zhang qiao
Upload folder using huggingface_hub
8cf4695
import logging
from xgboost import XGBRegressor as xgbreg
import numpy as np
from .base import ModelBase
class XGBRegressor(ModelBase):
def __init__(
self,
**kwargs
) -> None:
logging.debug('Init XGBRegressor')
regressor = xgbreg(
objective='reg:squarederror',
random_state=42)
param_grid = {
'estimator__max_depth': [3, 5, 6, 10, 15, 20],
'estimator__learning_rate': [0.01, 0.1, 0.2, 0.3],
'estimator__subsample': np.arange(0.5, 1.0, 0.1),
'estimator__colsample_bytree': np.arange(0.4, 1.0, 0.1),
'estimator__colsample_bylevel': np.arange(0.4, 1.0, 0.1),
'estimator__n_estimators': [100, 500, 1000]
}
super().__init__(
regressor,
param_grid,
**kwargs)
# def forecast(self):
# logging.debug('XGBRegressor forecast')
# return {'forecast': self.forecaster.predict(**self.predict_args),
# 'evaluate': self.evaluate()}