Spaces:
Sleeping
Sleeping
| # Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang) | |
| # | |
| # See LICENSE for clarification regarding multiple authors | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import wave | |
| from functools import lru_cache | |
| from typing import Tuple | |
| import numpy as np | |
| import sherpa_onnx | |
| from huggingface_hub import hf_hub_download | |
| def read_wave(wave_filename: str) -> Tuple[np.ndarray, int]: | |
| """ | |
| Args: | |
| wave_filename: | |
| Path to a wave file. It should be single channel and each sample should | |
| be 16-bit. Its sample rate does not need to be 16kHz. | |
| Returns: | |
| Return a tuple containing: | |
| - A 1-D array of dtype np.float32 containing the samples, which are | |
| normalized to the range [-1, 1]. | |
| - sample rate of the wave file | |
| """ | |
| with wave.open(wave_filename) as f: | |
| assert f.getnchannels() == 1, f.getnchannels() | |
| assert f.getsampwidth() == 2, f.getsampwidth() # it is in bytes | |
| num_samples = f.getnframes() | |
| samples = f.readframes(num_samples) | |
| samples_int16 = np.frombuffer(samples, dtype=np.int16) | |
| samples_float32 = samples_int16.astype(np.float32) | |
| samples_float32 = samples_float32 / 32768 | |
| return samples_float32, f.getframerate() | |
| def get_file( | |
| repo_id: str, | |
| filename: str, | |
| subfolder: str = ".", | |
| ) -> str: | |
| nn_model_filename = hf_hub_download( | |
| repo_id=repo_id, | |
| filename=filename, | |
| subfolder=subfolder, | |
| ) | |
| return nn_model_filename | |
| def get_speaker_segmentation_model(repo_id) -> str: | |
| assert repo_id in ("pyannote/segmentation-3.0",) | |
| if repo_id == "pyannote/segmentation-3.0": | |
| return get_file( | |
| repo_id="csukuangfj/sherpa-onnx-pyannote-segmentation-3-0", | |
| filename="model.onnx", | |
| ) | |
| def get_speaker_embedding_model(model_name) -> str: | |
| assert ( | |
| model_name | |
| in three_d_speaker_embedding_models | |
| + nemo_speaker_embedding_models | |
| + wespeaker_embedding_models | |
| ) | |
| model_name = model_name.split("|")[0] | |
| return get_file( | |
| repo_id="csukuangfj/speaker-embedding-models", | |
| filename=model_name, | |
| ) | |
| def get_speaker_diarization( | |
| segmentation_model: str, embedding_model: str, num_clusters: int, threshold: float | |
| ): | |
| segmentation = get_speaker_segmentation_model(segmentation_model) | |
| embedding = get_speaker_embedding_model(embedding_model) | |
| config = sherpa_onnx.OfflineSpeakerDiarizationConfig( | |
| segmentation=sherpa_onnx.OfflineSpeakerSegmentationModelConfig( | |
| pyannote=sherpa_onnx.OfflineSpeakerSegmentationPyannoteModelConfig( | |
| model=segmentation | |
| ), | |
| debug=True, | |
| ), | |
| embedding=sherpa_onnx.SpeakerEmbeddingExtractorConfig( | |
| model=embedding, | |
| debug=True, | |
| ), | |
| clustering=sherpa_onnx.FastClusteringConfig( | |
| num_clusters=num_clusters, | |
| threshold=threshold, | |
| ), | |
| min_duration_on=0.3, | |
| min_duration_off=0.5, | |
| ) | |
| print("config", config) | |
| if not config.validate(): | |
| raise RuntimeError( | |
| "Please check your config and make sure all required files exist" | |
| ) | |
| return sherpa_onnx.OfflineSpeakerDiarization(config) | |
| speaker_segmentation_models = ["pyannote/segmentation-3.0"] | |
| nemo_speaker_embedding_models = [ | |
| "nemo_en_speakerverification_speakernet.onnx|22MB", | |
| "nemo_en_titanet_large.onnx|97MB", | |
| "nemo_en_titanet_small.onnx|38MB", | |
| ] | |
| three_d_speaker_embedding_models = [ | |
| "3dspeaker_speech_eres2net_base_sv_zh-cn_3dspeaker_16k.onnx|37.8MB", | |
| "3dspeaker_speech_campplus_sv_en_voxceleb_16k.onnx|28.2MB", | |
| "3dspeaker_speech_campplus_sv_zh-cn_16k-common.onnx|27MB", | |
| "3dspeaker_speech_campplus_sv_zh_en_16k-common_advanced.onnx|27MB", | |
| "3dspeaker_speech_eres2net_base_200k_sv_zh-cn_16k-common.onnx|37.8MB", | |
| "3dspeaker_speech_eres2net_large_sv_zh-cn_3dspeaker_16k.onnx|111MB", | |
| "3dspeaker_speech_eres2net_sv_en_voxceleb_16k.onnx|25.3MB", | |
| "3dspeaker_speech_eres2net_sv_zh-cn_16k-common.onnx|210MB", | |
| "3dspeaker_speech_eres2netv2_sv_zh-cn_16k-common.onnx|68.1MB", | |
| ] | |
| wespeaker_embedding_models = [ | |
| "wespeaker_en_voxceleb_CAM++.onnx|28MB", | |
| "wespeaker_en_voxceleb_CAM++_LM.onnx|28MB", | |
| "wespeaker_en_voxceleb_resnet152_LM.onnx|76MB", | |
| "wespeaker_en_voxceleb_resnet221_LM.onnx|91MB", | |
| "wespeaker_en_voxceleb_resnet293_LM.onnx|110MB", | |
| "wespeaker_en_voxceleb_resnet34.onnx|26MB", | |
| "wespeaker_en_voxceleb_resnet34_LM.onnx|26MB", | |
| "wespeaker_zh_cnceleb_resnet34.onnx|26MB", | |
| "wespeaker_zh_cnceleb_resnet34_LM.onnx|26MB", | |
| ] | |
| embedding2models = { | |
| "3D-Speaker": three_d_speaker_embedding_models, | |
| "NeMo": nemo_speaker_embedding_models, | |
| "WeSpeaker": wespeaker_embedding_models, | |
| } | |