Spaces:
Runtime error
Runtime error
| from os import listdir, path | |
| import numpy as np | |
| import scipy, cv2, os, sys, argparse | |
| import json, subprocess, random, string | |
| from tqdm import tqdm | |
| from glob import glob | |
| import torch, face_detection | |
| from models import Wav2Lip | |
| import platform | |
| import pickle | |
| #import os | |
| #os.system("!pip show Wav2Lip > /content/temp.txt") | |
| device = 'cuda' if torch.cuda.is_available() else 'cpu' | |
| print('Using {} for inference.'.format(device)) | |
| def get_smoothened_boxes(boxes, T): | |
| for i in range(len(boxes)): | |
| if i + T > len(boxes): | |
| window = boxes[len(boxes) - T:] | |
| else: | |
| window = boxes[i : i + T] | |
| boxes[i] = np.mean(window, axis=0) | |
| return boxes | |
| def face_detect(images): | |
| detector = face_detection.FaceAlignment(face_detection.LandmarksType._2D, | |
| flip_input=False, device=device) | |
| batch_size = 16 | |
| while 1: | |
| predictions = [] | |
| try: | |
| for i in tqdm(range(0, len(images), batch_size)): | |
| predictions.extend(detector.get_detections_for_batch(np.array(images[i:i + batch_size]))) | |
| except RuntimeError: | |
| if batch_size == 1: | |
| raise RuntimeError('Image too big to run face detection on GPU. Please use the --resize_factor argument') | |
| batch_size //= 2 | |
| print('Recovering from OOM error; New batch size: {}'.format(batch_size)) | |
| continue | |
| break | |
| results = [] | |
| for rect, image in zip(predictions, images): | |
| if rect is None: | |
| cv2.imwrite('temp/faulty_frame.jpg', image) # check this frame where the face was not detected. | |
| raise ValueError('Face not detected! Ensure the video contains a face in all the frames.') | |
| y1 = max(0, rect[1]) | |
| y2 = min(image.shape[0], rect[3]) | |
| x1 = max(0, rect[0]) | |
| x2 = min(image.shape[1], rect[2]) | |
| results.append([x1, y1, x2, y2]) | |
| boxes = np.array(results) | |
| boxes = get_smoothened_boxes(boxes, T=5) | |
| results = [[image[y1: y2, x1:x2], (y1, y2, x1, x2)] for image, (x1, y1, x2, y2) in zip(images, boxes)] | |
| del detector | |
| with open('/content/gdrive/MyDrive/Avatar/chat_bot/Wav2Lip/new_face_det_result.pkl', 'wb') as file: | |
| pickle.dump(results, file) | |
| #return results | |