zouhsab commited on
Commit
eb34b99
β€’
1 Parent(s): ae9dec3

Upload 4 files

Browse files
Files changed (4) hide show
  1. .gitignore +56 -0
  2. LICENCE +202 -0
  3. README.md +311 -13
  4. pyproject.toml +37 -0
.gitignore ADDED
@@ -0,0 +1,56 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # These are some examples of commonly ignored file patterns.
2
+ # You should customize this list as applicable to your project.
3
+ # Learn more about .gitignore:
4
+ # https://www.atlassian.com/git/tutorials/saving-changes/gitignore
5
+
6
+ # Node artifact files
7
+ node_modules/
8
+ dist/
9
+
10
+ # Compiled Java class files
11
+ *.class
12
+
13
+ # Compiled Python bytecode
14
+ *.py[cod]
15
+
16
+ # Log files
17
+ *.log
18
+
19
+ # Package files
20
+ *.jar
21
+
22
+ # Maven
23
+ target/
24
+ dist/
25
+
26
+ # JetBrains IDE
27
+ .idea/
28
+
29
+ # Unit test reports
30
+ TEST*.xml
31
+
32
+ # Generated by MacOS
33
+ .DS_Store
34
+
35
+ Thumbs.db
36
+
37
+ # Applications
38
+ *.app
39
+ *.exe
40
+ *.war
41
+
42
+ # Large media files
43
+ *.mp4
44
+ *.tiff
45
+ *.avi
46
+ *.flv
47
+ *.mov
48
+ *.wmv
49
+
50
+ .ipynb_checkpoints
51
+ __pycache__
52
+ *.egg-info
53
+ .vscode/*
54
+ .idea/*
55
+ playground/
56
+ # TinyLLaVABench
LICENCE ADDED
@@ -0,0 +1,202 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ Apache License
2
+ Version 2.0, January 2004
3
+ http://www.apache.org/licenses/
4
+
5
+ TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6
+
7
+ 1. Definitions.
8
+
9
+ "License" shall mean the terms and conditions for use, reproduction,
10
+ and distribution as defined by Sections 1 through 9 of this document.
11
+
12
+ "Licensor" shall mean the copyright owner or entity authorized by
13
+ the copyright owner that is granting the License.
14
+
15
+ "Legal Entity" shall mean the union of the acting entity and all
16
+ other entities that control, are controlled by, or are under common
17
+ control with that entity. For the purposes of this definition,
18
+ "control" means (i) the power, direct or indirect, to cause the
19
+ direction or management of such entity, whether by contract or
20
+ otherwise, or (ii) ownership of fifty percent (50%) or more of the
21
+ outstanding shares, or (iii) beneficial ownership of such entity.
22
+
23
+ "You" (or "Your") shall mean an individual or Legal Entity
24
+ exercising permissions granted by this License.
25
+
26
+ "Source" form shall mean the preferred form for making modifications,
27
+ including but not limited to software source code, documentation
28
+ source, and configuration files.
29
+
30
+ "Object" form shall mean any form resulting from mechanical
31
+ transformation or translation of a Source form, including but
32
+ not limited to compiled object code, generated documentation,
33
+ and conversions to other media types.
34
+
35
+ "Work" shall mean the work of authorship, whether in Source or
36
+ Object form, made available under the License, as indicated by a
37
+ copyright notice that is included in or attached to the work
38
+ (an example is provided in the Appendix below).
39
+
40
+ "Derivative Works" shall mean any work, whether in Source or Object
41
+ form, that is based on (or derived from) the Work and for which the
42
+ editorial revisions, annotations, elaborations, or other modifications
43
+ represent, as a whole, an original work of authorship. For the purposes
44
+ of this License, Derivative Works shall not include works that remain
45
+ separable from, or merely link (or bind by name) to the interfaces of,
46
+ the Work and Derivative Works thereof.
47
+
48
+ "Contribution" shall mean any work of authorship, including
49
+ the original version of the Work and any modifications or additions
50
+ to that Work or Derivative Works thereof, that is intentionally
51
+ submitted to Licensor for inclusion in the Work by the copyright owner
52
+ or by an individual or Legal Entity authorized to submit on behalf of
53
+ the copyright owner. For the purposes of this definition, "submitted"
54
+ means any form of electronic, verbal, or written communication sent
55
+ to the Licensor or its representatives, including but not limited to
56
+ communication on electronic mailing lists, source code control systems,
57
+ and issue tracking systems that are managed by, or on behalf of, the
58
+ Licensor for the purpose of discussing and improving the Work, but
59
+ excluding communication that is conspicuously marked or otherwise
60
+ designated in writing by the copyright owner as "Not a Contribution."
61
+
62
+ "Contributor" shall mean Licensor and any individual or Legal Entity
63
+ on behalf of whom a Contribution has been received by Licensor and
64
+ subsequently incorporated within the Work.
65
+
66
+ 2. Grant of Copyright License. Subject to the terms and conditions of
67
+ this License, each Contributor hereby grants to You a perpetual,
68
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69
+ copyright license to reproduce, prepare Derivative Works of,
70
+ publicly display, publicly perform, sublicense, and distribute the
71
+ Work and such Derivative Works in Source or Object form.
72
+
73
+ 3. Grant of Patent License. Subject to the terms and conditions of
74
+ this License, each Contributor hereby grants to You a perpetual,
75
+ worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76
+ (except as stated in this section) patent license to make, have made,
77
+ use, offer to sell, sell, import, and otherwise transfer the Work,
78
+ where such license applies only to those patent claims licensable
79
+ by such Contributor that are necessarily infringed by their
80
+ Contribution(s) alone or by combination of their Contribution(s)
81
+ with the Work to which such Contribution(s) was submitted. If You
82
+ institute patent litigation against any entity (including a
83
+ cross-claim or counterclaim in a lawsuit) alleging that the Work
84
+ or a Contribution incorporated within the Work constitutes direct
85
+ or contributory patent infringement, then any patent licenses
86
+ granted to You under this License for that Work shall terminate
87
+ as of the date such litigation is filed.
88
+
89
+ 4. Redistribution. You may reproduce and distribute copies of the
90
+ Work or Derivative Works thereof in any medium, with or without
91
+ modifications, and in Source or Object form, provided that You
92
+ meet the following conditions:
93
+
94
+ (a) You must give any other recipients of the Work or
95
+ Derivative Works a copy of this License; and
96
+
97
+ (b) You must cause any modified files to carry prominent notices
98
+ stating that You changed the files; and
99
+
100
+ (c) You must retain, in the Source form of any Derivative Works
101
+ that You distribute, all copyright, patent, trademark, and
102
+ attribution notices from the Source form of the Work,
103
+ excluding those notices that do not pertain to any part of
104
+ the Derivative Works; and
105
+
106
+ (d) If the Work includes a "NOTICE" text file as part of its
107
+ distribution, then any Derivative Works that You distribute must
108
+ include a readable copy of the attribution notices contained
109
+ within such NOTICE file, excluding those notices that do not
110
+ pertain to any part of the Derivative Works, in at least one
111
+ of the following places: within a NOTICE text file distributed
112
+ as part of the Derivative Works; within the Source form or
113
+ documentation, if provided along with the Derivative Works; or,
114
+ within a display generated by the Derivative Works, if and
115
+ wherever such third-party notices normally appear. The contents
116
+ of the NOTICE file are for informational purposes only and
117
+ do not modify the License. You may add Your own attribution
118
+ notices within Derivative Works that You distribute, alongside
119
+ or as an addendum to the NOTICE text from the Work, provided
120
+ that such additional attribution notices cannot be construed
121
+ as modifying the License.
122
+
123
+ You may add Your own copyright statement to Your modifications and
124
+ may provide additional or different license terms and conditions
125
+ for use, reproduction, or distribution of Your modifications, or
126
+ for any such Derivative Works as a whole, provided Your use,
127
+ reproduction, and distribution of the Work otherwise complies with
128
+ the conditions stated in this License.
129
+
130
+ 5. Submission of Contributions. Unless You explicitly state otherwise,
131
+ any Contribution intentionally submitted for inclusion in the Work
132
+ by You to the Licensor shall be under the terms and conditions of
133
+ this License, without any additional terms or conditions.
134
+ Notwithstanding the above, nothing herein shall supersede or modify
135
+ the terms of any separate license agreement you may have executed
136
+ with Licensor regarding such Contributions.
137
+
138
+ 6. Trademarks. This License does not grant permission to use the trade
139
+ names, trademarks, service marks, or product names of the Licensor,
140
+ except as required for reasonable and customary use in describing the
141
+ origin of the Work and reproducing the content of the NOTICE file.
142
+
143
+ 7. Disclaimer of Warranty. Unless required by applicable law or
144
+ agreed to in writing, Licensor provides the Work (and each
145
+ Contributor provides its Contributions) on an "AS IS" BASIS,
146
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147
+ implied, including, without limitation, any warranties or conditions
148
+ of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149
+ PARTICULAR PURPOSE. You are solely responsible for determining the
150
+ appropriateness of using or redistributing the Work and assume any
151
+ risks associated with Your exercise of permissions under this License.
152
+
153
+ 8. Limitation of Liability. In no event and under no legal theory,
154
+ whether in tort (including negligence), contract, or otherwise,
155
+ unless required by applicable law (such as deliberate and grossly
156
+ negligent acts) or agreed to in writing, shall any Contributor be
157
+ liable to You for damages, including any direct, indirect, special,
158
+ incidental, or consequential damages of any character arising as a
159
+ result of this License or out of the use or inability to use the
160
+ Work (including but not limited to damages for loss of goodwill,
161
+ work stoppage, computer failure or malfunction, or any and all
162
+ other commercial damages or losses), even if such Contributor
163
+ has been advised of the possibility of such damages.
164
+
165
+ 9. Accepting Warranty or Additional Liability. While redistributing
166
+ the Work or Derivative Works thereof, You may choose to offer,
167
+ and charge a fee for, acceptance of support, warranty, indemnity,
168
+ or other liability obligations and/or rights consistent with this
169
+ License. However, in accepting such obligations, You may act only
170
+ on Your own behalf and on Your sole responsibility, not on behalf
171
+ of any other Contributor, and only if You agree to indemnify,
172
+ defend, and hold each Contributor harmless for any liability
173
+ incurred by, or claims asserted against, such Contributor by reason
174
+ of your accepting any such warranty or additional liability.
175
+
176
+ END OF TERMS AND CONDITIONS
177
+
178
+ APPENDIX: How to apply the Apache License to your work.
179
+
180
+ To apply the Apache License to your work, attach the following
181
+ boilerplate notice, with the fields enclosed by brackets "[]"
182
+ replaced with your own identifying information. (Don't include
183
+ the brackets!) The text should be enclosed in the appropriate
184
+ comment syntax for the file format. We also recommend that a
185
+ file or class name and description of purpose be included on the
186
+ same "printed page" as the copyright notice for easier
187
+ identification within third-party archives.
188
+
189
+ Copyright [yyyy] [name of copyright owner]
190
+
191
+ Licensed under the Apache License, Version 2.0 (the "License");
192
+ you may not use this file except in compliance with the License.
193
+ You may obtain a copy of the License at
194
+
195
+ http://www.apache.org/licenses/LICENSE-2.0
196
+
197
+ Unless required by applicable law or agreed to in writing, software
198
+ distributed under the License is distributed on an "AS IS" BASIS,
199
+ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200
+ See the License for the specific language governing permissions and
201
+ limitations under the License.
202
+
README.md CHANGED
@@ -1,13 +1,311 @@
1
- ---
2
- title: ADTinnyLLava
3
- emoji: πŸŒ–
4
- colorFrom: yellow
5
- colorTo: pink
6
- sdk: gradio
7
- sdk_version: 4.25.0
8
- app_file: app.py
9
- pinned: false
10
- license: apache-2.0
11
- ---
12
-
13
- Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ <h2 align="center"> <a href="https://arxiv.org/abs/2402.14289">TinyLLaVA: A Framework of Small-scale Large Multimodal Models</a>
2
+
3
+ <h5 align="center">
4
+
5
+ [![hf_space](https://img.shields.io/badge/πŸ€—-%20Open%20In%20HF-blue.svg)](https://huggingface.co/bczhou/TinyLLaVA-3.1B) [![arXiv](https://img.shields.io/badge/Arxiv-2402.14289-b31b1b.svg?logo=arXiv)](https://arxiv.org/abs/2402.14289) [![License](https://img.shields.io/badge/License-Apache%202.0-yellow)](https://github.com/PKU-YuanGroup/MoE-LLaVA/blob/main/LICENSE)
6
+
7
+
8
+ ## &#x1F389; News
9
+ * **[2024.03.10]** base recipe out!
10
+ * **[2024.03.10]** Finetune scripts out!
11
+ * **[2024.02.25]** Update evaluation scripts and docs!
12
+ * **[2024.02.25]** Data descriptions out. Release TinyLLaVA-1.5B and TinyLLaVA-2.0B!
13
+ * **[2024.02.24]** Example code on inference and model loading added!
14
+ * **[2024.02.23]** Evaluation code and scripts released!
15
+ * **[2024.02.21]** Creating the [TinyLLaVABench](https://github.com/DLCV-BUAA/TinyLLavaBench) repository on GitHub!
16
+ * **[2024.02.21]** Our paper: [TinyLLaVA: A Framework of Small-scale Large Multimodal Models](https://arxiv.org/abs/2402.14289) is out!
17
+ * **[2024.01.11]** Our fist model [TinyLLaVA-1.4B](https://huggingface.co/bczhou/tiny-llava-v1-hf) is out!
18
+
19
+ ## &#x231B; TODO
20
+ - [ ] Add support for Ollama and llama.cpp.
21
+ - [x] Developers' guide / How to build demo locally.
22
+ - [x] Training and custom finetuning docs.
23
+ - [x] Model Zoo descriptions.
24
+ - [x] Examples and inference.
25
+ - [x] Release code for training.
26
+ - [x] Add descriptions for evaluation.
27
+ - [x] Add descriptions for data preparation.
28
+ - [x] Release TinyLLaVA-1.5B and TinyLLaVA-2.0B.
29
+ - [x] Release TinyLLaVA-3.1B.
30
+ - [x] Release the evaluation code and weights today(2024.2.23).
31
+ ### &#x1F525; High performance, but with fewer parameters
32
+
33
+ - Our best model, TinyLLaVA-3.1B, achieves better overall performance against existing 7B models such as LLaVA-1.5 and Qwen-VL.
34
+
35
+ ## Contents
36
+
37
+ - [Install](#x1f527-requirements-and-installation)
38
+ - [Model Zoo](#x1f433-model-zoo)
39
+ - [Demo](#Demo)
40
+ - [Quick Start](#x1f527-quick-start)
41
+ - [Run Inference](#x1f527-run-inference)
42
+ - [Evaluation](#evaluation)
43
+ - [Data](#data-preparation)
44
+ - [Train](#train)
45
+ - [Custom Finetune](#custom-finetune)
46
+
47
+
48
+ ## &#x1F527; Requirements and Installation
49
+
50
+ We recommend the requirements as follows.
51
+
52
+ 1. Clone this repository and navigate to LLaVA folder
53
+ ```bash
54
+ git clone https://github.com/DLCV-BUAA/TinyLLaVABench.git
55
+ cd TinyLLaVABench
56
+ ```
57
+
58
+ 2. Install Package
59
+ ```Shell
60
+ conda create -n tinyllava python=3.10 -y
61
+ conda activate tinyllava
62
+ pip install --upgrade pip # enable PEP 660 support
63
+ pip install -e .
64
+ ```
65
+
66
+ 3. Install additional packages for training cases
67
+ ```Shell
68
+ pip install -e ".[train]"
69
+ pip install flash-attn --no-build-isolation
70
+ ```
71
+ ### Upgrade to the latest code base
72
+
73
+ ```Shell
74
+ git pull
75
+ pip install -e .
76
+
77
+ # if you see some import errors when you upgrade, please try running the command below (without #)
78
+ # pip install flash-attn --no-build-isolation --no-cache-dir
79
+ ```
80
+
81
+ ## &#x1F433; Model Zoo
82
+ ### Legacy Model
83
+ - [tiny-llava-hf](https://huggingface.co/bczhou/tiny-llava-v1-hf)
84
+
85
+ ### Pretrained Models
86
+ - [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
87
+ - [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B)
88
+ - [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B)
89
+
90
+ ### Model Details
91
+ | Name | LLM | Checkpoint | LLaVA-Bench-Wild | MME | MMBench | MM-Vet | SQA-image | VQA-v2 | GQA | TextVQA |
92
+ |---------------|-------------------|------------------------------------------------|------------------|----------|---------|--------|-----------|--------|-------|---------|
93
+ | TinyLLaVA-3.1B | Phi-2 | [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B) | 75.8 | 1464.9 | 66.9 | 32.0 | 69.1 | 79.9 | 62.0 | 59.1 |
94
+ | TinyLLaVA-2.0B | StableLM-2-1.6B | [TinyLLaVA-2.0B](https://huggingface.co/bczhou/TinyLLaVA-2.0B) | 66.4 | 1433.8 | 63.3 | 32.6 | 64.7 | 78.9 | 61.9 | 56.4 |
95
+ | TinyLLaVA-1.5B | TinyLlama | [TinyLLaVA-1.5B](https://huggingface.co/bczhou/TinyLLaVA-1.5B) | 60.8 | 1276.5 | 55.2 | 25.8 | 60.3 | 76.9 | 60.3 | 51.7 |
96
+
97
+
98
+ ## Demo
99
+
100
+ ### Gradio Web Demo
101
+
102
+ Launch a local web demo by running:
103
+ ```shell
104
+ python tinyllava/serve/app.py --model-path bczhou/TinyLLaVA-3.1B --model-name TinyLLaVA-3.1B
105
+ ```
106
+
107
+ ### CLI Inference
108
+
109
+ We also support running inference with CLI. To use our model, run:
110
+ ```shell
111
+ python -m tinyllava.serve.cli \
112
+ --model-path bczhou/TinyLLaVA-3.1B \
113
+ --image-file "./tinyllava/serve/examples/extreme_ironing.jpg"
114
+ ```
115
+
116
+
117
+ ## &#x1F527; Quick Start
118
+
119
+ <details>
120
+ <summary>Load model</summary>
121
+
122
+ ```Python
123
+ from tinyllava.model.builder import load_pretrained_model
124
+ from tinyllava.mm_utils import get_model_name_from_path
125
+ from tinyllava.eval.run_tiny_llava import eval_model
126
+
127
+ model_path = "bczhou/TinyLLaVA-3.1B"
128
+
129
+ tokenizer, model, image_processor, context_len = load_pretrained_model(
130
+ model_path=model_path,
131
+ model_base=None,
132
+ model_name=get_model_name_from_path(model_path)
133
+ )
134
+ ```
135
+ </details>
136
+
137
+ ## &#x1F527; Run Inference
138
+ Here's an example of running inference with [TinyLLaVA-3.1B](https://huggingface.co/bczhou/TinyLLaVA-3.1B)
139
+ <details>
140
+ <summary>Run Inference</summary>
141
+
142
+ ```Python
143
+ from tinyllava.model.builder import load_pretrained_model
144
+ from tinyllava.mm_utils import get_model_name_from_path
145
+ from tinyllava.eval.run_tiny_llava import eval_model
146
+
147
+ model_path = "bczhou/TinyLLaVA-3.1B"
148
+ prompt = "What are the things I should be cautious about when I visit here?"
149
+ image_file = "https://llava-vl.github.io/static/images/view.jpg"
150
+
151
+ args = type('Args', (), {
152
+ "model_path": model_path,
153
+ "model_base": None,
154
+ "model_name": get_model_name_from_path(model_path),
155
+ "query": prompt,
156
+ "conv_mode": "phi",
157
+ "image_file": image_file,
158
+ "sep": ",",
159
+ "temperature": 0,
160
+ "top_p": None,
161
+ "num_beams": 1,
162
+ "max_new_tokens": 512
163
+ })()
164
+
165
+ eval_model(args)
166
+ ```
167
+ </details>
168
+
169
+ ### Important
170
+ We use different `conv_mode` for different models. Replace the `conv_mode` in `args` according to this table:
171
+ | model | conv_mode |
172
+ |---------------- |----------- |
173
+ | TinyLLaVA-3.1B | phi |
174
+ | TinyLLaVA-2.0B | phi |
175
+ | TinyLLaVA-1.5B | v1 |
176
+
177
+ ## Evaluation
178
+ To ensure the reproducibility, we evaluate the models with greedy decoding.
179
+
180
+ See [Evaluation.md](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/docs/Evaluation.md)
181
+
182
+ ## Data Preparation
183
+
184
+ In our paper, we used two different datasets: the [LLaVA dataset](https://github.com/haotian-liu/LLaVA?tab=readme-ov-file#pretrain-feature-alignment) and the [ShareGPT4V dataset](https://github.com/InternLM/InternLM-XComposer/blob/main/projects/ShareGPT4V/docs/Data.md), and compared their differences. In this section, we provide information on data preparation.
185
+
186
+ ### Pretraining Images
187
+ * LLaVA: The pretraining images of LLaVA is from the 558K subset of the LAION-CC-SBU dataset.
188
+ * ShareGPT4V: The pretraining images of ShareGPT4V is a mixture of 558K LAION-CC-SBU subset, SAM dataset, and COCO dataset.
189
+
190
+ ### Pretraining Annotations
191
+ * LLaVA: The pretraining annotations of LLaVA are [here](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain).
192
+ * ShareGPT4V: The pretraining annotations of ShareGPT4V are [here](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json).
193
+
194
+
195
+ ### SFT Images & Annotations
196
+ The majority of the two SFT datasets are the same, with the exception that the 23K detailed description data in LLaVA-1.5-SFT being replaced with detailed captions randomly sampled from the [100K ShareGPT4V data](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_instruct_gpt4-vision_cap100k.json).
197
+
198
+ ### Download data
199
+
200
+ 1. Download relevant images
201
+
202
+ - LAION-CC-SBU-558K: [images.zip](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain/blob/main/images.zip)
203
+ - COCO: This dataset is from the [COCO2017 challenge](https://cocodataset.org/). Download: [train2017](http://images.cocodataset.org/zips/train2017.zip)
204
+ - WebData: This dataset is curated by the [ShareGPT4V project](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V). Download: [images](https://drive.google.com/drive/folders/1tCUQ-sq6vdshZVkF0ZeF3K4eztkXJgax?usp=sharing). Only for academic usage.
205
+ - SAM: This dataset is collected by [Meta](https://ai.meta.com/datasets/segment-anything-downloads/). Download: [images](https://ai.meta.com/datasets/segment-anything-downloads/). We only use 000000~000050.tar for now. If you just want to use ShareGPT4V for SFT, you can quickly download 9K images from [here](https://drive.google.com/file/d/1dKumdOKSXtV7lIXdrG7jsIK_z2vZv2gs/view?usp=drive_link).
206
+ - GQA: [GQA project page](https://cs.stanford.edu/people/dorarad/gqa/about.html). Download: [images](https://downloads.cs.stanford.edu/nlp/data/gqa/images.zip)
207
+ - OCR-VQA: [OCR-VQA project page](https://ocr-vqa.github.io/). Download: [download script](https://drive.google.com/drive/folders/1_GYPY5UkUy7HIcR0zq3ZCFgeZN7BAfm_?usp=sharing). We save all files as `.jpg`
208
+ - TextVQA: [TextVQA project page](https://textvqa.org/). Download: [trainvalimages](https://dl.fbaipublicfiles.com/textvqa/images/train_val_images.zip)
209
+ - VisualGenome: [VisualGenome project page](https://homes.cs.washington.edu/~ranjay/visualgenome/index.html). Download: [part1](https://cs.stanford.edu/people/rak248/VG_100K_2/images.zip), [part2](https://cs.stanford.edu/people/rak248/VG_100K_2/images2.zip)
210
+
211
+
212
+ 2. Download relevant annotations
213
+
214
+ - LLaVA's pretraining annotations: [blip_laion_cc_sbu_558k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Pretrain)
215
+ - LLaVA's SFT annotations: [llava_v1_5_mix665k.json](https://huggingface.co/datasets/liuhaotian/LLaVA-Instruct-150K/blob/main/llava_v1_5_mix665k.json)
216
+ - ShareGPT4V's pretraining annotations: [share-captioner_coco_lcs_sam_1246k_1107.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/share-captioner_coco_lcs_sam_1246k_1107.json)
217
+ - ShareGPT4V's SFT annotations: [sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json](https://huggingface.co/datasets/Lin-Chen/ShareGPT4V/blob/main/sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json)
218
+
219
+
220
+ ### Organize Data
221
+
222
+ Organize the image files and annotation files as follows in `path/to/your/data`:
223
+
224
+ ```none
225
+ data
226
+ β”œβ”€β”€ llava
227
+ β”‚ β”œβ”€β”€ llava_pretrain
228
+ β”‚ β”‚ β”œβ”€β”€ images
229
+ β”‚ β”‚ β”œβ”€β”€ blip_laion_cc_sbu_558k.json
230
+ β”œβ”€β”€ coco
231
+ β”‚ β”œβ”€β”€ train2017
232
+ β”œβ”€β”€ sam
233
+ β”‚ β”œβ”€β”€ images
234
+ β”œβ”€β”€ gqa
235
+ β”‚ β”œβ”€β”€ images
236
+ β”œβ”€β”€ ocr_vqa
237
+ β”‚ β”œβ”€β”€ images
238
+ β”œβ”€β”€ textvqa
239
+ β”‚ β”œβ”€β”€ train_images
240
+ β”œβ”€β”€ vg
241
+ β”‚ β”œβ”€β”€ VG_100K
242
+ β”‚ β”œβ”€β”€ VG_100K_2
243
+ β”œβ”€β”€ share_textvqa
244
+ β”‚ β”œβ”€β”€ images
245
+ β”œβ”€β”€ web-celebrity
246
+ β”‚ β”œβ”€β”€ images
247
+ β”œβ”€β”€ web-landmark
248
+ β”‚ β”œβ”€β”€ images
249
+ β”œβ”€β”€ wikiart
250
+ β”‚ β”œβ”€β”€ images
251
+ β”œβ”€β”€ text_files
252
+ β”‚ β”œβ”€β”€ llava_v1_5_mix665k.json
253
+ β”‚ β”œβ”€β”€ share-captioner_coco_lcs_sam_1246k_1107.json
254
+ β”‚ β”œβ”€β”€ sharegpt4v_mix665k_cap23k_coco-ap9k_lcs3k_sam9k_div2k.json
255
+ ```
256
+
257
+ ## Train
258
+
259
+ **This section we describe the base recipe.**
260
+ ### Hyperparameters
261
+ Both hyperparameters used in pretraining and finetuning are provided below.
262
+
263
+ 1. Pretraining
264
+
265
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
266
+ |----------------| ---: | ---: | ---: |-----------:| ---: |
267
+ | TinyLLaVA-3.1B | 256 | 1e-3 | 1 | 3072 | 0 |
268
+
269
+ 2. Finetuning
270
+
271
+ | Hyperparameter | Global Batch Size | Learning rate | Epochs | Max length | Weight decay |
272
+ |----------------| ---: | ---: | ---: |-----------:| ---: |
273
+ | TinyLLaVA-3.1B | 128 | 2e-5 | 1 | 3072 | 0 |
274
+
275
+ ### Pretrain
276
+
277
+ **Replace paths to your paths**
278
+
279
+ Training script with DeepSpeed ZeRO-2: [`pretrain.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/pretrain.sh).
280
+
281
+ ### Finetune
282
+
283
+ **Replace paths to your paths**
284
+
285
+ Training script with DeepSpeed ZeRO-3: [`finetune.sh`](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/main/scripts/tiny_llava/finetune.sh).
286
+
287
+ ## Custom-Finetune
288
+
289
+ Check out our custom finetune using LoRA [here](https://github.com/DLCV-BUAA/TinyLLaVABench/blob/dev/docs/CUTOM_FINETUNE.md).
290
+
291
+
292
+ ## &#x270F; Citation
293
+
294
+ If you find our paper and code useful in your research, please consider giving a star :star: and citation :pencil:.
295
+
296
+ ```BibTeX
297
+ @misc{zhou2024tinyllava,
298
+ title={TinyLLaVA: A Framework of Small-scale Large Multimodal Models},
299
+ author={Baichuan Zhou and Ying Hu and Xi Weng and Junlong Jia and Jie Luo and Xien Liu and Ji Wu and Lei Huang},
300
+ year={2024},
301
+ eprint={2402.14289},
302
+ archivePrefix={arXiv},
303
+ primaryClass={cs.LG}
304
+ }
305
+ ```
306
+
307
+
308
+ ## ❀️ Community efforts
309
+ * Our codebase is built upon the [LLaVA](https://github.com/haotian-liu/LLaVA) project. Great work!
310
+ * Our project uses data from the [ShareGPT4V](https://github.com/InternLM/InternLM-XComposer/tree/main/projects/ShareGPT4V) project. Great work!
311
+
pyproject.toml ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [build-system]
2
+ requires = ["setuptools>=61.0"]
3
+ build-backend = "setuptools.build_meta"
4
+
5
+ [project]
6
+ name = "tinyllava"
7
+ version = "1.0.0"
8
+ description = "A Framework of Small-scale Large Multimodal Models."
9
+ readme = "README.md"
10
+ requires-python = ">=3.9"
11
+ classifiers = [
12
+ "Programming Language :: Python :: 3",
13
+ "License :: OSI Approved :: Apache Software License",
14
+ ]
15
+ dependencies = [
16
+ "torch==2.0.1", "torchvision==0.15.2", "tiktoken",
17
+ "transformers==4.37.2", "tokenizers==0.15.1", "sentencepiece==0.1.99", "shortuuid",
18
+ "accelerate==0.21.0", "peft==0.4.0", "bitsandbytes==0.41.0",
19
+ "pydantic<2,>=1", "markdown2[all]", "numpy", "scikit-learn==1.2.2",
20
+ "gradio==3.35.2", "gradio_client==0.2.9",
21
+ "requests", "httpx==0.23.3", "uvicorn", "fastapi",
22
+ "einops==0.6.1", "einops-exts==0.0.4", "timm==0.6.13",
23
+ ]
24
+
25
+ [project.optional-dependencies]
26
+ train = ["deepspeed==0.9.5", "ninja", "wandb"]
27
+
28
+ [project.urls]
29
+ "Homepage" = "https://github.com/DLCV-BUAA/TinyLLaVABench"
30
+ "Bug Tracker" = "https://github.com/DLCV-BUAA/TinyLLaVABench/issues"
31
+
32
+ [tool.setuptools.packages.find]
33
+ exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]
34
+
35
+ [tool.wheel]
36
+ exclude = ["assets*", "benchmark*", "docs", "dist*", "playground*", "scripts*", "tests*"]
37
+