File size: 13,756 Bytes
d2fa653
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
import math
import random
from collections import deque
from functools import partial
from inspect import isfunction
from pathlib import Path
import numpy as np
import torch
import torch.nn.functional as F
from torch import nn
from tqdm import tqdm
from einops import rearrange

from modules.fastspeech.fs2 import FastSpeech2
from modules.diffsinger_midi.fs2 import FastSpeech2MIDI
from utils.hparams import hparams



def exists(x):
    return x is not None


def default(val, d):
    if exists(val):
        return val
    return d() if isfunction(d) else d


# gaussian diffusion trainer class

def extract(a, t, x_shape):
    b, *_ = t.shape
    out = a.gather(-1, t)
    return out.reshape(b, *((1,) * (len(x_shape) - 1)))


def noise_like(shape, device, repeat=False):
    repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
    noise = lambda: torch.randn(shape, device=device)
    return repeat_noise() if repeat else noise()


def linear_beta_schedule(timesteps, max_beta=hparams.get('max_beta', 0.01)):
    """
    linear schedule
    """
    betas = np.linspace(1e-4, max_beta, timesteps)
    return betas


def cosine_beta_schedule(timesteps, s=0.008):
    """
    cosine schedule
    as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
    """
    steps = timesteps + 1
    x = np.linspace(0, steps, steps)
    alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
    alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
    betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
    return np.clip(betas, a_min=0, a_max=0.999)


beta_schedule = {
    "cosine": cosine_beta_schedule,
    "linear": linear_beta_schedule,
}


class GaussianDiffusion(nn.Module):
    def __init__(self, phone_encoder, out_dims, denoise_fn,
                 timesteps=1000, K_step=1000, loss_type=hparams.get('diff_loss_type', 'l1'), betas=None, spec_min=None, spec_max=None):
        super().__init__()
        self.denoise_fn = denoise_fn
        if hparams.get('use_midi') is not None and hparams['use_midi']:
            self.fs2 = FastSpeech2MIDI(phone_encoder, out_dims)
        else:
            self.fs2 = FastSpeech2(phone_encoder, out_dims)
        self.mel_bins = out_dims

        if exists(betas):
            betas = betas.detach().cpu().numpy() if isinstance(betas, torch.Tensor) else betas
        else:
            if 'schedule_type' in hparams.keys():
                betas = beta_schedule[hparams['schedule_type']](timesteps)
            else:
                betas = cosine_beta_schedule(timesteps)

        alphas = 1. - betas
        alphas_cumprod = np.cumprod(alphas, axis=0)
        alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])

        timesteps, = betas.shape
        self.num_timesteps = int(timesteps)
        self.K_step = K_step
        self.loss_type = loss_type

        self.noise_list = deque(maxlen=4)

        to_torch = partial(torch.tensor, dtype=torch.float32)

        self.register_buffer('betas', to_torch(betas))
        self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
        self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))

        # calculations for diffusion q(x_t | x_{t-1}) and others
        self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
        self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
        self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
        self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
        self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))

        # calculations for posterior q(x_{t-1} | x_t, x_0)
        posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
        # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
        self.register_buffer('posterior_variance', to_torch(posterior_variance))
        # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
        self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
        self.register_buffer('posterior_mean_coef1', to_torch(
            betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
        self.register_buffer('posterior_mean_coef2', to_torch(
            (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))

        self.register_buffer('spec_min', torch.FloatTensor(spec_min)[None, None, :hparams['keep_bins']])
        self.register_buffer('spec_max', torch.FloatTensor(spec_max)[None, None, :hparams['keep_bins']])

    def q_mean_variance(self, x_start, t):
        mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
        variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
        log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
        return mean, variance, log_variance

    def predict_start_from_noise(self, x_t, t, noise):
        return (
                extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
                extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
        )

    def q_posterior(self, x_start, x_t, t):
        posterior_mean = (
                extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
                extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
        )
        posterior_variance = extract(self.posterior_variance, t, x_t.shape)
        posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
        return posterior_mean, posterior_variance, posterior_log_variance_clipped

    def p_mean_variance(self, x, t, cond, clip_denoised: bool):
        noise_pred = self.denoise_fn(x, t, cond=cond)
        x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)

        if clip_denoised:
            x_recon.clamp_(-1., 1.)

        model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
        return model_mean, posterior_variance, posterior_log_variance

    @torch.no_grad()
    def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
        b, *_, device = *x.shape, x.device
        model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond, clip_denoised=clip_denoised)
        noise = noise_like(x.shape, device, repeat_noise)
        # no noise when t == 0
        nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
        return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise

    @torch.no_grad()
    def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
        """
        Use the PLMS method from [Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
        """

        def get_x_pred(x, noise_t, t):
            a_t = extract(self.alphas_cumprod, t, x.shape)
            a_prev = extract(self.alphas_cumprod, torch.max(t-interval, torch.zeros_like(t)), x.shape)
            a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()

            x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
            x_pred = x + x_delta

            return x_pred

        noise_list = self.noise_list
        noise_pred = self.denoise_fn(x, t, cond=cond)

        if len(noise_list) == 0:
            x_pred = get_x_pred(x, noise_pred, t)
            noise_pred_prev = self.denoise_fn(x_pred, max(t-interval, 0), cond=cond)
            noise_pred_prime = (noise_pred + noise_pred_prev) / 2
        elif len(noise_list) == 1:
            noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
        elif len(noise_list) == 2:
            noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
        elif len(noise_list) >= 3:
            noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24

        x_prev = get_x_pred(x, noise_pred_prime, t)
        noise_list.append(noise_pred)

        return x_prev

    def q_sample(self, x_start, t, noise=None):
        noise = default(noise, lambda: torch.randn_like(x_start))
        return (
                extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
                extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
        )

    def p_losses(self, x_start, t, cond, noise=None, nonpadding=None):
        noise = default(noise, lambda: torch.randn_like(x_start))

        x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
        x_recon = self.denoise_fn(x_noisy, t, cond)

        if self.loss_type == 'l1':
            if nonpadding is not None:
                loss = ((noise - x_recon).abs() * nonpadding.unsqueeze(1)).mean()
            else:
                # print('are you sure w/o nonpadding?')
                loss = (noise - x_recon).abs().mean()

        elif self.loss_type == 'l2':
            loss = F.mse_loss(noise, x_recon)
        else:
            raise NotImplementedError()

        return loss

    def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
                ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
        b, *_, device = *txt_tokens.shape, txt_tokens.device
        ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy,
                       skip_decoder=(not infer), infer=infer, **kwargs)
        cond = ret['decoder_inp'].transpose(1, 2)

        if not infer:
            t = torch.randint(0, self.K_step, (b,), device=device).long()
            x = ref_mels
            x = self.norm_spec(x)
            x = x.transpose(1, 2)[:, None, :, :]  # [B, 1, M, T]
            ret['diff_loss'] = self.p_losses(x, t, cond)
            # nonpadding = (mel2ph != 0).float()
            # ret['diff_loss'] = self.p_losses(x, t, cond, nonpadding=nonpadding)
        else:
            ret['fs2_mel'] = ret['mel_out']
            fs2_mels = ret['mel_out']
            t = self.K_step
            fs2_mels = self.norm_spec(fs2_mels)
            fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]

            x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())
            if hparams.get('gaussian_start') is not None and hparams['gaussian_start']:
                print('===> gaussion start.')
                shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
                x = torch.randn(shape, device=device)

            if hparams.get('pndm_speedup'):
                self.noise_list = deque(maxlen=4)
                iteration_interval = hparams['pndm_speedup']
                for i in tqdm(reversed(range(0, t, iteration_interval)), desc='sample time step',
                              total=t // iteration_interval):
                    x = self.p_sample_plms(x, torch.full((b,), i, device=device, dtype=torch.long), iteration_interval,
                                           cond)
            else:
                for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
                    x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
            x = x[:, 0].transpose(1, 2)
            if mel2ph is not None:  # for singing
                ret['mel_out'] = self.denorm_spec(x) * ((mel2ph > 0).float()[:, :, None])
            else:
                ret['mel_out'] = self.denorm_spec(x)
        return ret

    def norm_spec(self, x):
        return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1

    def denorm_spec(self, x):
        return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min

    def cwt2f0_norm(self, cwt_spec, mean, std, mel2ph):
        return self.fs2.cwt2f0_norm(cwt_spec, mean, std, mel2ph)

    def out2mel(self, x):
        return x


class OfflineGaussianDiffusion(GaussianDiffusion):
    def forward(self, txt_tokens, mel2ph=None, spk_embed=None,
                ref_mels=None, f0=None, uv=None, energy=None, infer=False, **kwargs):
        b, *_, device = *txt_tokens.shape, txt_tokens.device

        ret = self.fs2(txt_tokens, mel2ph, spk_embed, ref_mels, f0, uv, energy,
                       skip_decoder=True, infer=True, **kwargs)
        cond = ret['decoder_inp'].transpose(1, 2)
        fs2_mels = ref_mels[1]
        ref_mels = ref_mels[0]

        if not infer:
            t = torch.randint(0, self.K_step, (b,), device=device).long()
            x = ref_mels
            x = self.norm_spec(x)
            x = x.transpose(1, 2)[:, None, :, :]  # [B, 1, M, T]
            ret['diff_loss'] = self.p_losses(x, t, cond)
        else:
            t = self.K_step
            fs2_mels = self.norm_spec(fs2_mels)
            fs2_mels = fs2_mels.transpose(1, 2)[:, None, :, :]

            x = self.q_sample(x_start=fs2_mels, t=torch.tensor([t - 1], device=device).long())

            if hparams.get('gaussian_start') is not None and hparams['gaussian_start']:
                print('===> gaussion start.')
                shape = (cond.shape[0], 1, self.mel_bins, cond.shape[2])
                x = torch.randn(shape, device=device)
            for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
                x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
            x = x[:, 0].transpose(1, 2)
            ret['mel_out'] = self.denorm_spec(x)
        return ret