPH0bsoAEmFoAZAWLRe8h/QhDIOAIJFUAMgLG4cYQ3rOAAIFkENgLC4I2+UcrKs8rdx26LeXVB35I2K5mUBSCIENQDCImWYRavvz5ckr8DG9fPq+/OpVwMgYghqAAyou8eQ/Vy7fl1/UfZz7QPuXrp3So6qHi6QLctzicmWZVXVwwXUqQEQURTfA+BXKIX07p2So5n5NioKA4g6i2EYSVM0wul0KisrSx0dHcrMzIz15QBxzVVIr/8HhCs0YeYFQLQE+v3N8hMALxTSA5CICGoAeKGQHoBERFADwAuF9AAkIoIaAF4opAcgERHUAPBCIT0AiYigBoAXCukBSEQhBTWbNm1SXl6erFarCgsLdejQoQHH19bWqrCwUFarVRMmTNDmzZs9nn/11VdVVFSk66+/XsOHD9e0adP0i1/8wmPMmjVrZLFYPB42my2UywcQAArpAUg0QRff27Vrl5YsWaJNmzbpq1/9qv793/9dZWVlamho0M033+w1vqmpSbNnz9YTTzyhHTt26A9/+IO++93v6oYbbtDcuXMlSaNGjdKqVas0adIkpaen67/+67/07W9/WzfeeKNmzZrlfq9bb71Vb775pvvnlJSUUO4ZSGrdPUbAhfEopAcgkQRdfG/69OkqKChQVVWV+9jkyZM1Z84cVVZWeo1fvny59uzZo8bGRvex8vJynTp1Sna73e95CgoKdN999+mZZ56R1DtT8/rrr6u+vj6Yy/VA8T0ku1AqBANArEWk+F5XV5dOnDih0tJSj+OlpaU6fPiwz9fY7Xav8bNmzdLx48d15coVr/GGYei3v/2t3n33XX3ta1/zeO7s2bPKzc1VXl6eHnroIZ0/f37A6+3s7JTT6fR4AMnKVSG4f/0ZR8dlLdpxUvvOtMToygAgPIIKatra2tTd3a3s7GyP49nZ2XI4HD5f43A4fI6/evWq2tra3Mc6Ojp03XXXKT09Xffdd5/+7d/+TTNnznQ/P336dG3fvl379+/Xli1b5HA4NGPGDLW3t/u93srKSmVlZbkfY8eODeZ2AdOgQnBwjTkBJKaQGlpaLJ7r6YZheB0bbHz/4yNGjFB9fb0++eQT/fa3v1VFRYUmTJigr3/965KksrIy99ipU6equLhYEydO1Msvv6yKigqf512xYoXHc06nk8AGSSmYCsHFE0dH78KihGU3IDkEFdSMGTNGKSkpXrMyra2tXrMxLjabzef41NRUjR79+YfnsGHDdMstt0iSpk2bpsbGRlVWVrqDmv6GDx+uqVOn6uzZs36vNyMjQxkZGYHcGmBqyVwh2F9jTteyGzu5APMIavkpPT1dhYWFqqmp8TheU1OjGTNm+HxNcXGx1/gDBw6oqKhIaWlpfs9lGIY6Ozv9Pt/Z2anGxkbl5PBhBAwmWSsEs+wGJJeg69RUVFTopZde0rZt29TY2KilS5equblZ5eXlknqXfBYsWOAeX15ergsXLqiiokKNjY3atm2btm7dqmXLlrnHVFZWqqamRufPn9ef/vQnPf/889q+fbsefvhh95hly5aptrZWTU1NOnr0qB588EE5nU4tXLhwKPcPJIVkrRBMY04guQSdUzNv3jy1t7fr6aefVktLi6ZMmaLq6mqNGzdOktTS0qLm5mb3+Ly8PFVXV2vp0qXauHGjcnNz9cILL7hr1EjSp59+qu9+97v68MMPdc0112jSpEnasWOH5s2b5x7z4Ycfav78+Wpra9MNN9ygO++8U0eOHHGfF4B/rgrBi3aclEXymLkwc4XgZF52A5JR0HVqEhl1apDsYp0wG0zhv3Cwn2vX/C1HBh2384k7TZkgDZhFoN/fIe1+ApCYYlkhOFoBVd/Aacx1GbJlZujPzk6feTUW9bZ9MNuyG5CsCGqAJJMyzBL1WYlo7UDyFThdf22aDCmplt2AZEWXbgARFa0dSP4qJnd81lu5POtaz92WNOYEzIeZGgARFY3Cf4MFThZJ16SlaON3CtT2aSeNOQGTIqgBTCraSbn+RGMHUqCB07BhFj0w7aaQzwMgvhHUACYU611OfUWj8B9btwFI5NQAphNv3bijUfgvWSsmA/BEUAOYSDy2BXAV/pPkFdiEawdSslZMBuCJoAYwkXhtC3DvlBxVPVwgW5bnTEm4diBFI3ACEP/IqQFMZCi5JZFOLI504T9X4NQ/l8gWo1wiANFHUAOYSKi5JdFKLI504b9YVkwGEHsENUCCG2pbgGhV+42WWFRMBhAfCGqABDbUtgCBFK1bu7dBM/NtzHYAiHskCgMJKhxtAeI1sRgAQsFMDZCAwtUWgKJ18VN5GcDQEdQACShcbQGSvWhdPFVeBjB0LD8BCShcMyzJXLQu3iovAxg6ghogAYVrhmWoReu6ewzZz7Xr1/UXZT/XHtVKxUMRj5WXAQwdy09AAnLNsDg6Lge8ddufUIvWJfLSTTAJ0mwPBxIHQQ2QgFwzLIt2nAxo6/Zggi1al+i1bUiQBsyJ5ScgQYW7n5KraN0D025S8cTRAy45JfrSTbInSANmxUwNkMBi0RbADEs34Vy+AxA/CGqABBfttgBmWLoJ9/IdgPjA8hOAoJhl6Sbcy3cAYo+ZGgBBicTSTayq+tLVGzAXghoAQQn30k2st4bT1RswD5afAAQtXEs3VPUFEE7M1AAIyVCXbgJpyrl2b4Nm5ttYDgIQEIIaACEbytJNoFvD/78/NGnMiAzyXQAMiqAGQEwEuuX7mTca3f+dKG0YAMQGOTUAYiKULd/k2gAYCEENgJhwbQ0PZjEpUdowAIgNghoAMeHaGi4p6MDG1YYBAPoiqAEQM/62hgcintswAIgNEoUBxFT/reFtlzo9koP9ifc2DACiL6SZmk2bNikvL09Wq1WFhYU6dOjQgONra2tVWFgoq9WqCRMmaPPmzR7Pv/rqqyoqKtL111+v4cOHa9q0afrFL34x5PMCSAyureEPTLtJj341b8BcG4t6d0HRQRtAf0EHNbt27dKSJUu0atUq1dXVqaSkRGVlZWpubvY5vqmpSbNnz1ZJSYnq6uq0cuVKLV68WLt373aPGTVqlFatWiW73a4//vGP+va3v61vf/vb2r9/f8jnBZCYBsq1oYM2gIFYDMMIagvB9OnTVVBQoKqqKvexyZMna86cOaqsrPQav3z5cu3Zs0eNjZ9PJ5eXl+vUqVOy2+1+z1NQUKD77rtPzzzzTEjn9cXpdCorK0sdHR3KzMwM6DUAYiPWPaEAxI9Av7+Dyqnp6urSiRMn9NRTT3kcLy0t1eHDh32+xm63q7S01OPYrFmztHXrVl25ckVpaWkezxmGobfeekvvvvuu1q9fH/J5Jamzs1OdnZ3un51O5+A3CSAu0EEbQLCCCmra2trU3d2t7Oxsj+PZ2dlyOBw+X+NwOHyOv3r1qtra2pST0/sbV0dHh2666SZ1dnYqJSVFmzZt0syZM0M+ryRVVlZq7dq1wdwigDhCB20AwQgpUdhi8fxNyTAMr2ODje9/fMSIEaqvr9d///d/60c/+pEqKip08ODBIZ13xYoV6ujocD8++OCDAe8LAAAkrqBmasaMGaOUlBSv2ZHW1lavWRQXm83mc3xqaqpGj/78N7Bhw4bplltukSRNmzZNjY2Nqqys1Ne//vWQzitJGRkZysjICOYWAQBAggpqpiY9PV2FhYWqqanxOF5TU6MZM2b4fE1xcbHX+AMHDqioqMgrn6YvwzDc+TChnBeAuXX3GLKfa9ev6y/Kfq6dtgkAgi++V1FRoUceeURFRUUqLi7Wz372MzU3N6u8vFxS75LPxYsXtX37dkm9O51efPFFVVRU6IknnpDdbtfWrVu1c+dO93tWVlaqqKhIEydOVFdXl6qrq7V9+3aPnU6DnRdA8mBnFABfgg5q5s2bp/b2dj399NNqaWnRlClTVF1drXHjxkmSWlpaPGrH5OXlqbq6WkuXLtXGjRuVm5urF154QXPnznWP+fTTT/Xd735XH374oa655hpNmjRJO3bs0Lx58wI+L4DksO9MixbtOKn+8zKuDt5VDxcQ2ABJKug6NYmMOjVAYuvuMXTX+rc8Zmj6skiyZVn1++XfYOs3YCKBfn/T0BJAwjjW9LHfgEaigzeQ7AhqACSMQDtz08EbSE4ENQASRqCduengDSSnoBOFASBW7sgbpZwsqxwdl70ShaXPc2rC0cG7u8egRQOQYAhqACQMVwfvRTtOyiJ5BDbh7ODNlnEgMbH8BCCh3DslR1UPF8iW5bnEZMuyhmU7t2vLeP+EZNeW8X1nWob0/gAih5kaIEGwHPK5SHXw7u4xtHZvg8+lLUO9s0Fr9zZoZr4taf/sgXhGUAMkAJZDvEWig3cwW8bpHg7EH5afgDjHckj0sGUcSGwENUAcG2w5ROpdDqGZY3iwZRxIbAQ1QByjgm50ubaM+8uWsah32S8cW8YBhB9BDRDHWA6JLteWcUlegU04t4wDiAyCGiCOsRwSfZHeMg4gctj9BMSxaFbQxecitWUcQGQR1ABxLFoVdOEtElvGAUQWy09AnGM5BAACw0wNkABYDgGAwRHUAHFkoFYILIcAwMAIaoA4QSuExBDOHlz08wLCi6AGiAOuVgj9dzi5WiGQOxMfwhl4EsQC4UeiMBBjtEJIDOHswUU/LyAyCGqAGKMVQvwLZ+BJEAtEDkENEGO0Qoh/4Qw8CWKByCGnBogxWiHEv3AGnpEIYkk4BnoR1AAxRiuE+BfOwDPcQSwJx8DnWH4CYozO0PHPFXj6+xuwqDeQCCTwDOd7kXAMeCKoAeIArRDiWzgDz3C9FwnHgDeLYRhJ8y/e6XQqKytLHR0dyszMjPXlAF7IjYhv8VSnxn6uXfO3HBl03M4n7qQSNRJeoN/f5NQAcYRWCPEtnD24hvpe7JoDvBHUAEAQwhl4DuW92DUHeCOnBgASUDgTjgGzIKgBgATErjnAG0ENACQods0BnsipAYAEFs7kZSDREdQAQILwt+WfXXNAr5CWnzZt2qS8vDxZrVYVFhbq0KFDA46vra1VYWGhrFarJkyYoM2bN3s8v2XLFpWUlGjkyJEaOXKk7rnnHh07dsxjzJo1a2SxWDweNpstlMsHgISz70yL7lr/luZvOaInX6nX/C1HdNf6t6gaDPQRdFCza9cuLVmyRKtWrVJdXZ1KSkpUVlam5uZmn+Obmpo0e/ZslZSUqK6uTitXrtTixYu1e/du95iDBw9q/vz5evvtt2W323XzzTertLRUFy9e9HivW2+9VS0tLe7H6dOng718AEg4tEMAAhN0ReHp06eroKBAVVVV7mOTJ0/WnDlzVFlZ6TV++fLl2rNnjxobG93HysvLderUKdntdp/n6O7u1siRI/Xiiy9qwYIFknpnal5//XXV19cHc7keqCgMINF09xi6a/1bXgGNi6vh6e+Xf4M8GphWoN/fQc3UdHV16cSJEyotLfU4XlpaqsOHD/t8jd1u9xo/a9YsHT9+XFeuXPH5ms8++0xXrlzRqFGe9RXOnj2r3Nxc5eXl6aGHHtL58+cHvN7Ozk45nU6PBwAkkmNNH/sNaKTePk8tHZd1rOnj6F0UEKeCCmra2trU3d2t7Oxsj+PZ2dlyOBw+X+NwOHyOv3r1qtra2ny+5qmnntJNN92ke+65x31s+vTp2r59u/bv368tW7bI4XBoxowZam9v93u9lZWVysrKcj/Gjh0b6K0CQFygHQIQuJAShS0WzylOwzC8jg023tdxSXr22We1c+dOvfrqq7JaP6+9UFZWprlz52rq1Km655579MYbb0iSXn75Zb/nXbFihTo6OtyPDz74YPCbA4A4QjsEIHBBbekeM2aMUlJSvGZlWltbvWZjXGw2m8/xqampGj3acwvic889px//+Md68803ddtttw14LcOHD9fUqVN19uxZv2MyMjKUkZEx4PsAQDxztUNwdFyWrwRIV04N7RCAIGdq0tPTVVhYqJqaGo/jNTU1mjFjhs/XFBcXe40/cOCAioqKlJaW5j72k5/8RM8884z27dunoqKiQa+ls7NTjY2NysmhYiYA86IdAhC4oJefKioq9NJLL2nbtm1qbGzU0qVL1dzcrPLyckm9Sz6uHUtS706nCxcuqKKiQo2Njdq2bZu2bt2qZcuWucc8++yz+sEPfqBt27Zp/Pjxcjgccjgc+uSTT9xjli1bptraWjU1Neno0aN68MEH5XQ6tXDhwqHcPwDEPdohAIEJuqLwvHnz1N7erqefflotLS2aMmWKqqurNW7cOElSS0uLR82avLw8VVdXa+nSpdq4caNyc3P1wgsvaO7cue4xmzZtUldXlx588EGPc61evVpr1qyRJH344YeaP3++2tradMMNN+jOO+/UkSNH3OcFADOjHQIwuKDr1CQy6tQg2vyVtQcABC7Q7296PwERsu9Mi9bubfCoMZKTZdXq+/NZLgCACAhpSzeAgVHWHgCij6AGCLPuHkNr9zb43H7rOrZ2b4O6e5Jm5RcAooKgBggzytoDQGwQ1ABhRll7AIgNghogzChrDwCxQVADhJmrrL2/jdsW9e6Coqw9AIQXQQ0QZpS1B4DYIKgBIoCy9gAQfRTfAyKEsvYAEF0ENUAEpQyzqHji6FhfBgAkBZafAACAKTBTAwARRmNTIDoIagAggmhsCkQPy08AECE0NgWii6AGACKAxqZA9BHUAEAE0NgUiD5yaoAYIHHU/GhsCkQfQQ0QZSSOJgcamwLRx/ITEEUkjiaPoTQ27e4xZD/Xrl/XX5T9XDt5N0CAmKkBomSwxFGLehNHZ+bbWIoyAVdj00U7Tsoiefy9D9TYlJk8IHTM1ABRQuJo8gm2sWkkZvKY9UEyYaYGiBISR5NToI1NIzGTx6wPkg0zNUCUkDiavFyNTR+YdpOKJ472GZSEeyaP/C0kI4IaIEqGkjgK8wvnTB6F/5CsCGqAKHEljkryCmwGShxFcgjnTB75W0hWBDVAFAWbOIrkEc6ZPPK3kKxIFAaiLNDEUSSXULeA+0L+FpIVMzVADASSOIrkE66ZPPK3kKyYqQGAOBKOmbxwzvoAicRiGEbSpL87nU5lZWWpo6NDmZmZsb4cAIgo6tTALAL9/mamBgBMivwtJBuCGgAwMVf+FpAMSBQGAACmEFJQs2nTJuXl5clqtaqwsFCHDh0acHxtba0KCwtltVo1YcIEbd682eP5LVu2qKSkRCNHjtTIkSN1zz336NixY0M+LwAASB5BBzW7du3SkiVLtGrVKtXV1amkpERlZWVqbm72Ob6pqUmzZ89WSUmJ6urqtHLlSi1evFi7d+92jzl48KDmz5+vt99+W3a7XTfffLNKS0t18eLFkM8LAACSS9C7n6ZPn66CggJVVVW5j02ePFlz5sxRZWWl1/jly5drz549amxsdB8rLy/XqVOnZLfbfZ6ju7tbI0eO1IsvvqgFCxaEdF5f2P0EAEDiCfT7O6iZmq6uLp04cUKlpaUex0tLS3X48GGfr7Hb7V7jZ82apePHj+vKlSs+X/PZZ5/pypUrGjVqVMjnBQAAySWo3U9tbW3q7u5Wdna2x/Hs7Gw5HA6fr3E4HD7HX716VW1tbcrJ8a6V8NRTT+mmm27SPffcE/J5Jamzs1OdnZ3un51O58A3CAAAElZIicIWi2eNA8MwvI4NNt7XcUl69tlntXPnTr366quyWj1LhQd73srKSmVlZbkfY8eO9TsWAAAktqCCmjFjxiglJcVrdqS1tdVrFsXFZrP5HJ+amqrRoz1rJzz33HP68Y9/rAMHDui2224b0nklacWKFero6HA/Pvjgg4DuEwAAJJ6ggpr09HQVFhaqpqbG43hNTY1mzJjh8zXFxcVe4w8cOKCioiKlpaW5j/3kJz/RM888o3379qmoqGjI55WkjIwMZWZmejwAAIA5BV1RuKKiQo888oiKiopUXFysn/3sZ2publZ5ebmk3tmRixcvavv27ZJ6dzq9+OKLqqio0BNPPCG73a6tW7dq586d7vd89tln9cMf/lC/+tWvNH78ePeMzHXXXafrrrsuoPMCAIDkFnRQM2/ePLW3t+vpp59WS0uLpkyZourqao0bN06S1NLS4lE7Ji8vT9XV1Vq6dKk2btyo3NxcvfDCC5o7d657zKZNm9TV1aUHH3zQ41yrV6/WmjVrAjovAABIbnTpBgAAcS0idWoAAADiFUENAAAwhaBzagAAvnX3GDrW9LFaL13WjSOsuiNvlFKG+a+lBSC8CGoAIAz2nWnR2r0Naum47D6Wk2XV6vvzde8U78rpAMKP5ScAGKJ9Z1q0aMdJj4BGkhwdl7Vox0ntO9MSoysDkgtBDQAMQXePobV7G+RrG6nr2Nq9DeruSZqNpkDMENQAwBAca/rYa4amL0NSS8dlHWv6OHoXBSQpghoAGILWS/4DmlDGAQgdQQ0ADMGNI6xhHQcgdAQ1ADAEd+SNUk6WVf42blvUuwvqjrxR0bwsICkR1ADAEKQMs2j1/fmS5BXYuH5efX8+9WqAKCCoAYAhundKjqoeLpAty3OJyZZlVdXDBdSpAaKE4nsAEAb3TsnRzHwbFYWBGCKoAYAwSRlmUfHE0bG+DCBpsfwEAABMgZkaAEhCNN+EGRHUAECSofkmzIrlJwBIIjTfhJkR1ABAkqD5JsyOoAYAkgTNN2F2BDUAkCRovgmzI1EYCAN2kiAR0HwTZkdQAwwRO0mQKFzNNx0dl33m1VjU29qB5ptIVCw/AUPAThIkEppvwuwIaoAQsZMEiYjmmzAzlp+AEAWzk4R+QIgnNN+EWRHUACFiJwkSGc03YUYsPwEhYicJAMQXghogRK6dJP4m7C3q3QXFThIAiA6CGiBE7CSBGXX3GLKfa9ev6y/Kfq6dRHckFHJqgCFw7STpX6fGRp0aJCBqLiHRWQzDSJow3Ol0KisrSx0dHcrMzIz15cBEqCiMROequdT/C8H1r5jt3oilQL+/makBwoCdJEhkg9Vcsqi35tLMfBvBOuIaOTUAkOTo3g2zYKYGCALLTDAjai7BLEKaqdm0aZPy8vJktVpVWFioQ4cODTi+trZWhYWFslqtmjBhgjZv3uzx/DvvvKO5c+dq/Pjxslgs2rBhg9d7rFmzRhaLxeNhs9lCuXwgJPvOtOiu9W9p/pYjevKVes3fckR3rX+L/k5IeNRcglkEHdTs2rVLS5Ys0apVq1RXV6eSkhKVlZWpubnZ5/impibNnj1bJSUlqqur08qVK7V48WLt3r3bPeazzz7ThAkTtG7dugEDlVtvvVUtLS3ux+nTp4O9fCAkNK6EmVFzCWYRdFDz/PPP6zvf+Y4ef/xxTZ48WRs2bNDYsWNVVVXlc/zmzZt18803a8OGDZo8ebIef/xxPfbYY3ruuefcY77yla/oJz/5iR566CFlZGT4PXdqaqpsNpv7ccMNNwR7+UDQaFwJs6PmEswiqKCmq6tLJ06cUGlpqcfx0tJSHT582Odr7Ha71/hZs2bp+PHjunLlSlAXe/bsWeXm5iovL08PPfSQzp8/P+D4zs5OOZ1OjwcQLJIokQwG6949M99GUT7EvaAShdva2tTd3a3s7GyP49nZ2XI4HD5f43A4fI6/evWq2tralJMTWN2D6dOna/v27fqbv/kb/fnPf9a//Mu/aMaMGXrnnXc0erTvrbSVlZVau3ZtQO8P+EMSJZKFv+7dNQ0O3bX+LYryIe6FlChssXhOQRqG4XVssPG+jg+krKxMc+fO1dSpU3XPPffojTfekCS9/PLLfl+zYsUKdXR0uB8ffPBBwOcDXEiiRDJx1Vx6YNpNKp44WjUNDvLJkDCCCmrGjBmjlJQUr1mZ1tZWr9kYF5vN5nN8amqq3xmWQAwfPlxTp07V2bNn/Y7JyMhQZmamxwMIFkmUSFbkkyHRBBXUpKenq7CwUDU1NR7Ha2pqNGPGDJ+vKS4u9hp/4MABFRUVKS0tLcjL/VxnZ6caGxsDXr4CQkUSJZIV+WRINEEvP1VUVOill17Stm3b1NjYqKVLl6q5uVnl5eWSepd8FixY4B5fXl6uCxcuqKKiQo2Njdq2bZu2bt2qZcuWucd0dXWpvr5e9fX16urq0sWLF1VfX6/33nvPPWbZsmWqra1VU1OTjh49qgcffFBOp1MLFy4cyv0DARksiZK8ApgR+WRINEFXFJ43b57a29v19NNPq6WlRVOmTFF1dbXGjRsnSWppafGoWZOXl6fq6motXbpUGzduVG5url544QXNnTvXPeajjz7S7bff7v75ueee03PPPae7775bBw8elCR9+OGHmj9/vtra2nTDDTfozjvv1JEjR9znBSLNXxIlMzQwK/LJkGjo0g0A8Km7x9Bd69+So+Oyz7wai3pnK3+//BsE94ioQL+/aWgJAPCJfDIkGoIaAIBf5JMhkdClGwAwIPLJkCgIagAAg3IV5QPiGctPAADAFAhqAACAKRDUAAAAUyCoAQAApkCiMAAgLnT3GOywwpAQ1AAAYm7fmRat3dvg0UAzJ8uq1ffnUwsHAWP5CQAQU/vOtGjRjpNeHcEdHZe1aMdJ7TvTEqMrQ6IhqAEAxEx3j6G1ext89pZyHVu7t0HdPUnTphBDQFADAIiZY00fe83Q9GVIaum4rGNNH0fvopCwCGoAADHTesl/QBPKOCQ3ghoAQMzcOMI6+KAgxiG5EdQAAGLmjrxRysmyyt/GbYt6d0HdkTcqmpeFBEVQAwCImZRhFq2+P1+SvAIb18+r78+nXg0CQlADAIipe6fkqOrhAtmyPJeYbFlWVT1cQJ0aBIziewCAmLt3So5m5tuoKIwhIagBAMSFlGEWFU8cHevLQAIjqAF8oAcNACQeghqgH3rQAEBiIlEY6IMeNACQuAhqgL+iBw0AJDaCGuCv6EEDREd3jyH7uXb9uv6i7Ofa+UUBYUNODfBX9KABIo+cNUQSMzXAX9GDBogsctYQaQQ1wF/RgwaIHHLWEA0ENcBf0YMGiBxy1hANBDVIWr6SFelBA0QGOWuIBhKFkZQGS1akBw0QXuSsIRoIapB0XMmK/VfuXcmKrhkZetAA4ePKWXN0XPaZV2NR74woOWsYCpafkFRIVgRig5w1RANBDZIKyYpA7JCzhkhj+QlJhWRFILbIWUMkhTRTs2nTJuXl5clqtaqwsFCHDh0acHxtba0KCwtltVo1YcIEbd682eP5d955R3PnztX48eNlsVi0YcOGsJwX6I9kRSC8Qml5kDLMouKJo/XAtJtUPHE0AQ3CJuigZteuXVqyZIlWrVqluro6lZSUqKysTM3NzT7HNzU1afbs2SopKVFdXZ1WrlypxYsXa/fu3e4xn332mSZMmKB169bJZrOF5byALxTYA8Jn35kW3bX+Lc3fckRPvlKv+VuO6K71b1EZGDFjMQwjqIzI6dOnq6CgQFVVVe5jkydP1pw5c1RZWek1fvny5dqzZ48aGxvdx8rLy3Xq1CnZ7Xav8ePHj9eSJUu0ZMmSIZ3XF6fTqaysLHV0dCgzMzOg18B8XLufJHkkDLsCHdb2gcH520XI/0eIhEC/v4Oaqenq6tKJEydUWlrqcby0tFSHDx/2+Rq73e41ftasWTp+/LiuXLkSsfNKUmdnp5xOp8cDIFkRGBp2ESJeBZUo3NbWpu7ubmVnZ3scz87OlsPh8Pkah8Phc/zVq1fV1tamnJzBv0BCOa8kVVZWau3atYO+P5IPyYpA6ILZRUi9J0RTSLufLBbPD37DMLyODTbe1/Fwn3fFihWqqKhw/+x0OjV27NigzgnzciUrAggOuwgRr4IKasaMGaOUlBSv2ZHW1lavWRQXm83mc3xqaqpGjw7sCyWU80pSRkaGMjIyAjoHACAw7CJEvAoqpyY9PV2FhYWqqanxOF5TU6MZM2b4fE1xcbHX+AMHDqioqEhpaWkROy8AIDLYRYh4FfSW7oqKCr300kvatm2bGhsbtXTpUjU3N6u8vFxS75LPggUL3OPLy8t14cIFVVRUqLGxUdu2bdPWrVu1bNky95iuri7V19ervr5eXV1dunjxourr6/Xee+8FfF4AQHTQ8gDxKugt3VJvEbxnn31WLS0tmjJliv71X/9VX/va1yRJjz76qN5//30dPHjQPb62tlZLly7VO++8o9zcXC1fvtwjGHn//feVl5fndZ67777b430GOm8g2NINAOEzWLd7IFwC/f4OKahJVAQ1ABBe3T0GuwgRcYF+f9P7CQAQsoF2ERLwINoIagAAYcfSFGIhpIaWAAD442qh0L9An6PjshbtOElvKEQMQQ0AIGxooYBYIqgBAIRNMC0UgHAjqAEAhA0tFBBLJAoDAMImEi0U2EWFQBHUAADCxtVCwdFx2WdejUWSLYgWCuyiQjBYfgIAhE04WyiwiwrBIqgBAITVvVNyVPVwgWxZnktMtiyrqh4uCGiGhV1UCAXLTwCAsLt3So5m5ttCzoUJZheVv4rGSD4ENQCAiBiohcJg2EWFULD8BACIO5HYRQXzI6gBAMQd1y4qf4tVFvXuggp0FxWSA0ENACDuhHMXFZIHQQ0AIC6FYxcVkguJwgCAuDXUXVRILgQ1AIC4NpRdVEguLD8BAABTIKgBAACmQFADAABMgaAGAACYAkENAAAwBXY/AQCSRnePwfZwEyOoAQAkhX1nWrR2b4NH9++cLKtW359PIT+TYPkJAGB6+860aNGOkx4BjSQ5Oi5r0Y6T2nemJUZXhnAiqAEAmFp3j6G1extk+HjOdWzt3gZ19/gagURCUAPT6+4xZD/Xrl/XX5T9XDsfXECSOdb0sdcMTV+GpJaOyzrW9HH0LgoRQU4NTI01dACtl/wHNKGMQ/xipgamxRo6kJz6z86OGZ4R0OvaLnUyo5vgmKmBKQ22hm5R7xr6zHwb2zkBE/E1O2vLtOr6a9PU8dkVn58JkjTMIj3zRqP7Z2Z0ExMzNTAl1tCB5ONvdvbPzsv6y18DGn+/wvSfmGFGNzER1MCUWEMHkksgs7Mjr01TdqbnUpS/iVp2RSUmlp9gSjeOsIZ1HID407c6cNulzkFnZ//3syv65ePTNcxicb+m75KTr9e4ZnSLJ44O/w0g7EKaqdm0aZPy8vJktVpVWFioQ4cODTi+trZWhYWFslqtmjBhgjZv3uw1Zvfu3crPz1dGRoby8/P12muveTy/Zs0aWSwWj4fNZgvl8pEE7sgbpZwsq9+pZot618zvyBsVzcsCECb7zrTorvVvaf6WI3rylfoBg5O+2j7pVPHE0Xpg2k0aMyKwBGJmdBNH0EHNrl27tGTJEq1atUp1dXUqKSlRWVmZmpubfY5vamrS7NmzVVJSorq6Oq1cuVKLFy/W7t273WPsdrvmzZunRx55RKdOndIjjzyib33rWzp69KjHe916661qaWlxP06fPh3s5SNJpAyzaPX9+ZK819BdP6++P58kYSAB+cudCUTf2dlAZ2rZFZU4LIZhBPU3NH36dBUUFKiqqsp9bPLkyZozZ44qKyu9xi9fvlx79uxRY+PnUXR5eblOnTolu90uSZo3b56cTqd+85vfuMfce++9GjlypHbu3Cmpd6bm9ddfV319fVA32JfT6VRWVpY6OjqUmZkZ8vsgcVCnBjCX7h5Dd61/K+iAxiLJlmXV75d/w/3LjOu9HB2XB9wV1TeO4fMjNgL9/g5qpqarq0snTpxQaWmpx/HS0lIdPnzY52vsdrvX+FmzZun48eO6cuXKgGP6v+fZs2eVm5urvLw8PfTQQzp//nwwl48kdO+UHP1++Te084k79dOHpmnnE3fq98u/wQcSkKAG29noi7/Z2YFmdF3YFZVYggpq2tra1N3drezsbI/j2dnZcjgcPl/jcDh8jr969ara2toGHNP3PadPn67t27dr//792rJlixwOh2bMmKH29na/19vZ2Smn0+nxQPJJGWZxr6EXTxzNkhOQwELJb7FlWVX1cIHPX2bunZKjqocLZMvyXIpiV1RiCmn3k8Xi+bdtGIbXscHG9z8+2HuWlZW5/3vq1KkqLi7WxIkT9fLLL6uiosLneSsrK7V27dpB7gYAkCgCzYP54X2TNWZEhm4c0bshYKBfZu6dkqOZ+TaPnVTsikpMQQU1Y8aMUUpKitesTGtrq9dMi4vNZvM5PjU1VaNHjx5wjL/3lKThw4dr6tSpOnv2rN8xK1as8Ah4nE6nxo4d63c8ACC+uXY2+suDceXOPPrVvKBmZV0zupL06/qLAb2GXVHxJ6jlp/T0dBUWFqqmpsbjeE1NjWbMmOHzNcXFxV7jDxw4oKKiIqWlpQ04xt97Sr1LS42NjcrJ8Z8bkZGRoczMTI8HACBxRWNnI3WuElfQW7orKir00ksvadu2bWpsbNTSpUvV3Nys8vJySb2zIwsWLHCPLy8v14ULF1RRUaHGxkZt27ZNW7du1bJly9xjnnzySR04cEDr16/Xn/70J61fv15vvvmmlixZ4h6zbNky1dbWqqmpSUePHtWDDz4op9OphQsXDuH2AQCJxl8ezEC5M8GgzlXiCjqnZt68eWpvb9fTTz+tlpYWTZkyRdXV1Ro3bpwkqaWlxaNmTV5enqqrq7V06VJt3LhRubm5euGFFzR37lz3mBkzZuiVV17RD37wA/3whz/UxIkTtWvXLk2fPt095sMPP9T8+fPV1tamG264QXfeeaeOHDniPi8AIHn0z4MJJHcmUK7ZoEU7TsoieSxzUecqvgVdpyaRUacGABAo6lzFj0C/v+n9BACAD5GcDUJkENQgbvVtVseHCYBY6LsrCvGPoAZxiWlfAECwQurSDUSSv2Z1lCcHAAyEoAZxpbvH0Nq9DT6LalGeHEC86O4xZD/XTvfuOMPyE+LKYM3qKE8OINZYHo9fzNQgrgRadpzy5ABigeXx+EZQg7hCeXIA8Yrl8fhHUIOoCHT9mfLkAOJVMMvjiA1yahBxwaw/D6U8OXVtAEQSy+Pxj6AGEeVaf+4/L+Naf974D7dr5PAMj0DE1ayufyBkGyARj8Q9AJHG8nj8o/cTIqa7x9Bd698acLp2mEXquxLVNxAJdObFX+DkGhmOrr0A4PpMc3Rc9plXY5GUnZmh//OtaWr7pJMZ4zAK9PuboAYRYz/XrvlbjgT1mmADkcECJ4t6Z3h+v/wbfLAAGDLXL1GS9/K4Ien6a9P0l8+uuI8zYxwegX5/kyiMiAllXTnYHQQk7gGIJtfyuC3Lc4kp69o0SfIIaKShbfWmwF/wyKlBxIS6rhxMgT0S9wBEW//u3WOGZ+if/+OUpCteYw31zuKs3dugmfm2gGeMB8oTpHO4fwQ1iBjX9mx/68+DCSQQIXEPQCz07d5tP9cuhzN8ldAH2mBRvuMkS1wDYPkJEePani3Jb92ZgfgLRPpOyfYYhmyZGdS1ARAz4ZwxDqTAXziXuMyGmRpElL/t2f13PfXlSu71FYj4mpK9/to09xRvMHVtACAcwjljPFieoC+hLnGZEUENIq7/+vONI6z630+79L1f+d5BIPkORPxNyXb89beWrH5TsgPVtQGAcBlsqd211bvHMPTr+osD5sGEmv9Hs99eBDWIir7rzy5VwwIvsDfYlKxF0jVpKdr4nQK1fUp9CADRM1gldEPS5as9+seXjrqP+8uDGWr+X7JviiCoQcz4msHxF4gEunV72DCLHph2UwSvGgC8+Vtqd80g+8uD6V+Ta6gbLJJ9UwRBjQklUg8kXzM4vrB1G0C8C3Wr9zcmZevEhf91f2b/8L7J+t6v6rxmfQYyUC5iMiGoMRmz9kBi6zaARBDKVu87K3+rjz/tch/PybLq//lanvacavHaFPGXz66wKWIABDUmMljzyETugRRIIh6/pQCIJ4HOHPcNaKTez+yf/a5JG/+hQCOHp3vMutc0OPzmIs7Mt8l+rj0hZukjhaDGJAJJpE3k7X6DJeJJ/JYCIL4Mpaq6RdIzbzR49a3zl4tY0+Dw6oNnhln6YFF8zySSoQeSv54rtixrQs9CATAn1wxzKL9qDfSZ7VriemDaTSqeOFo1DQ4t2nHS6zsgGYvyMVOTAAJJ/E2WRNpgdkwBQCwNNMMcqME+s80+Sx8sgpo4F2jibzIl0ga6YwoAYs3fVu9Rw9P08afeu6L6G+wzO5hZ+mT43CSoiWPBJP6SSAsA8cnXDHPhuJG6+ydvD/kzO1lm6QNFTk2cCqSp2dq9Der+awOlgZpHkkgLALHVPw8mPXVYWD6zk2mWPhAENUPUt2O0/Vy7O8gYqlASf0mkBYDEEY7P7MGSkS2SbH36ToXzeyoesfw0BKEUuhso6bfvc2f/fCmga+g/pRjrRNpEqmYMALE21M/scPad6svfZ3mwx6PNYhiGeUO2fpxOp7KystTR0aHMzMwhvZe/fBfXX+HGf7hdI4dnDFo0yfWPS5LXc4HY+cSdASd/BRpQhfoP0qzVjAEg3vn6/HVVIO7P9cle9XCB35o3vj7L/+8v53hVOR7oeDg/+wP9/iaoCUF3j+FV5Ki/YRap7wzfQP+4QvkLcLWy/z/fmqa2TwbvSj1QwCF5B1Q5fSpUBhKV/++nnfrer+r8BnksfwFAZPX9XHb1nfLXpsGi3mab1tQUjzH+vquCFe7PfoIaH8IV1NjPtWv+liNhvLLguAKh/v/4/EXGA80q+fvLH+gcvqLy/kFc//eyZVm9KmMCACIj1t9TUng/+wP9/g4pUXjTpk3Ky8uT1WpVYWGhDh06NOD42tpaFRYWymq1asKECdq8ebPXmN27dys/P18ZGRnKz8/Xa6+9NuTzRkqst8ZlXZsmSX5b2fetHhnILipfXM/1P0dLx2X9+++avGapBso7M0M1YwBIJLH+npJi89kfdFCza9cuLVmyRKtWrVJdXZ1KSkpUVlam5uZmn+Obmpo0e/ZslZSUqK6uTitXrtTixYu1e/du9xi73a558+bpkUce0alTp/TII4/oW9/6lo4e/TyxKdjzRlIstsZ9//+6RT99aJp++Z3psqam+Bzja6v3YLuooike/icDgGQQT1u4o/nZH3RQ8/zzz+s73/mOHn/8cU2ePFkbNmzQ2LFjVVVV5XP85s2bdfPNN2vDhg2aPHmyHn/8cT322GN67rnn3GM2bNigmTNnasWKFZo0aZJWrFihb37zm9qwYUPI542kofTzCNVXbxmjB6bdpGHDLAG1sndFxvEUSMTT/2QAYGax+J7yJ5qf/UEFNV1dXTpx4oRKS0s9jpeWlurw4cM+X2O3273Gz5o1S8ePH9eVK1cGHON6z1DOK0mdnZ1yOp0ej3AYqNBduFnUm8fiqioZbPXIeAgk+t8DACCyovk95U8sPvuDCmra2trU3d2t7Oxsj+PZ2dlyOBw+X+NwOHyOv3r1qtra2gYc43rPUM4rSZWVlcrKynI/xo4dG9iNBsBf0aRgc6Esfv677899q0oGWz0y1tE61YwBIDb8FvfLzND116ZF9HshVp/9IRXfs1g8L9AwDK9jg43vfzyQ9wz2vCtWrFBFRYX7Z6fTGfbApv+W5//9tEvf+9XJ3uvre+3yvZvINsC2apuP3UzB9ngKpDBT//8eiv67oHzdAwAgOvwV96tpcAz4vRDozld/x2P12R9UUDNmzBilpKR4zY60trZ6zaK42Gw2n+NTU1M1evToAce43jOU80pSRkaGMjIyAru5EPnqGF01zLsjq22Qui+SAqoqOViQInlHxv66xA4UULn+QQca7LjO9uL8Ao0cnh7zqpIAgF6+vqcG+17w9330/947Oajj0RZ0nZrp06ersLBQmzZtch/Lz8/XAw88oMrKSq/xy5cv1969e9XQ0OA+tmjRItXX18tut0uS5s2bp0uXLqm6uto9pqysTNdff7127twZ0nl9CWdF4cFEumR0JFs0hFpVkhkZAEgs8dLeYDABf38bQXrllVeMtLQ0Y+vWrUZDQ4OxZMkSY/jw4cb7779vGIZhPPXUU8YjjzziHn/+/Hnj2muvNZYuXWo0NDQYW7duNdLS0oz//M//dI/5wx/+YKSkpBjr1q0zGhsbjXXr1hmpqanGkSNHAj5vIDo6OgxJRkdHR7C3HZeudvcYh99rM16v+9A4/F6bcbW7J2rniMa5AQAwjMC/v4MOagzDMDZu3GiMGzfOSE9PNwoKCoza2lr3cwsXLjTuvvtuj/EHDx40br/9diM9Pd0YP368UVVV5fWe//Ef/2F86UtfMtLS0oxJkyYZu3fvDuq8gTBbUAMAQDII9PubNgkAACCuRbRNAgAAQLwhqAEAAKZAUAMAAEyBoAYAAJgCQQ0AADAFghoAAGAKBDUAAMAUCGoAAIAphNSlO1G56gw6nc4YXwkAAAiU63t7sHrBSRXUXLp0SZI0duzYGF8JAAAI1qVLl5SVleX3+aRqk9DT06OPPvpII0aMkMUSfBdSp9OpsWPH6oMPPkiqNgvcd/LcdzLes8R9c9/ml+j3bBiGLl26pNzcXA0b5j9zJqlmaoYNG6YvfOELQ36fzMzMhPxHMVTcd/JIxnuWuO9kk4z3ncj3PNAMjQuJwgAAwBQIagAAgCkQ1AQhIyNDq1evVkZGRqwvJaq47+S572S8Z4n75r7NL1nuOakShQEAgHkxUwMAAEyBoAYAAJgCQQ0AADAFghoAAGAKBDUB2rRpk/Ly8mS1WlVYWKhDhw7F+pLC6ne/+53uv/9+5ebmymKx6PXXX/d43jAMrVmzRrm5ubrmmmv09a9/Xe+8805sLjaMKisr9ZWvfEUjRozQjTfeqDlz5ujdd9/1GGO2e6+qqtJtt93mLsJVXFys3/zmN+7nzXa//lRWVspisWjJkiXuY2a89zVr1shisXg8bDab+3kz3rPLxYsX9fDDD2v06NG69tprNW3aNJ04ccL9vBnvffz48V5/3xaLRd/73vckmfOePRgY1CuvvGKkpaUZW7ZsMRoaGownn3zSGD58uHHhwoVYX1rYVFdXG6tWrTJ2795tSDJee+01j+fXrVtnjBgxwti9e7dx+vRpY968eUZOTo7hdDpjc8FhMmvWLOPnP/+5cebMGaO+vt647777jJtvvtn45JNP3GPMdu979uwx3njjDePdd9813n33XWPlypVGWlqacebMGcMwzHe/vhw7dswYP368cdtttxlPPvmk+7gZ73316tXGrbfearS0tLgfra2t7ufNeM+GYRgff/yxMW7cOOPRRx81jh49ajQ1NRlvvvmm8d5777nHmPHeW1tbPf6ua2pqDEnG22+/bRiGOe+5L4KaANxxxx1GeXm5x7FJkyYZTz31VIyuKLL6BzU9PT2GzWYz1q1b5z52+fJlIysry9i8eXMMrjByWltbDUlGbW2tYRjJc+8jR440XnrppaS430uXLhlf/OIXjZqaGuPuu+92BzVmvffVq1cbX/7yl30+Z9Z7NgzDWL58uXHXXXf5fd7M997Xk08+aUycONHo6elJintm+WkQXV1dOnHihEpLSz2Ol5aW6vDhwzG6quhqamqSw+Hw+DPIyMjQ3Xffbbo/g46ODknSqFGjJJn/3ru7u/XKK6/o008/VXFxsenvV5K+973v6b777tM999zjcdzM93727Fnl5uYqLy9PDz30kM6fPy/J3Pe8Z88eFRUV6e///u9144036vbbb9eWLVvcz5v53l26urq0Y8cOPfbYY7JYLElxzwQ1g2hra1N3d7eys7M9jmdnZ8vhcMToqqLLdZ9m/zMwDEMVFRW66667NGXKFEnmvffTp0/ruuuuU0ZGhsrLy/Xaa68pPz/ftPfr8sorr+jkyZOqrKz0es6s9z59+nRt375d+/fv15YtW+RwODRjxgy1t7eb9p4l6fz586qqqtIXv/hF7d+/X+Xl5Vq8eLG2b98uybx/3329/vrr+stf/qJHH31UUnLcc1J16R4Ki8Xi8bNhGF7HzM7sfwbf//739cc//lG///3vvZ4z271/6UtfUn19vf7yl79o9+7dWrhwoWpra93Pm+1+JemDDz7Qk08+qQMHDshqtfodZ7Z7Lysrc//31KlTVVxcrIkTJ+rll1/WnXfeKcl89yxJPT09Kioq0o9//GNJ0u2336533nlHVVVVWrBggXucGe/dZevWrSorK1Nubq7HcTPfMzM1gxgzZoxSUlK8otjW1lavaNesXDslzPxn8E//9E/as2eP3n77bX3hC19wHzfrvaenp+uWW25RUVGRKisr9eUvf1k//elPTXu/knTixAm1traqsLBQqampSk1NVW1trV544QWlpqa678+M997X8OHDNXXqVJ09e9bUf985OTnKz8/3ODZ58mQ1NzdLMu//2y4XLlzQm2++qccff9x9zOz3LBHUDCo9PV2FhYWqqanxOF5TU6MZM2bE6KqiKy8vTzabzePPoKurS7W1tQn/Z2AYhr7//e/r1Vdf1VtvvaW8vDyP5818730ZhqHOzk5T3+83v/lNnT59WvX19e5HUVGR/vEf/1H19fWaMGGCae+9r87OTjU2NionJ8fUf99f/epXvcoz/M///I/GjRsnyfz/b//85z/XjTfeqPvuu899zOz3LIkt3YFwbeneunWr0dDQYCxZssQYPny48f7778f60sLm0qVLRl1dnVFXV2dIMp5//nmjrq7OvW193bp1RlZWlvHqq68ap0+fNubPn2+KbYCLFi0ysrKyjIMHD3psg/zss8/cY8x27ytWrDB+97vfGU1NTcYf//hHY+XKlcawYcOMAwcOGIZhvvsdSN/dT4Zhznv/53/+Z+PgwYPG+fPnjSNHjhh/+7d/a4wYMcL9+WXGezaM3m37qampxo9+9CPj7Nmzxi9/+Uvj2muvNXbs2OEeY9Z77+7uNm6++WZj+fLlXs+Z9Z5dCGoCtHHjRmPcuHFGenq6UVBQ4N7yaxZvv/22IcnrsXDhQsMwerc/rl692rDZbEZGRobxta99zTh9+nRsLzoMfN2zJOPnP/+5e4zZ7v2xxx5z/1u+4YYbjG9+85vugMYwzHe/A+kf1Jjx3l11SNLS0ozc3Fzj7/7u74x33nnH/bwZ79ll7969xpQpU4yMjAxj0qRJxs9+9jOP58167/v37zckGe+++67Xc2a9ZxeLYRhGTKaIAAAAwoicGgAAYAoENQAAwBQIagAAgCkQ1AAAAFMgqAEAAKZAUAMAAEyBoAYAAJgCQQ0AADAFghoAAGAKBDUAAMAUCGoAAIApENQAAABT+P8B66dE3hSYDvsAAAAASUVORK5CYII=",
460
+ "text/plain": [
461
+ "<Figure size 640x480 with 1 Axes>"
462
+ ]
463
+ },
464
+ "metadata": {},
465
+ "output_type": "display_data"
466
+ }
467
+ ],
468
+ "source": [
469
+ "plt.scatter(w['demand'], w['probability'])"
470
+ ]
471
+ },
472
+ {
473
+ "cell_type": "code",
474
+ "execution_count": 43,
475
+ "id": "d1bf1d32-58e6-4d03-89ca-129ee7371cff",
476
+ "metadata": {},
477
+ "outputs": [
478
+ {
479
+ "data": {
480
+ "text/plain": [
481
+ "{'product': {'263': 'Wedding Cake',\n",
482
+ " '261': 'Wedding Cake',\n",
483
+ " '259': 'Wedding Cake',\n",
484
+ " '269': 'Wedding Cake',\n",
485
+ " '264': 'Wedding Cake',\n",
486
+ " '268': 'Wedding Cake',\n",
487
+ " '258': 'Wedding Cake',\n",
488
+ " '260': 'Wedding Cake',\n",
489
+ " '257': 'Wedding Cake',\n",
490
+ " '270': 'Wedding Cake',\n",
491
+ " '262': 'Wedding Cake',\n",
492
+ " '265': 'Wedding Cake',\n",
493
+ " '266': 'Wedding Cake',\n",
494
+ " '267': 'Wedding Cake',\n",
495
+ " '271': 'Wedding Cake',\n",
496
+ " '161': 'Special Cake',\n",
497
+ " '46': 'White Bread',\n",
498
+ " '256': 'Wedding Cake',\n",
499
+ " '255': 'Wedding Cake',\n",
500
+ " '275': 'Wedding Cake',\n",
501
+ " '272': 'Wedding Cake',\n",
502
+ " '34': 'White Bread',\n",
503
+ " '149': 'Special Cake',\n",
504
+ " '278': 'Wedding Cake',\n",
505
+ " '159': 'Special Cake',\n",
506
+ " '44': 'White Bread',\n",
507
+ " '35': 'White Bread',\n",
508
+ " '150': 'Special Cake',\n",
509
+ " '277': 'Wedding Cake',\n",
510
+ " '36': 'White Bread',\n",
511
+ " '151': 'Special Cake',\n",
512
+ " '253': 'Wedding Cake',\n",
513
+ " '43': 'White Bread',\n",
514
+ " '158': 'Special Cake',\n",
515
+ " '274': 'Wedding Cake',\n",
516
+ " '157': 'Special Cake',\n",
517
+ " '42': 'White Bread',\n",
518
+ " '162': 'Special Cake',\n",
519
+ " '47': 'White Bread',\n",
520
+ " '254': 'Wedding Cake',\n",
521
+ " '154': 'Special Cake',\n",
522
+ " '39': 'White Bread',\n",
523
+ " '276': 'Wedding Cake',\n",
524
+ " '163': 'Special Cake',\n",
525
+ " '48': 'White Bread',\n",
526
+ " '279': 'Wedding Cake',\n",
527
+ " '153': 'Special Cake',\n",
528
+ " '38': 'White Bread',\n",
529
+ " '152': 'Special Cake',\n",
530
+ " '37': 'White Bread',\n",
531
+ " '45': 'White Bread',\n",
532
+ " '160': 'Special Cake',\n",
533
+ " '164': 'Special Cake',\n",
534
+ " '49': 'White Bread',\n",
535
+ " '40': 'White Bread',\n",
536
+ " '155': 'Special Cake',\n",
537
+ " '41': 'White Bread',\n",
538
+ " '156': 'Special Cake',\n",
539
+ " '166': 'Special Cake',\n",
540
+ " '51': 'White Bread',\n",
541
+ " '273': 'Wedding Cake',\n",
542
+ " '82': 'White Bread',\n",
543
+ " '197': 'Special Cake',\n",
544
+ " '79': 'White Bread',\n",
545
+ " '194': 'Special Cake',\n",
546
+ " '81': 'White Bread',\n",
547
+ " '196': 'Special Cake',\n",
548
+ " '182': 'Special Cake',\n",
549
+ " '67': 'White Bread',\n",
550
+ " '52': 'White Bread',\n",
551
+ " '167': 'Special Cake',\n",
552
+ " '50': 'White Bread',\n",
553
+ " '165': 'Special Cake',\n",
554
+ " '280': 'Wedding Cake',\n",
555
+ " '80': 'White Bread',\n",
556
+ " '195': 'Special Cake',\n",
557
+ " '252': 'Wedding Cake',\n",
558
+ " '85': 'White Bread',\n",
559
+ " '200': 'Special Cake',\n",
560
+ " '199': 'Special Cake',\n",
561
+ " '84': 'White Bread',\n",
562
+ " '281': 'Wedding Cake',\n",
563
+ " '183': 'Special Cake',\n",
564
+ " '68': 'White Bread',\n",
565
+ " '251': 'Wedding Cake',\n",
566
+ " '181': 'Special Cake',\n",
567
+ " '66': 'White Bread',\n",
568
+ " '282': 'Wedding Cake',\n",
569
+ " '171': 'Special Cake',\n",
570
+ " '56': 'White Bread',\n",
571
+ " '33': 'White Bread',\n",
572
+ " '148': 'Special Cake',\n",
573
+ " '53': 'White Bread',\n",
574
+ " '168': 'Special Cake',\n",
575
+ " '173': 'Special Cake',\n",
576
+ " '58': 'White Bread',\n",
577
+ " '172': 'Special Cake',\n",
578
+ " '57': 'White Bread',\n",
579
+ " '60': 'White Bread',\n",
580
+ " '175': 'Special Cake',\n",
581
+ " '286': 'Wedding Cake',\n",
582
+ " '174': 'Special Cake',\n",
583
+ " '59': 'White Bread',\n",
584
+ " '198': 'Special Cake',\n",
585
+ " '83': 'White Bread',\n",
586
+ " '169': 'Special Cake',\n",
587
+ " '54': 'White Bread',\n",
588
+ " '86': 'White Bread',\n",
589
+ " '201': 'Special Cake',\n",
590
+ " '185': 'Special Cake',\n",
591
+ " '70': 'White Bread',\n",
592
+ " '184': 'Special Cake',\n",
593
+ " '69': 'White Bread',\n",
594
+ " '78': 'White Bread',\n",
595
+ " '193': 'Special Cake',\n",
596
+ " '250': 'Wedding Cake',\n",
597
+ " '71': 'White Bread',\n",
598
+ " '186': 'Special Cake',\n",
599
+ " '192': 'Special Cake',\n",
600
+ " '77': 'White Bread',\n",
601
+ " '191': 'Special Cake',\n",
602
+ " '76': 'White Bread',\n",
603
+ " '285': 'Wedding Cake',\n",
604
+ " '176': 'Special Cake',\n",
605
+ " '61': 'White Bread',\n",
606
+ " '249': 'Wedding Cake',\n",
607
+ " '74': 'White Bread',\n",
608
+ " '189': 'Special Cake',\n",
609
+ " '170': 'Special Cake',\n",
610
+ " '55': 'White Bread',\n",
611
+ " '190': 'Special Cake',\n",
612
+ " '75': 'White Bread',\n",
613
+ " '177': 'Special Cake',\n",
614
+ " '62': 'White Bread',\n",
615
+ " '283': 'Wedding Cake',\n",
616
+ " '188': 'Special Cake',\n",
617
+ " '73': 'White Bread',\n",
618
+ " '65': 'White Bread',\n",
619
+ " '180': 'Special Cake',\n",
620
+ " '187': 'Special Cake',\n",
621
+ " '72': 'White Bread',\n",
622
+ " '284': 'Wedding Cake',\n",
623
+ " '203': 'Special Cake',\n",
624
+ " '88': 'White Bread',\n",
625
+ " '63': 'White Bread',\n",
626
+ " '178': 'Special Cake',\n",
627
+ " '287': 'Wedding Cake',\n",
628
+ " '87': 'White Bread',\n",
629
+ " '202': 'Special Cake',\n",
630
+ " '32': 'White Bread',\n",
631
+ " '147': 'Special Cake',\n",
632
+ " '207': 'Special Cake',\n",
633
+ " '92': 'White Bread',\n",
634
+ " '290': 'Wedding Cake',\n",
635
+ " '90': 'White Bread',\n",
636
+ " '205': 'Special Cake',\n",
637
+ " '248': 'Wedding Cake',\n",
638
+ " '211': 'Special Cake',\n",
639
+ " '96': 'White Bread',\n",
640
+ " '89': 'White Bread',\n",
641
+ " '204': 'Special Cake',\n",
642
+ " '289': 'Wedding Cake',\n",
643
+ " '291': 'Wedding Cake',\n",
644
+ " '146': 'Special Cake',\n",
645
+ " '31': 'White Bread',\n",
646
+ " '64': 'White Bread',\n",
647
+ " '179': 'Special Cake',\n",
648
+ " '209': 'Special Cake',\n",
649
+ " '94': 'White Bread',\n",
650
+ " '288': 'Wedding Cake',\n",
651
+ " '224': 'Special Cake',\n",
652
+ " '109': 'White Bread',\n",
653
+ " '292': 'Wedding Cake',\n",
654
+ " '28': 'White Bread',\n",
655
+ " '143': 'Special Cake',\n",
656
+ " '30': 'White Bread',\n",
657
+ " '145': 'Special Cake',\n",
658
+ " '29': 'White Bread',\n",
659
+ " '144': 'Special Cake',\n",
660
+ " '208': 'Special Cake',\n",
661
+ " '93': 'White Bread',\n",
662
+ " '206': 'Special Cake',\n",
663
+ " '91': 'White Bread',\n",
664
+ " '223': 'Special Cake',\n",
665
+ " '108': 'White Bread',\n",
666
+ " '222': 'Special Cake',\n",
667
+ " '107': 'White Bread',\n",
668
+ " '220': 'Special Cake',\n",
669
+ " '105': 'White Bread',\n",
670
+ " '27': 'White Bread',\n",
671
+ " '142': 'Special Cake',\n",
672
+ " '245': 'Wedding Cake',\n",
673
+ " '95': 'White Bread',\n",
674
+ " '210': 'Special Cake',\n",
675
+ " '106': 'White Bread',\n",
676
+ " '221': 'Special Cake',\n",
677
+ " '26': 'White Bread',\n",
678
+ " '141': 'Special Cake',\n",
679
+ " '293': 'Wedding Cake',\n",
680
+ " '110': 'White Bread',\n",
681
+ " '225': 'Special Cake',\n",
682
+ " '112': 'White Bread',\n",
683
+ " '227': 'Special Cake',\n",
684
+ " '243': 'Wedding Cake',\n",
685
+ " '247': 'Wedding Cake',\n",
686
+ " '25': 'White Bread',\n",
687
+ " '140': 'Special Cake',\n",
688
+ " '244': 'Wedding Cake',\n",
689
+ " '294': 'Wedding Cake',\n",
690
+ " '212': 'Special Cake',\n",
691
+ " '97': 'White Bread',\n",
692
+ " '297': 'Wedding Cake',\n",
693
+ " '226': 'Special Cake',\n",
694
+ " '111': 'White Bread',\n",
695
+ " '298': 'Wedding Cake',\n",
696
+ " '246': 'Wedding Cake',\n",
697
+ " '104': 'White Bread',\n",
698
+ " '219': 'Special Cake',\n",
699
+ " '15': 'White Bread',\n",
700
+ " '130': 'Special Cake',\n",
701
+ " '295': 'Wedding Cake',\n",
702
+ " '296': 'Wedding Cake',\n",
703
+ " '237': 'Wedding Cake',\n",
704
+ " '113': 'White Bread',\n",
705
+ " '228': 'Special Cake',\n",
706
+ " '139': 'Special Cake',\n",
707
+ " '24': 'White Bread',\n",
708
+ " '218': 'Special Cake',\n",
709
+ " '103': 'White Bread',\n",
710
+ " '137': 'Special Cake',\n",
711
+ " '22': 'White Bread',\n",
712
+ " '299': 'Wedding Cake',\n",
713
+ " '131': 'Special Cake',\n",
714
+ " '16': 'White Bread',\n",
715
+ " '235': 'Wedding Cake',\n",
716
+ " '213': 'Special Cake',\n",
717
+ " '98': 'White Bread',\n",
718
+ " '120': 'Special Cake',\n",
719
+ " '5': 'White Bread',\n",
720
+ " '23': 'White Bread',\n",
721
+ " '138': 'Special Cake',\n",
722
+ " '7': 'White Bread',\n",
723
+ " '122': 'Special Cake',\n",
724
+ " '132': 'Special Cake',\n",
725
+ " '17': 'White Bread',\n",
726
+ " '129': 'Special Cake',\n",
727
+ " '14': 'White Bread',\n",
728
+ " '231': 'Wedding Cake',\n",
729
+ " '300': 'Wedding Cake',\n",
730
+ " '136': 'Special Cake',\n",
731
+ " '21': 'White Bread',\n",
732
+ " '242': 'Wedding Cake',\n",
733
+ " '8': 'White Bread',\n",
734
+ " '123': 'Special Cake',\n",
735
+ " '302': 'Wedding Cake',\n",
736
+ " '101': 'White Bread',\n",
737
+ " '216': 'Special Cake',\n",
738
+ " '9': 'White Bread',\n",
739
+ " '124': 'Special Cake',\n",
740
+ " '1': 'White Bread',\n",
741
+ " '116': 'Special Cake',\n",
742
+ " '233': 'Wedding Cake',\n",
743
+ " '234': 'Wedding Cake',\n",
744
+ " '303': 'Wedding Cake',\n",
745
+ " '13': 'White Bread',\n",
746
+ " '128': 'Special Cake',\n",
747
+ " '304': 'Wedding Cake',\n",
748
+ " '215': 'Special Cake',\n",
749
+ " '100': 'White Bread',\n",
750
+ " '20': 'White Bread',\n",
751
+ " '135': 'Special Cake',\n",
752
+ " '133': 'Special Cake',\n",
753
+ " '18': 'White Bread',\n",
754
+ " '3': 'White Bread',\n",
755
+ " '118': 'Special Cake',\n",
756
+ " '214': 'Special Cake',\n",
757
+ " '99': 'White Bread',\n",
758
+ " '232': 'Wedding Cake',\n",
759
+ " '217': 'Special Cake',\n",
760
+ " '102': 'White Bread',\n",
761
+ " '301': 'Wedding Cake',\n",
762
+ " '238': 'Wedding Cake',\n",
763
+ " '239': 'Wedding Cake',\n",
764
+ " '240': 'Wedding Cake',\n",
765
+ " '134': 'Special Cake',\n",
766
+ " '19': 'White Bread',\n",
767
+ " '4': 'White Bread',\n",
768
+ " '119': 'Special Cake',\n",
769
+ " '126': 'Special Cake',\n",
770
+ " '11': 'White Bread',\n",
771
+ " '117': 'Special Cake',\n",
772
+ " '2': 'White Bread',\n",
773
+ " '114': 'White Bread',\n",
774
+ " '229': 'Special Cake',\n",
775
+ " '236': 'Wedding Cake',\n",
776
+ " '241': 'Wedding Cake',\n",
777
+ " '121': 'Special Cake',\n",
778
+ " '6': 'White Bread',\n",
779
+ " '12': 'White Bread',\n",
780
+ " '127': 'Special Cake',\n",
781
+ " '125': 'Special Cake',\n",
782
+ " '10': 'White Bread'},\n",
783
+ " 'demand': {'263': 33,\n",
784
+ " '261': 31,\n",
785
+ " '259': 29,\n",
786
+ " '269': 39,\n",
787
+ " '264': 34,\n",
788
+ " '268': 38,\n",
789
+ " '258': 28,\n",
790
+ " '260': 30,\n",
791
+ " '257': 27,\n",
792
+ " '270': 40,\n",
793
+ " '262': 32,\n",
794
+ " '265': 35,\n",
795
+ " '266': 36,\n",
796
+ " '267': 37,\n",
797
+ " '271': 41,\n",
798
+ " '161': 46,\n",
799
+ " '46': 46,\n",
800
+ " '256': 26,\n",
801
+ " '255': 25,\n",
802
+ " '275': 45,\n",
803
+ " '272': 42,\n",
804
+ " '34': 34,\n",
805
+ " '149': 34,\n",
806
+ " '278': 48,\n",
807
+ " '159': 44,\n",
808
+ " '44': 44,\n",
809
+ " '35': 35,\n",
810
+ " '150': 35,\n",
811
+ " '277': 47,\n",
812
+ " '36': 36,\n",
813
+ " '151': 36,\n",
814
+ " '253': 23,\n",
815
+ " '43': 43,\n",
816
+ " '158': 43,\n",
817
+ " '274': 44,\n",
818
+ " '157': 42,\n",
819
+ " '42': 42,\n",
820
+ " '162': 47,\n",
821
+ " '47': 47,\n",
822
+ " '254': 24,\n",
823
+ " '154': 39,\n",
824
+ " '39': 39,\n",
825
+ " '276': 46,\n",
826
+ " '163': 48,\n",
827
+ " '48': 48,\n",
828
+ " '279': 49,\n",
829
+ " '153': 38,\n",
830
+ " '38': 38,\n",
831
+ " '152': 37,\n",
832
+ " '37': 37,\n",
833
+ " '45': 45,\n",
834
+ " '160': 45,\n",
835
+ " '164': 49,\n",
836
+ " '49': 49,\n",
837
+ " '40': 40,\n",
838
+ " '155': 40,\n",
839
+ " '41': 41,\n",
840
+ " '156': 41,\n",
841
+ " '166': 51,\n",
842
+ " '51': 51,\n",
843
+ " '273': 43,\n",
844
+ " '82': 82,\n",
845
+ " '197': 82,\n",
846
+ " '79': 79,\n",
847
+ " '194': 79,\n",
848
+ " '81': 81,\n",
849
+ " '196': 81,\n",
850
+ " '182': 67,\n",
851
+ " '67': 67,\n",
852
+ " '52': 52,\n",
853
+ " '167': 52,\n",
854
+ " '50': 50,\n",
855
+ " '165': 50,\n",
856
+ " '280': 50,\n",
857
+ " '80': 80,\n",
858
+ " '195': 80,\n",
859
+ " '252': 22,\n",
860
+ " '85': 85,\n",
861
+ " '200': 85,\n",
862
+ " '199': 84,\n",
863
+ " '84': 84,\n",
864
+ " '281': 51,\n",
865
+ " '183': 68,\n",
866
+ " '68': 68,\n",
867
+ " '251': 21,\n",
868
+ " '181': 66,\n",
869
+ " '66': 66,\n",
870
+ " '282': 52,\n",
871
+ " '171': 56,\n",
872
+ " '56': 56,\n",
873
+ " '33': 33,\n",
874
+ " '148': 33,\n",
875
+ " '53': 53,\n",
876
+ " '168': 53,\n",
877
+ " '173': 58,\n",
878
+ " '58': 58,\n",
879
+ " '172': 57,\n",
880
+ " '57': 57,\n",
881
+ " '60': 60,\n",
882
+ " '175': 60,\n",
883
+ " '286': 56,\n",
884
+ " '174': 59,\n",
885
+ " '59': 59,\n",
886
+ " '198': 83,\n",
887
+ " '83': 83,\n",
888
+ " '169': 54,\n",
889
+ " '54': 54,\n",
890
+ " '86': 86,\n",
891
+ " '201': 86,\n",
892
+ " '185': 70,\n",
893
+ " '70': 70,\n",
894
+ " '184': 69,\n",
895
+ " '69': 69,\n",
896
+ " '78': 78,\n",
897
+ " '193': 78,\n",
898
+ " '250': 20,\n",
899
+ " '71': 71,\n",
900
+ " '186': 71,\n",
901
+ " '192': 77,\n",
902
+ " '77': 77,\n",
903
+ " '191': 76,\n",
904
+ " '76': 76,\n",
905
+ " '285': 55,\n",
906
+ " '176': 61,\n",
907
+ " '61': 61,\n",
908
+ " '249': 19,\n",
909
+ " '74': 74,\n",
910
+ " '189': 74,\n",
911
+ " '170': 55,\n",
912
+ " '55': 55,\n",
913
+ " '190': 75,\n",
914
+ " '75': 75,\n",
915
+ " '177': 62,\n",
916
+ " '62': 62,\n",
917
+ " '283': 53,\n",
918
+ " '188': 73,\n",
919
+ " '73': 73,\n",
920
+ " '65': 65,\n",
921
+ " '180': 65,\n",
922
+ " '187': 72,\n",
923
+ " '72': 72,\n",
924
+ " '284': 54,\n",
925
+ " '203': 88,\n",
926
+ " '88': 88,\n",
927
+ " '63': 63,\n",
928
+ " '178': 63,\n",
929
+ " '287': 57,\n",
930
+ " '87': 87,\n",
931
+ " '202': 87,\n",
932
+ " '32': 32,\n",
933
+ " '147': 32,\n",
934
+ " '207': 92,\n",
935
+ " '92': 92,\n",
936
+ " '290': 60,\n",
937
+ " '90': 90,\n",
938
+ " '205': 90,\n",
939
+ " '248': 18,\n",
940
+ " '211': 96,\n",
941
+ " '96': 96,\n",
942
+ " '89': 89,\n",
943
+ " '204': 89,\n",
944
+ " '289': 59,\n",
945
+ " '291': 61,\n",
946
+ " '146': 31,\n",
947
+ " '31': 31,\n",
948
+ " '64': 64,\n",
949
+ " '179': 64,\n",
950
+ " '209': 94,\n",
951
+ " '94': 94,\n",
952
+ " '288': 58,\n",
953
+ " '224': 109,\n",
954
+ " '109': 109,\n",
955
+ " '292': 62,\n",
956
+ " '28': 28,\n",
957
+ " '143': 28,\n",
958
+ " '30': 30,\n",
959
+ " '145': 30,\n",
960
+ " '29': 29,\n",
961
+ " '144': 29,\n",
962
+ " '208': 93,\n",
963
+ " '93': 93,\n",
964
+ " '206': 91,\n",
965
+ " '91': 91,\n",
966
+ " '223': 108,\n",
967
+ " '108': 108,\n",
968
+ " '222': 107,\n",
969
+ " '107': 107,\n",
970
+ " '220': 105,\n",
971
+ " '105': 105,\n",
972
+ " '27': 27,\n",
973
+ " '142': 27,\n",
974
+ " '245': 15,\n",
975
+ " '95': 95,\n",
976
+ " '210': 95,\n",
977
+ " '106': 106,\n",
978
+ " '221': 106,\n",
979
+ " '26': 26,\n",
980
+ " '141': 26,\n",
981
+ " '293': 63,\n",
982
+ " '110': 110,\n",
983
+ " '225': 110,\n",
984
+ " '112': 112,\n",
985
+ " '227': 112,\n",
986
+ " '243': 13,\n",
987
+ " '247': 17,\n",
988
+ " '25': 25,\n",
989
+ " '140': 25,\n",
990
+ " '244': 14,\n",
991
+ " '294': 64,\n",
992
+ " '212': 97,\n",
993
+ " '97': 97,\n",
994
+ " '297': 67,\n",
995
+ " '226': 111,\n",
996
+ " '111': 111,\n",
997
+ " '298': 68,\n",
998
+ " '246': 16,\n",
999
+ " '104': 104,\n",
1000
+ " '219': 104,\n",
1001
+ " '15': 15,\n",
1002
+ " '130': 15,\n",
1003
+ " '295': 65,\n",
1004
+ " '296': 66,\n",
1005
+ " '237': 7,\n",
1006
+ " '113': 113,\n",
1007
+ " '228': 113,\n",
1008
+ " '139': 24,\n",
1009
+ " '24': 24,\n",
1010
+ " '218': 103,\n",
1011
+ " '103': 103,\n",
1012
+ " '137': 22,\n",
1013
+ " '22': 22,\n",
1014
+ " '299': 69,\n",
1015
+ " '131': 16,\n",
1016
+ " '16': 16,\n",
1017
+ " '235': 5,\n",
1018
+ " '213': 98,\n",
1019
+ " '98': 98,\n",
1020
+ " '120': 5,\n",
1021
+ " '5': 5,\n",
1022
+ " '23': 23,\n",
1023
+ " '138': 23,\n",
1024
+ " '7': 7,\n",
1025
+ " '122': 7,\n",
1026
+ " '132': 17,\n",
1027
+ " '17': 17,\n",
1028
+ " '129': 14,\n",
1029
+ " '14': 14,\n",
1030
+ " '231': 1,\n",
1031
+ " '300': 70,\n",
1032
+ " '136': 21,\n",
1033
+ " '21': 21,\n",
1034
+ " '242': 12,\n",
1035
+ " '8': 8,\n",
1036
+ " '123': 8,\n",
1037
+ " '302': 72,\n",
1038
+ " '101': 101,\n",
1039
+ " '216': 101,\n",
1040
+ " '9': 9,\n",
1041
+ " '124': 9,\n",
1042
+ " '1': 1,\n",
1043
+ " '116': 1,\n",
1044
+ " '233': 3,\n",
1045
+ " '234': 4,\n",
1046
+ " '303': 73,\n",
1047
+ " '13': 13,\n",
1048
+ " '128': 13,\n",
1049
+ " '304': 74,\n",
1050
+ " '215': 100,\n",
1051
+ " '100': 100,\n",
1052
+ " '20': 20,\n",
1053
+ " '135': 20,\n",
1054
+ " '133': 18,\n",
1055
+ " '18': 18,\n",
1056
+ " '3': 3,\n",
1057
+ " '118': 3,\n",
1058
+ " '214': 99,\n",
1059
+ " '99': 99,\n",
1060
+ " '232': 2,\n",
1061
+ " '217': 102,\n",
1062
+ " '102': 102,\n",
1063
+ " '301': 71,\n",
1064
+ " '238': 8,\n",
1065
+ " '239': 9,\n",
1066
+ " '240': 10,\n",
1067
+ " '134': 19,\n",
1068
+ " '19': 19,\n",
1069
+ " '4': 4,\n",
1070
+ " '119': 4,\n",
1071
+ " '126': 11,\n",
1072
+ " '11': 11,\n",
1073
+ " '117': 2,\n",
1074
+ " '2': 2,\n",
1075
+ " '114': 114,\n",
1076
+ " '229': 114,\n",
1077
+ " '236': 6,\n",
1078
+ " '241': 11,\n",
1079
+ " '121': 6,\n",
1080
+ " '6': 6,\n",
1081
+ " '12': 12,\n",
1082
+ " '127': 12,\n",
1083
+ " '125': 10,\n",
1084
+ " '10': 10},\n",
1085
+ " 'probability': {'263': 0.0368592173,\n",
1086
+ " '261': 0.0359488332,\n",
1087
+ " '259': 0.034826178,\n",
1088
+ " '269': 0.0345176881,\n",
1089
+ " '264': 0.0338754672,\n",
1090
+ " '268': 0.0336984278,\n",
1091
+ " '258': 0.0333003656,\n",
1092
+ " '260': 0.032756232,\n",
1093
+ " '257': 0.0325301611,\n",
1094
+ " '270': 0.032197924,\n",
1095
+ " '262': 0.0318970326,\n",
1096
+ " '265': 0.0311347815,\n",
1097
+ " '266': 0.030689652,\n",
1098
+ " '267': 0.0290920836,\n",
1099
+ " '271': 0.0283928783,\n",
1100
+ " '161': 0.028135825,\n",
1101
+ " '46': 0.028135825,\n",
1102
+ " '256': 0.0280648941,\n",
1103
+ " '255': 0.026794912,\n",
1104
+ " '275': 0.0267789487,\n",
1105
+ " '272': 0.0266978264,\n",
1106
+ " '34': 0.02649434,\n",
1107
+ " '149': 0.02649434,\n",
1108
+ " '278': 0.0261790284,\n",
1109
+ " '159': 0.0260993218,\n",
1110
+ " '44': 0.0260993218,\n",
1111
+ " '35': 0.0258797103,\n",
1112
+ " '150': 0.0258797103,\n",
1113
+ " '277': 0.0249885005,\n",
1114
+ " '36': 0.0247542848,\n",
1115
+ " '151': 0.0247542848,\n",
1116
+ " '253': 0.0237528724,\n",
1117
+ " '43': 0.0227409136,\n",
1118
+ " '158': 0.0227409136,\n",
1119
+ " '274': 0.0223511295,\n",
1120
+ " '157': 0.0218458294,\n",
1121
+ " '42': 0.0218458294,\n",
1122
+ " '162': 0.0218256638,\n",
1123
+ " '47': 0.0218256638,\n",
1124
+ " '254': 0.0217967443,\n",
1125
+ " '154': 0.0216395613,\n",
1126
+ " '39': 0.0216395613,\n",
1127
+ " '276': 0.0216095805,\n",
1128
+ " '163': 0.0215321773,\n",
1129
+ " '48': 0.0215321773,\n",
1130
+ " '279': 0.0213346388,\n",
1131
+ " '153': 0.0203048915,\n",
1132
+ " '38': 0.0203048915,\n",
1133
+ " '152': 0.020051612,\n",
1134
+ " '37': 0.020051612,\n",
1135
+ " '45': 0.0199892913,\n",
1136
+ " '160': 0.0199892913,\n",
1137
+ " '164': 0.0195399323,\n",
1138
+ " '49': 0.0195399323,\n",
1139
+ " '40': 0.019229393,\n",
1140
+ " '155': 0.019229393,\n",
1141
+ " '41': 0.0190548591,\n",
1142
+ " '156': 0.0190548591,\n",
1143
+ " '166': 0.018913738,\n",
1144
+ " '51': 0.018913738,\n",
1145
+ " '273': 0.0184784305,\n",
1146
+ " '82': 0.0182737867,\n",
1147
+ " '197': 0.0182737867,\n",
1148
+ " '79': 0.0180723397,\n",
1149
+ " '194': 0.0180723397,\n",
1150
+ " '81': 0.0179847392,\n",
1151
+ " '196': 0.0179847392,\n",
1152
+ " '182': 0.0177538496,\n",
1153
+ " '67': 0.0177538496,\n",
1154
+ " '52': 0.017304322,\n",
1155
+ " '167': 0.017304322,\n",
1156
+ " '50': 0.0172683526,\n",
1157
+ " '165': 0.0172683526,\n",
1158
+ " '280': 0.017080318,\n",
1159
+ " '80': 0.0165558467,\n",
1160
+ " '195': 0.0165558467,\n",
1161
+ " '252': 0.0164150156,\n",
1162
+ " '85': 0.0163239057,\n",
1163
+ " '200': 0.0163239057,\n",
1164
+ " '199': 0.0155502511,\n",
1165
+ " '84': 0.0155502511,\n",
1166
+ " '281': 0.0155468033,\n",
1167
+ " '183': 0.0153482999,\n",
1168
+ " '68': 0.0153482999,\n",
1169
+ " '251': 0.0150519811,\n",
1170
+ " '181': 0.0149100957,\n",
1171
+ " '66': 0.0149100957,\n",
1172
+ " '282': 0.0145321593,\n",
1173
+ " '171': 0.0145073305,\n",
1174
+ " '56': 0.0145073305,\n",
1175
+ " '33': 0.0143434204,\n",
1176
+ " '148': 0.0143434204,\n",
1177
+ " '53': 0.0139978926,\n",
1178
+ " '168': 0.0139978926,\n",
1179
+ " '173': 0.0137575929,\n",
1180
+ " '58': 0.0137575929,\n",
1181
+ " '172': 0.0133753577,\n",
1182
+ " '57': 0.0133753577,\n",
1183
+ " '60': 0.0132917234,\n",
1184
+ " '175': 0.0132917234,\n",
1185
+ " '286': 0.0128341354,\n",
1186
+ " '174': 0.0125602164,\n",
1187
+ " '59': 0.0125602164,\n",
1188
+ " '198': 0.0122586994,\n",
1189
+ " '83': 0.0122586994,\n",
1190
+ " '169': 0.0121257892,\n",
1191
+ " '54': 0.0121257892,\n",
1192
+ " '86': 0.0121178443,\n",
1193
+ " '201': 0.0121178443,\n",
1194
+ " '185': 0.0117735274,\n",
1195
+ " '70': 0.0117735274,\n",
1196
+ " '184': 0.0117612458,\n",
1197
+ " '69': 0.0117612458,\n",
1198
+ " '78': 0.011635456,\n",
1199
+ " '193': 0.011635456,\n",
1200
+ " '250': 0.01154316,\n",
1201
+ " '71': 0.0112493485,\n",
1202
+ " '186': 0.0112493485,\n",
1203
+ " '192': 0.0111785296,\n",
1204
+ " '77': 0.0111785296,\n",
1205
+ " '191': 0.0111410438,\n",
1206
+ " '76': 0.0111410438,\n",
1207
+ " '285': 0.0110507398,\n",
1208
+ " '176': 0.0105914583,\n",
1209
+ " '61': 0.0105914583,\n",
1210
+ " '249': 0.0105420966,\n",
1211
+ " '74': 0.0105078101,\n",
1212
+ " '189': 0.0105078101,\n",
1213
+ " '170': 0.0103408676,\n",
1214
+ " '55': 0.0103408676,\n",
1215
+ " '190': 0.0100856266,\n",
1216
+ " '75': 0.0100856266,\n",
1217
+ " '177': 0.0100635496,\n",
1218
+ " '62': 0.0100635496,\n",
1219
+ " '283': 0.0098274898,\n",
1220
+ " '188': 0.009615686,\n",
1221
+ " '73': 0.009615686,\n",
1222
+ " '65': 0.0089209082,\n",
1223
+ " '180': 0.0089209082,\n",
1224
+ " '187': 0.0088669788,\n",
1225
+ " '72': 0.0088669788,\n",
1226
+ " '284': 0.008681397,\n",
1227
+ " '203': 0.0085985317,\n",
1228
+ " '88': 0.0085985317,\n",
1229
+ " '63': 0.0083903575,\n",
1230
+ " '178': 0.0083903575,\n",
1231
+ " '287': 0.0079844742,\n",
1232
+ " '87': 0.0075161459,\n",
1233
+ " '202': 0.0075161459,\n",
1234
+ " '32': 0.0065831021,\n",
1235
+ " '147': 0.0065831021,\n",
1236
+ " '207': 0.0063411487,\n",
1237
+ " '92': 0.0063411487,\n",
1238
+ " '290': 0.0061494519,\n",
1239
+ " '90': 0.0060437383,\n",
1240
+ " '205': 0.0060437383,\n",
1241
+ " '248': 0.0057253414,\n",
1242
+ " '211': 0.0057178973,\n",
1243
+ " '96': 0.0057178973,\n",
1244
+ " '89': 0.0056477112,\n",
1245
+ " '204': 0.0056477112,\n",
1246
+ " '289': 0.0055459619,\n",
1247
+ " '291': 0.0054795932,\n",
1248
+ " '146': 0.0054244868,\n",
1249
+ " '31': 0.0054244868,\n",
1250
+ " '64': 0.0053959746,\n",
1251
+ " '179': 0.0053959746,\n",
1252
+ " '209': 0.0051360659,\n",
1253
+ " '94': 0.0051360659,\n",
1254
+ " '288': 0.0050816214,\n",
1255
+ " '224': 0.0048954825,\n",
1256
+ " '109': 0.0048954825,\n",
1257
+ " '292': 0.0047980717,\n",
1258
+ " '28': 0.0045802571,\n",
1259
+ " '143': 0.0045802571,\n",
1260
+ " '30': 0.0044781409,\n",
1261
+ " '145': 0.0044781409,\n",
1262
+ " '29': 0.0043621607,\n",
1263
+ " '144': 0.0043621607,\n",
1264
+ " '208': 0.0043273171,\n",
1265
+ " '93': 0.0043273171,\n",
1266
+ " '206': 0.0041276299,\n",
1267
+ " '91': 0.0041276299,\n",
1268
+ " '223': 0.0040755787,\n",
1269
+ " '108': 0.0040755787,\n",
1270
+ " '222': 0.0039335012,\n",
1271
+ " '107': 0.0039335012,\n",
1272
+ " '220': 0.0038894774,\n",
1273
+ " '105': 0.0038894774,\n",
1274
+ " '27': 0.00385749,\n",
1275
+ " '142': 0.00385749,\n",
1276
+ " '245': 0.0036740912,\n",
1277
+ " '95': 0.0036275468,\n",
1278
+ " '210': 0.0036275468,\n",
1279
+ " '106': 0.0035281844,\n",
1280
+ " '221': 0.0035281844,\n",
1281
+ " '26': 0.0033199252,\n",
1282
+ " '141': 0.0033199252,\n",
1283
+ " '293': 0.0032641712,\n",
1284
+ " '110': 0.0031606894,\n",
1285
+ " '225': 0.0031606894,\n",
1286
+ " '112': 0.002931355,\n",
1287
+ " '227': 0.002931355,\n",
1288
+ " '243': 0.0029177054,\n",
1289
+ " '247': 0.0027665343,\n",
1290
+ " '25': 0.0026568393,\n",
1291
+ " '140': 0.0026568393,\n",
1292
+ " '244': 0.0026502146,\n",
1293
+ " '294': 0.0025965544,\n",
1294
+ " '212': 0.002554393,\n",
1295
+ " '97': 0.002554393,\n",
1296
+ " '297': 0.0022778517,\n",
1297
+ " '226': 0.0022694948,\n",
1298
+ " '111': 0.0022694948,\n",
1299
+ " '298': 0.0022332029,\n",
1300
+ " '246': 0.00198394,\n",
1301
+ " '104': 0.0019647995,\n",
1302
+ " '219': 0.0019647995,\n",
1303
+ " '15': 0.0019036542,\n",
1304
+ " '130': 0.0019036542,\n",
1305
+ " '295': 0.0018337038,\n",
1306
+ " '296': 0.0014691137,\n",
1307
+ " '237': 0.0014035503,\n",
1308
+ " '113': 0.0013588412,\n",
1309
+ " '228': 0.0013588412,\n",
1310
+ " '139': 0.0013444622,\n",
1311
+ " '24': 0.0013444622,\n",
1312
+ " '218': 0.001279575,\n",
1313
+ " '103': 0.001279575,\n",
1314
+ " '137': 0.0012722084,\n",
1315
+ " '22': 0.0012722084,\n",
1316
+ " '299': 0.0012112573,\n",
1317
+ " '131': 0.0009974778,\n",
1318
+ " '16': 0.0009974778,\n",
1319
+ " '235': 0.0009420068,\n",
1320
+ " '213': 0.000899227,\n",
1321
+ " '98': 0.000899227,\n",
1322
+ " '120': 0.0007732343,\n",
1323
+ " '5': 0.0007732343,\n",
1324
+ " '23': 0.0007673017,\n",
1325
+ " '138': 0.0007673017,\n",
1326
+ " '7': 0.000579398,\n",
1327
+ " '122': 0.000579398,\n",
1328
+ " '132': 0.0005463021,\n",
1329
+ " '17': 0.0005463021,\n",
1330
+ " '129': 0.0005379338,\n",
1331
+ " '14': 0.0005379338,\n",
1332
+ " '231': 0.0004810596,\n",
1333
+ " '300': 0.0004541821,\n",
1334
+ " '136': 0.0004143761,\n",
1335
+ " '21': 0.0004143761,\n",
1336
+ " '242': 0.0004077686,\n",
1337
+ " '8': 0.000402153,\n",
1338
+ " '123': 0.000402153,\n",
1339
+ " '302': 0.0003903984,\n",
1340
+ " '101': 0.0003871625,\n",
1341
+ " '216': 0.0003871625,\n",
1342
+ " '9': 0.0003653594,\n",
1343
+ " '124': 0.0003653594,\n",
1344
+ " '1': 0.0003608402,\n",
1345
+ " '116': 0.0003608402,\n",
1346
+ " '233': 0.0003515124,\n",
1347
+ " '234': 0.0003474865,\n",
1348
+ " '303': 0.0003399258,\n",
1349
+ " '13': 0.0003227829,\n",
1350
+ " '128': 0.0003227829,\n",
1351
+ " '304': 0.0003183052,\n",
1352
+ " '215': 0.0003102312,\n",
1353
+ " '100': 0.0003102312,\n",
1354
+ " '20': 0.0003036225,\n",
1355
+ " '135': 0.0003036225,\n",
1356
+ " '133': 0.0002644347,\n",
1357
+ " '18': 0.0002644347,\n",
1358
+ " '3': 0.0002636676,\n",
1359
+ " '118': 0.0002636676,\n",
1360
+ " '214': 0.0002458838,\n",
1361
+ " '99': 0.0002458838,\n",
1362
+ " '232': 0.0002280527,\n",
1363
+ " '217': 0.0002082343,\n",
1364
+ " '102': 0.0002082343,\n",
1365
+ " '301': 0.0002049358,\n",
1366
+ " '238': 0.0002048074,\n",
1367
+ " '239': 0.0001971212,\n",
1368
+ " '240': 0.0001920457,\n",
1369
+ " '134': 0.0001910985,\n",
1370
+ " '19': 0.0001910985,\n",
1371
+ " '4': 0.0001887357,\n",
1372
+ " '119': 0.0001887357,\n",
1373
+ " '126': 0.0001747752,\n",
1374
+ " '11': 0.0001747752,\n",
1375
+ " '117': 0.0001710611,\n",
1376
+ " '2': 0.0001710611,\n",
1377
+ " '114': 0.0001586266,\n",
1378
+ " '229': 0.0001586266,\n",
1379
+ " '236': 0.0001076846,\n",
1380
+ " '241': 8.84724e-05,\n",
1381
+ " '121': 8.60457e-05,\n",
1382
+ " '6': 8.60457e-05,\n",
1383
+ " '12': 6.17417e-05,\n",
1384
+ " '127': 6.17417e-05,\n",
1385
+ " '125': 4.30096e-05,\n",
1386
+ " '10': 4.30096e-05}}"
1387
+ ]
1388
+ },
1389
+ "execution_count": 43,
1390
+ "metadata": {},
1391
+ "output_type": "execute_result"
1392
+ }
1393
+ ],
1394
+ "source": [
1395
+ "import json\n",
1396
+ "json.loads(res['probability_table'])"
1397
+ ]
1398
+ }
1399
+ ],
1400
+ "metadata": {
1401
+ "kernelspec": {
1402
+ "display_name": "timeseries",
1403
+ "language": "python",
1404
+ "name": "timeseries"
1405
+ },
1406
+ "language_info": {
1407
+ "codemirror_mode": {
1408
+ "name": "ipython",
1409
+ "version": 3
1410
+ },
1411
+ "file_extension": ".py",
1412
+ "mimetype": "text/x-python",
1413
+ "name": "python",
1414
+ "nbconvert_exporter": "python",
1415
+ "pygments_lexer": "ipython3",
1416
+ "version": "3.11.4"
1417
+ }
1418
+ },
1419
+ "nbformat": 4,
1420
+ "nbformat_minor": 5
1421
+ }
requirements.txt ADDED
@@ -0,0 +1 @@
 
 
1
+ python-dotenv
src/.DS_Store ADDED
Binary file (6.15 kB). View file
 
src/__init__.py ADDED
@@ -0,0 +1 @@
 
 
1
+ # from apis.idsc_login import get_idsc_apikey
src/__pycache__/GradioApp.cpython-310.pyc ADDED
Binary file (1.1 kB). View file
 
src/__pycache__/GradioFns.cpython-310.pyc ADDED
Binary file (469 Bytes). View file
 
src/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (178 Bytes). View file
 
src/__pycache__/gr_args.cpython-310.pyc ADDED
Binary file (1.27 kB). View file
 
src/apis/__init__.py ADDED
File without changes
src/apis/idsc_login.py ADDED
@@ -0,0 +1,40 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import requests, yaml, datetime
2
+
3
+ def load_idsc_config():
4
+ with open('../configs/idsc_config', 'r') as file:
5
+ config = yaml.save_load(file)
6
+ return config
7
+
8
+ def save_idsc_config(config):
9
+ with open('../configs/idsc_config', 'w') as file:
10
+ yaml.dump(config, file, default_flow_style=False)
11
+
12
+ def get_idsc_apikey():
13
+ config = load_idsc_config()
14
+ expire = config.expire
15
+ expire_date = datetime.strptime(expire)
16
+ now = datetime.now()
17
+
18
+ if expire_date < now:
19
+ return config.apikey
20
+
21
+ new_expire = (now + datetime.timedelta(days=3)).strftime()
22
+ config.apikey = idsc_login()
23
+ config.expire = new_expire
24
+ save_idsc_config(config)
25
+
26
+ def idsc_login(email, password):
27
+
28
+ json = {"email": email,
29
+ "pwd": password}
30
+
31
+ login_resp = requests.post(
32
+ 'https://idsc.com.sg/user/login',
33
+ json=json )
34
+
35
+ if login_resp.status_code == 200:
36
+ apikey = login_resp.json()["API_key"]
37
+ return apikey
38
+ else:
39
+ raise Exception(login_resp.json())
40
+
src/apis/inventory.py ADDED
File without changes
src/demo_data/example_inventory.csv ADDED
@@ -0,0 +1,6 @@
 
 
 
 
 
 
 
1
+ SKU,demand,price,cost,space_per_unit,budgetary_cost,replenishment_rate
2
+ Item_A,1262,50,11,1.5,10,0.1
3
+ Item_B,68,120,19,3,20,0.1
4
+ Item_C,179,60,9.5,5,10,0.1
5
+ Item_D,516,10,8,2,8,0.1
6
+ Item_E,563,30,13,1,15,0.1
src/demo_data/example_rm.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ SKU,demand,price,cost,space_per_unit,budgetary_cost,replenishment_rate
2
+ Raw Material A,5000,2,1.1,0.5,1,0.1
3
+ Raw Material B,3000,3,1.9,0.2,2,0.1
src/demo_data/example_wip.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ SKU,demand,price,cost,space_per_unit,replenishment_rate,budgetary_cost
2
+ Item C,500,3,2,1,0.1,2
3
+ Item B,2000,4,2,2,0.1,2
4
+ Item A,1500,5,3,3,0.1,3
src/gr/GradioApp.py ADDED
@@ -0,0 +1,376 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ import pandas as pd
3
+ from ..idsc.idsc_apis import IDSC_API
4
+ import matplotlib.pyplot as plt
5
+ from .GradioFns import GradioFns
6
+
7
+ fns = GradioFns()
8
+
9
+
10
+ class GradioApp():
11
+ def __init__(self):
12
+ # [Constents] #
13
+ self.inventory_input_demo_path = 'src/demo_data/example_inventory.csv'
14
+ self.rm_input_demo_path = 'src/demo_data/example_rm.csv'
15
+ self.wip_input_demo_path = 'src/demo_data/example_wip.csv'
16
+
17
+ self.idsc = IDSC_API()
18
+
19
+ # [Inventory Values] #
20
+ self.inventory_input_df__value = pd.DataFrame()
21
+ self.inv_recom_df__value = pd.DataFrame()
22
+
23
+ self.inventory_storage_capacity__value = 0
24
+ self.inventory_budget_constraint__value = 0
25
+
26
+ self.inv_total_profit_md__val = 0
27
+ self.inv_total_capacity_usage_md__val = 0
28
+ self.inv_total_budget_usage_md__val = 0
29
+ self.inv_total_margin_md__val = 0
30
+
31
+ self.inv_plot__fig = plt.plot()
32
+
33
+ # [Raw Inventory Values] #
34
+ self.rm_input_df__value = pd.DataFrame()
35
+ self.rm_recom_df__value = pd.DataFrame()
36
+
37
+ self.rm_storage_capacity__value = 0
38
+ self.rm_budget_constraint__value = 0
39
+
40
+ self.rm_total_capacity_usage_md__val = 0
41
+ self.rm_total_budget_usage_md__val = 0
42
+
43
+ # [WIP Inventory Values] #
44
+ self.wip_input_df__value = pd.DataFrame()
45
+ self.wip_recom_df__value = pd.DataFrame()
46
+
47
+ self.wip_storage_capacity__value = 0
48
+ self.wip_budget_constraint__value = 0
49
+
50
+ self.wip_total_capacity_usage_md__val = 0
51
+ self.wip_total_budget_usage_md__val = 0
52
+
53
+ # =============== #
54
+ # Event Listeners #
55
+ # =============== #
56
+
57
+ def demo_data_btn__click(self):
58
+ print('Load inventory input demo.')
59
+ self.inventory_input_df__value = pd.read_csv(
60
+ self.inventory_input_demo_path)
61
+ self.inventory_storage_capacity__value = 5000
62
+ self.inventory_budget_constraint__value = 25000
63
+ return (
64
+ self.update__inventory_input_df(),
65
+ self.update__inventory_storage_capacity(),
66
+ self.update__inventory_budget_constraint())
67
+
68
+ def inventory_file__upload(self, file):
69
+ self.inventory_input_df__value = pd.read_csv(file.name)
70
+ return self.update__inventory_input_df()
71
+
72
+ def inventory_storage_capacity__change(self, value):
73
+ self.inventory_storage_capacity__value = value
74
+
75
+ def inventory_budget_constraint__change(self, value):
76
+ self.inventory_budget_constraint__value = value
77
+
78
+ def inventory_btn__click(self):
79
+ inventory_input_df = self.inventory_input_df__value
80
+
81
+ self.idsc.product_mix(
82
+ inventory_input_df.to_json(),
83
+ self.inventory_storage_capacity__value,
84
+ self.inventory_budget_constraint__value)
85
+
86
+ self.__update_inventory_res()
87
+
88
+ return (
89
+ self.update__inv_recom_df(),
90
+ self.update__inv_total_profit_md(),
91
+ self.update__inv_total_capacity_usage_md(),
92
+ self.update__inv_total_budget_usage_md(),
93
+ self.update__inv_total_margin_md(),
94
+ self.update__inv_plot())
95
+
96
+ def __update_inventory_res(self):
97
+ if self.idsc.product_mix__res:
98
+ # API call success
99
+ res = self.idsc.product_mix__res
100
+ print(res)
101
+ self.inv_recom_df__value = fns.format__inv_recom_df(
102
+ self.idsc.get_product_mix_recommendations_df(),
103
+ self.inventory_input_df__value)
104
+
105
+ self.inv_total_profit_md__val = res['total_profit']
106
+ self.inv_total_capacity_usage_md__val = res['total_capacity_usage']
107
+ self.inv_total_budget_usage_md__val = res['total_budget_usage']
108
+ self.inv_total_margin_md__val = \
109
+ round((res['total_profit'] - res['total_budget_usage']
110
+ ) / res['total_profit'] * 100, 2)
111
+
112
+ self.inv_plot__fig = fns.plot__inv_res(
113
+ res,
114
+ self.inventory_storage_capacity__value,
115
+ self.inventory_budget_constraint__value,
116
+ self.inv_recom_df__value)
117
+
118
+ else:
119
+ self.inv_recom_df__value = pd.DataFrame()
120
+
121
+ self.inv_total_profit_md__val = '-'
122
+ self.inv_total_capacity_usage_md__val = '-'
123
+ self.inv_total_budget_usage_md__val = '-'
124
+ self.inv_total_margin_md__val = '-'
125
+
126
+ self.inv_plot__fig = plt.plot()
127
+
128
+ # ======== #
129
+ # Updaters #
130
+ # ======== #
131
+
132
+ def update__inventory_input_df(self):
133
+ return gr.Dataframe.update(
134
+ value=self.inventory_input_df__value)
135
+
136
+ def update__inv_recom_df(self):
137
+ return gr.Dataframe.update(
138
+ value=self.inv_recom_df__value)
139
+
140
+ def update__inventory_storage_capacity(self):
141
+ return gr.Number.update(
142
+ value=self.inventory_storage_capacity__value)
143
+
144
+ def update__inventory_budget_constraint(self):
145
+ return gr.Number.update(
146
+ value=self.inventory_budget_constraint__value)
147
+
148
+ def update__inv_total_profit_md(self):
149
+ return gr.Markdown.update(
150
+ value=f'### Total Profit: \n # {self.inv_total_profit_md__val:,}')
151
+
152
+ def update__inv_total_capacity_usage_md(self):
153
+ return gr.Markdown.update(
154
+ value=f'### Total Capacity Usage: \n # {self.inv_total_capacity_usage_md__val:,}')
155
+
156
+ def update__inv_total_budget_usage_md(self):
157
+ return gr.Markdown.update(
158
+ value=f'### Total Budget Usage: \n # {self.inv_total_budget_usage_md__val:,}')
159
+
160
+ def update__inv_total_margin_md(self):
161
+ return gr.Markdown.update(
162
+ value=f'### Total Margin: \n # {self.inv_total_margin_md__val}%')
163
+
164
+ def update__inv_plot(self):
165
+ return gr.Plot.update(value=self.inv_plot__fig)
166
+
167
+ # ============================ #
168
+ # Raw Material Event Listeners #
169
+ # ============================ #
170
+
171
+ def rm_demo_data_btn__click(self):
172
+ print('Load raw material input demo.')
173
+ self.rm_input_df__value = pd.read_csv(
174
+ self.rm_input_demo_path)
175
+ self.rm_storage_capacity__value = 4000
176
+ self.rm_budget_constraint__value = 10000
177
+ return (
178
+ self.update__rm_input_df(),
179
+ self.update__rm_storage_capacity(),
180
+ self.update__rm_budget_constraint())
181
+
182
+ def rm_file__upload(self, file):
183
+ self.rm_input_df__value = pd.read_csv(file.name)
184
+ return self.update__rm_input_df()
185
+
186
+ def rm_storage_capacity__change(self, value):
187
+ self.rm_storage_capacity__value = value
188
+
189
+ def rm_budget_constraint__change(self, value):
190
+ self.rm_budget_constraint__value = value
191
+
192
+ def rm_btn__click(self):
193
+ self.idsc.product_mix(
194
+ self.rm_input_df__value.to_json(),
195
+ self.rm_storage_capacity__value,
196
+ self.rm_budget_constraint__value)
197
+
198
+ self.__update_rm_res()
199
+
200
+ return (
201
+ self.update__rm_recom_df(),
202
+ self.update__rm_total_capacity_usage_md(),
203
+ self.update__rm_total_budget_usage_md(),
204
+ self.update__rm_plot())
205
+
206
+ def __update_rm_res(self):
207
+ if self.idsc.product_mix__res:
208
+ res = self.idsc.product_mix__res
209
+
210
+ self.rm_recom_df__value = fns.format__inv_recom_df(
211
+ self.idsc.get_product_mix_recommendations_df(),
212
+ self.rm_input_df__value
213
+ )
214
+ self.rm_total_capacity_usage_md__val = res['total_capacity_usage']
215
+ self.rm_total_budget_usage_md__val = res['total_budget_usage']
216
+
217
+ self.rm_plot__fig = fns.plot__rm_res(
218
+ res,
219
+ self.rm_storage_capacity__value,
220
+ self.rm_budget_constraint__value,
221
+ self.rm_recom_df__value)
222
+
223
+ else:
224
+ self.rm_recom_df__value = pd.DataFrame()
225
+ self.rm_total_capacity_usage_md__val = '-'
226
+ self.rm_total_budget_usage_md__val = '-'
227
+
228
+ self.rm_plot__fig = plt.plot()
229
+
230
+ # ===================== #
231
+ # Raw Material Updaters #
232
+ # ===================== #
233
+
234
+ def update__rm_input_df(self):
235
+
236
+ df = self.rm_input_df__value.rename(
237
+ columns={'price': 'transfer price'})
238
+ # df = df.drop(columns=['replenishment_rate'])
239
+
240
+ return gr.Dataframe.update(
241
+ value=df)
242
+
243
+ def update__rm_recom_df(self):
244
+ df = self.rm_recom_df__value.rename(
245
+ columns={'price': 'transfer price'})
246
+ df = df.drop(columns=['potential_lost_sales', 'expected_sales',
247
+ 'soldout_probability', 'revenue', 'margin (%)'])
248
+ return gr.Dataframe.update(
249
+ value=df)
250
+
251
+ def update__rm_storage_capacity(self):
252
+ return gr.Number.update(
253
+ value=self.rm_storage_capacity__value)
254
+
255
+ def update__rm_budget_constraint(self):
256
+ return gr.Number.update(
257
+ value=self.rm_budget_constraint__value)
258
+
259
+ def update__rm_total_capacity_usage_md(self):
260
+ return gr.Markdown.update(
261
+ value=f'### Total Capacity Usage: \n # {self.rm_total_capacity_usage_md__val:,}')
262
+
263
+ def update__rm_total_budget_usage_md(self):
264
+ return gr.Markdown.update(
265
+ value=f'### Total Budget Usage: \n # {self.rm_total_budget_usage_md__val:,}')
266
+
267
+ def update__rm_plot(self):
268
+ return gr.Plot.update(value=self.rm_plot__fig)
269
+
270
+ # =================== #
271
+ # WIP Event Listeners #
272
+ # =================== #
273
+
274
+ def wip_demo_data_btn__click(self):
275
+ print('Load raw material input demo.')
276
+ self.wip_input_df__value = pd.read_csv(
277
+ self.wip_input_demo_path)
278
+ self.wip_storage_capacity__value = 13000
279
+ self.wip_budget_constraint__value = 14000
280
+
281
+ return (
282
+ self.update__wip_input_df(),
283
+ self.update__wip_storage_capacity(),
284
+ self.update__wip_budget_constraint())
285
+
286
+ def wip_file__upload(self, file):
287
+ self.wip_input_df__value = pd.read_csv(file.name)
288
+ return self.update__wip_input_df()
289
+
290
+ def wip_storage_capacity__change(self, value):
291
+ self.wip_storage_capacity__value = value
292
+
293
+ def wip_budget_constraint__change(self, value):
294
+ self.wip_budget_constraint__value = value
295
+
296
+ def wip_btn__click(self):
297
+
298
+ self.idsc.product_mix(
299
+ self.wip_input_df__value.to_json(),
300
+ self.wip_storage_capacity__value,
301
+ self.wip_budget_constraint__value)
302
+
303
+ self.__update_wip_res()
304
+
305
+ return (
306
+ self.update__wip_recom_df(),
307
+ self.update__wip_total_capacity_usage_md(),
308
+ self.update__wip_total_budget_usage_md(),
309
+ self.update__wip_plot())
310
+
311
+ def __update_wip_res(self):
312
+ if self.idsc.product_mix__res:
313
+ res = self.idsc.product_mix__res
314
+
315
+ print('__update_wip_res')
316
+ print(res)
317
+
318
+ self.wip_recom_df__value = fns.format__inv_recom_df(
319
+ self.idsc.get_product_mix_recommendations_df(),
320
+ self.wip_input_df__value
321
+ )
322
+ self.wip_total_capacity_usage_md__val = res['total_capacity_usage']
323
+ self.wip_total_budget_usage_md__val = res['total_budget_usage']
324
+
325
+ self.wip_plot__fig = fns.plot__wip_res(
326
+ res,
327
+ self.wip_storage_capacity__value,
328
+ self.wip_budget_constraint__value,
329
+ self.wip_recom_df__value)
330
+
331
+ else:
332
+ self.wip_recom_df__value = pd.DataFrame()
333
+ self.wip_total_capacity_usage_md__val = '-'
334
+ self.wip_total_budget_usage_md__val = '-'
335
+
336
+ self.wip_plot__fig = plt.plot()
337
+
338
+ # ============ #
339
+ # WIP Updaters #
340
+ # ============ #
341
+
342
+ def update__wip_input_df(self):
343
+
344
+ df = self.wip_input_df__value.rename(
345
+ columns={'price': 'transfer price'})
346
+ # df = df.drop(columns=['replenishment_rate', 'budgetary_cost'])
347
+
348
+ return gr.Dataframe.update(
349
+ value=df)
350
+
351
+ def update__wip_recom_df(self):
352
+ df = self.wip_recom_df__value.rename(
353
+ columns={'price': 'transfer price', 'inventory_level': 'WIP'})
354
+ df = df.drop(columns=['potential_lost_sales', 'expected_sales',
355
+ 'soldout_probability', 'revenue', 'margin (%)'])
356
+ return gr.Dataframe.update(
357
+ value=df)
358
+
359
+ def update__wip_storage_capacity(self):
360
+ return gr.Number.update(
361
+ value=self.wip_storage_capacity__value)
362
+
363
+ def update__wip_budget_constraint(self):
364
+ return gr.Number.update(
365
+ value=self.wip_budget_constraint__value)
366
+
367
+ def update__wip_total_capacity_usage_md(self):
368
+ return gr.Markdown.update(
369
+ value=f'### Total Capacity Usage: \n # {self.wip_total_capacity_usage_md__val:,}')
370
+
371
+ def update__wip_total_budget_usage_md(self):
372
+ return gr.Markdown.update(
373
+ value=f'### Total Budget Usage: \n # {self.wip_total_budget_usage_md__val:,}')
374
+
375
+ def update__wip_plot(self):
376
+ return gr.Plot.update(value=self.wip_plot__fig)
src/gr/GradioFns.py ADDED
@@ -0,0 +1,144 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import matplotlib.pyplot as plt
2
+
3
+ plt.rcParams['font.size'] = '18'
4
+
5
+
6
+ class GradioFns():
7
+ def __init__(self) -> None:
8
+ pass
9
+
10
+ def format__inv_recom_df(self, inv_recom_df, inv_input_df):
11
+ inv_recom_df_cp = inv_recom_df.copy()
12
+
13
+ inv_recom_df_cp['revenue'] = 0
14
+ inv_recom_df_cp['cost'] = 0
15
+ # inv_recom_df_cp['margin'] = 0
16
+ inv_recom_df_cp['margin (%)'] = 0
17
+ inv_recom_df_cp['space_usage'] = 0
18
+
19
+ for i, row in inv_recom_df_cp.iterrows():
20
+ # print('row', row)
21
+ sku = row['SKU']
22
+
23
+ cost = float(inv_input_df[inv_input_df['SKU'] == sku]['cost'])
24
+ price = float(inv_input_df[inv_input_df['SKU'] == sku]['price'])
25
+ space = float(inv_input_df[inv_input_df['SKU']
26
+ == sku]['space_per_unit'])
27
+ margin = float(row['expected_sales'] * (price - cost))
28
+
29
+ revenue = row['expected_sales'] * price
30
+
31
+ inv_recom_df_cp.at[i, 'revenue'] = revenue
32
+ inv_recom_df_cp.at[i, 'cost'] = row['expected_sales'] * cost
33
+
34
+ # inv_recom_df_cp.at[i, 'margin'] = margin
35
+
36
+ if revenue > 0:
37
+ inv_recom_df_cp.at[i, 'margin (%)'] = round(
38
+ (margin / revenue) * 100, 2)
39
+ inv_recom_df_cp.at[i,
40
+ 'space_usage'] = row['expected_sales'] * space
41
+
42
+ return inv_recom_df_cp
43
+
44
+ def plot__inv_res(self, inv_res, storage, budget, inv_recom_df):
45
+
46
+ fig, ax = plt.subplots(1, 3, figsize=(24, 7))
47
+
48
+ space_left = storage - inv_res['total_capacity_usage']
49
+
50
+ space_left = 0 if space_left < 0 else space_left
51
+
52
+ space_labels = [
53
+ f'{row["SKU"]}\n{row["space_usage"]}' for idx, row in inv_recom_df.iterrows()]
54
+
55
+ ax[0].pie([space_left] + inv_recom_df['space_usage'].tolist(),
56
+ labels=[
57
+ f'Storage Left\n{ int(space_left)}'] + space_labels,
58
+ autopct='%.0f%%')
59
+
60
+ cost_left = budget - inv_res['total_budget_usage']
61
+ cost_left = 0 if cost_left < 0 else cost_left
62
+ cost_labels = [
63
+ f'{row["SKU"]}\n{row["cost"]}' for idx, row in inv_recom_df.iterrows()]
64
+
65
+ ax[1].pie([cost_left] + inv_recom_df['cost'].tolist(),
66
+ labels=[f'Budget Left\n{int(cost_left)}'] + cost_labels,
67
+ autopct='%.0f%%')
68
+ ax[2].bar(inv_recom_df['SKU'],
69
+ inv_recom_df['inventory_level'], width=0.3)
70
+
71
+ ax[0].set_title('Forecasted Storage Space Usage')
72
+ ax[1].set_title('Costs')
73
+ ax[2].set_title('Forecasted Inventory Level')
74
+
75
+ fig.tight_layout()
76
+ return fig
77
+
78
+ def plot__rm_res(self, inv_res, storage, budget, inv_recom_df):
79
+
80
+ fig, ax = plt.subplots(1, 3, figsize=(24, 7))
81
+
82
+ space_left = storage - inv_res['total_capacity_usage']
83
+
84
+ space_left = 0 if space_left < 0 else space_left
85
+
86
+ space_labels = [
87
+ f'{row["SKU"]}\n{row["space_usage"]}' for idx, row in inv_recom_df.iterrows()]
88
+
89
+ ax[0].pie([space_left] + inv_recom_df['space_usage'].tolist(),
90
+ labels=[
91
+ f'Storage Left\n{ int(space_left)}'] + space_labels,
92
+ autopct='%.0f%%')
93
+
94
+ cost_left = budget - inv_res['total_budget_usage']
95
+ cost_left = 0 if cost_left < 0 else cost_left
96
+ cost_labels = [
97
+ f'{row["SKU"]}\n{row["cost"]}' for idx, row in inv_recom_df.iterrows()]
98
+
99
+ ax[1].pie([cost_left] + inv_recom_df['cost'].tolist(),
100
+ labels=[f'Budget Left\n{int(cost_left)}'] + cost_labels,
101
+ autopct='%.0f%%')
102
+ ax[2].bar(inv_recom_df['SKU'],
103
+ inv_recom_df['inventory_level'], width=0.3)
104
+
105
+ ax[0].set_title('Forecasted Storage Space Usage')
106
+ ax[1].set_title('Raw Material Costs')
107
+ ax[2].set_title('Forecasted Raw Material Inventory Level')
108
+
109
+ fig.tight_layout()
110
+ return fig
111
+
112
+ def plot__wip_res(self, inv_res, storage, budget, inv_recom_df):
113
+
114
+ fig, ax = plt.subplots(1, 3, figsize=(24, 7))
115
+
116
+ space_left = storage - inv_res['total_capacity_usage']
117
+
118
+ space_left = 0 if space_left < 0 else space_left
119
+
120
+ space_labels = [
121
+ f'{row["SKU"]}\n{row["space_usage"]}' for idx, row in inv_recom_df.iterrows()]
122
+
123
+ ax[0].pie([space_left] + inv_recom_df['space_usage'].tolist(),
124
+ labels=[
125
+ f'Capacity Left\n{ int(space_left)}'] + space_labels,
126
+ autopct='%.0f%%')
127
+
128
+ cost_left = budget - inv_res['total_budget_usage']
129
+ cost_left = 0 if cost_left < 0 else cost_left
130
+ cost_labels = [
131
+ f'{row["SKU"]}\n{row["cost"]}' for idx, row in inv_recom_df.iterrows()]
132
+
133
+ ax[1].pie([cost_left] + inv_recom_df['cost'].tolist(),
134
+ labels=[f'Budget Left\n{int(cost_left)}'] + cost_labels,
135
+ autopct='%.0f%%')
136
+ ax[2].bar(inv_recom_df['SKU'],
137
+ inv_recom_df['inventory_level'], width=0.3)
138
+
139
+ ax[0].set_title('Forecasted WIP Capacity Usage')
140
+ ax[1].set_title('WIP Costs')
141
+ ax[2].set_title('WIP Level')
142
+
143
+ fig.tight_layout()
144
+ return fig
src/gr/__init__.py ADDED
File without changes
src/gr/__pycache__/GradioApp.cpython-310.pyc ADDED
Binary file (10.7 kB). View file
 
src/gr/__pycache__/GradioFns.cpython-310.pyc ADDED
Binary file (3.34 kB). View file
 
src/gr/__pycache__/__init__.cpython-310.pyc ADDED
Binary file (181 Bytes). View file
 
src/gr/__pycache__/gr_args.cpython-310.pyc ADDED
Binary file (2.23 kB). View file
 
src/gr/gr_args.py ADDED
@@ -0,0 +1,132 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import pandas as pd
2
+
3
+ main_block = {
4
+ 'css': '''
5
+ footer {visibility: hidden}
6
+
7
+ /* Modify the forecast button size */
8
+ .btn {width: 260px !important; margin: auto !important}
9
+ '''
10
+ }
11
+
12
+ inventory_md = {
13
+ 'value': """
14
+ # Finishend Goods Optimization
15
+ - Data must contains column 'SKU', 'demand', 'price', 'cost', 'space_per_unit', 'budgetary_cost'
16
+ - Optional column : 'replenishment_rate'
17
+ - Fill in "Finishend Goods Storage Capacity" and "Finished Goods Budget" before Optimize Inventory
18
+ """
19
+ }
20
+
21
+ rm_md = {
22
+ 'value': """
23
+ # Raw Material Optimization
24
+ Optimize raw material purchasing based on the allocated storage space and purchase budget.
25
+ """
26
+ }
27
+
28
+ wip_md = {
29
+ 'value': """
30
+ # WIP Optimization
31
+ Optimize working in progress items based on the production space and production budget.
32
+ """
33
+ }
34
+
35
+
36
+ demo_data_btn = {
37
+ 'value': 'Load Demo Dataset',
38
+ 'elem_classes': 'btn'
39
+ }
40
+
41
+ rm_demo_data_btn = {
42
+ 'value': 'Load Demo Dataset',
43
+ 'elem_classes': 'btn'
44
+ }
45
+
46
+ wip_demo_data_btn = {
47
+ 'value': 'Load Demo Dataset',
48
+ 'elem_classes': 'btn'
49
+ }
50
+
51
+ inventory_btn = {
52
+ 'value': 'Optimize Inventory',
53
+ 'elem_classes': 'btn',
54
+ 'variant': 'primary',
55
+ }
56
+
57
+ rm_btn = {
58
+ 'value': 'Optimize Raw Material Inventory',
59
+ 'elem_classes': 'btn',
60
+ 'variant': 'primary',
61
+ }
62
+
63
+ wip_btn = {
64
+ 'value': 'Optimize WIP Inventory',
65
+ 'elem_classes': 'btn',
66
+ 'variant': 'primary',
67
+ }
68
+
69
+ #
70
+ # File Inputs
71
+
72
+ inventory_file = {
73
+ 'file_types': ['.csv'],
74
+ 'label': 'Finishend Goods Demand Data'
75
+ }
76
+
77
+ rm_file = {
78
+ 'file_types': ['.csv'],
79
+ 'label': 'Raw Material Demand Data'
80
+ }
81
+
82
+ wip_file = {
83
+ 'file_types': ['.csv'],
84
+ 'label': 'Working In Progress Data'
85
+ }
86
+ # ======= #
87
+ # Numbers #
88
+ # ======= #
89
+ inventory_storage_capacity = {
90
+ 'label': 'FG Storage Capacity',
91
+ 'interactive': True}
92
+
93
+ inventory_budget_constraint = {
94
+ 'label': 'FG Budget',
95
+ 'interactive': True}
96
+
97
+ rm_storage_capacity = {
98
+ 'label': 'Raw Material Storage Capacity',
99
+ 'interactive': True}
100
+
101
+ rm_budget_constraint = {
102
+ 'label': 'Raw Material Budget',
103
+ 'interactive': True}
104
+
105
+ wip_storage_capacity = {
106
+ 'label': 'WIP Capacity',
107
+ 'interactive': True}
108
+
109
+ wip_budget_constraint = {
110
+ 'label': 'WIP Budget',
111
+ 'interactive': True}
112
+
113
+ # =========== #
114
+ # Data Frames #
115
+ # =========== #
116
+ inventory_input_df = {
117
+ 'value': pd.DataFrame(columns=['SKU', 'demand', 'price', 'cost', 'space_per_unit', 'budgetary_cost']),
118
+ 'label': 'Inventory Optimization Input',
119
+ 'height': 300,
120
+ }
121
+
122
+ rm_input_df = {
123
+ 'value': pd.DataFrame(columns=['SKU', 'demand', 'price', 'cost']),
124
+ 'label': 'Inventory Optimization Input',
125
+ 'height': 300,
126
+ }
127
+
128
+ wip_input_df = {
129
+ 'value': pd.DataFrame(columns=['SKU', 'demand', 'space_per_unit']),
130
+ 'label': 'Inventory Optimization Input',
131
+ 'height': 300,
132
+ }
src/idsc/__pycache__/idsc_apis.cpython-310.pyc ADDED
Binary file (3.48 kB). View file
 
src/idsc/idsc_apis.py ADDED
@@ -0,0 +1,134 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import yaml
2
+ import requests
3
+ import os
4
+ import pandas as pd
5
+
6
+ from datetime import datetime, timedelta
7
+ from dotenv import load_dotenv
8
+ load_dotenv()
9
+
10
+
11
+ class IDSC_API():
12
+ '''
13
+ Wrapper class for all IDSC apis
14
+ '''
15
+
16
+ def __init__(self):
17
+ __location__ = os.path.realpath(
18
+ os.path.join(os.getcwd(), os.path.dirname(__file__)))
19
+
20
+ self.config_path = os.path.join(__location__, 'idsc_config.yaml')
21
+ self.logged_in = False
22
+ self.timeformat = '%m/%d/%Y, %H:%M:%S'
23
+ with open(self.config_path, 'r') as file:
24
+ self.config = yaml.safe_load(file)
25
+
26
+ self.expire = self.config['apikey_expire']
27
+ self.apikey = self.config['apikey']
28
+
29
+ self.login()
30
+
31
+ self.product_mix__res = None # Save product_mix api response
32
+
33
+ def login(self):
34
+
35
+ now = datetime.now()
36
+ expire_date = datetime.strptime(self.expire, self.timeformat)
37
+
38
+ if now >= expire_date:
39
+ print('apikey expired, requesting new one.')
40
+ self.apikey = self.fetch_apikey()
41
+ self.update_config()
42
+ else:
43
+ print('apikey still available, logged in')
44
+
45
+ self.logged_in = True
46
+
47
+ def fetch_apikey(self):
48
+ # print(os.environ)
49
+ json = {
50
+ # "email": self.config['email'],
51
+ # "pwd": self.config['password']
52
+ 'email': os.getenv('IDSC_ACC'),
53
+ 'pwd': os.getenv('IDSC_PASS')
54
+ }
55
+
56
+ print('IDSC Logging in ...')
57
+ login_resp = requests.post(
58
+ 'https://idsc.com.sg/user/login',
59
+ json=json)
60
+
61
+ if login_resp.status_code == 200:
62
+ apikey = login_resp.json()["API_key"]
63
+ return apikey
64
+ else:
65
+ raise Exception(login_resp.json())
66
+
67
+ def update_config(self):
68
+ now = datetime.now()
69
+ expire = (now + timedelta(days=3)).strftime(self.timeformat)
70
+ self.config['apikey'] = self.apikey
71
+ self.config['apikey_expire'] = expire
72
+ with open(self.config_path, 'w') as f:
73
+ yaml.dump(self.config, f, default_flow_style=False)
74
+
75
+ # =========== #
76
+ # Product mix #
77
+ # =========== #
78
+
79
+ def product_mix(
80
+ self,
81
+ product_data,
82
+ storage_capacity,
83
+ budget_constraint):
84
+
85
+ endpint = 'https://idsc.com.sg/optimax/product-mix/product-mix'
86
+ json = {'product_data': product_data,
87
+ 'storage_capacity': storage_capacity,
88
+ 'budget_constraint': budget_constraint
89
+ }
90
+
91
+ print('storage_capacity', storage_capacity)
92
+ print('budget_constraint', budget_constraint)
93
+
94
+ self.login()
95
+
96
+ headers = {'api-key': self.apikey}
97
+
98
+ res = requests.post(endpint, json=json, headers=headers)
99
+
100
+ parsed_res = self._parse_response(res)
101
+
102
+ self.product_mix__res = parsed_res
103
+
104
+ return self.product_mix__res
105
+
106
+ def _parse_response(self, res):
107
+ if res.status_code != 200:
108
+ print(f'API call failed. {res.text}')
109
+ return False
110
+ return res.json()
111
+
112
+ def get_product_mix_recommendations_df(self):
113
+
114
+ try:
115
+ recommendations = self.product_mix__res['product_mix_recommendations']
116
+ except Exception:
117
+ return None
118
+
119
+ df_arr = []
120
+ for k, v in recommendations.items():
121
+ df = pd.DataFrame(v, index=[k])
122
+ df['SKU'] = k
123
+
124
+ # Make sure expected sales is always integer
125
+ df['expected_sales'] = int(df['expected_sales'])
126
+
127
+ # Rearrange the order, so 'SKU' columns is the first
128
+ cols = df.columns.tolist()
129
+ cols = cols[-1:] + cols[:-1]
130
+ df = df[cols]
131
+
132
+ df_arr.append(df)
133
+
134
+ return pd.concat(df_arr, ignore_index=True)
src/idsc/idsc_config.yaml ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ apikey: f83c59b23ab2afbbabad60b305e00b16a46d0920
2
+ apikey_expire: 11/17/2023, 15:27:25