Spaces:
Runtime error
Runtime error
| # Copyright 2023 The HuggingFace Team. All rights reserved. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| import torch | |
| import torch.utils.checkpoint as checkpoint | |
| from torch import nn | |
| from diffusers.models.resnet import Downsample2D, ResnetBlock2D, TemporalConvLayer, Upsample2D | |
| from diffusers.models.transformer_2d import Transformer2DModel | |
| from diffusers.models.transformer_temporal import TransformerTemporalModel | |
| # Assign gradient checkpoint function to simple variable for readability. | |
| g_c = checkpoint.checkpoint | |
| def use_temporal(module, num_frames, x): | |
| if num_frames == 1: | |
| if isinstance(module, TransformerTemporalModel): | |
| return {"sample": x} | |
| else: | |
| return x | |
| def custom_checkpoint(module, mode=None): | |
| if mode == None: raise ValueError('Mode for gradient checkpointing cannot be none.') | |
| custom_forward = None | |
| if mode == 'resnet': | |
| def custom_forward(hidden_states, temb): | |
| inputs = module(hidden_states, temb) | |
| return inputs | |
| if mode == 'attn': | |
| def custom_forward( | |
| hidden_states, | |
| encoder_hidden_states=None, | |
| cross_attention_kwargs=None | |
| ): | |
| inputs = module( | |
| hidden_states, | |
| encoder_hidden_states, | |
| cross_attention_kwargs | |
| ) | |
| return inputs | |
| if mode == 'temp': | |
| def custom_forward(hidden_states, num_frames=None): | |
| inputs = use_temporal(module, num_frames, hidden_states) | |
| if inputs is None: inputs = module( | |
| hidden_states, | |
| num_frames=num_frames | |
| ) | |
| return inputs | |
| return custom_forward | |
| def transformer_g_c(transformer, sample, num_frames): | |
| sample = g_c(custom_checkpoint(transformer, mode='temp'), | |
| sample, num_frames, use_reentrant=False | |
| )['sample'] | |
| return sample | |
| def cross_attn_g_c( | |
| attn, | |
| temp_attn, | |
| resnet, | |
| temp_conv, | |
| hidden_states, | |
| encoder_hidden_states, | |
| cross_attention_kwargs, | |
| temb, | |
| num_frames, | |
| inverse_temp=False | |
| ): | |
| def ordered_g_c(idx): | |
| # Self and CrossAttention | |
| if idx == 0: return g_c(custom_checkpoint(attn, mode='attn'), | |
| hidden_states, encoder_hidden_states,cross_attention_kwargs, use_reentrant=False | |
| )['sample'] | |
| # Temporal Self and CrossAttention | |
| if idx == 1: return g_c(custom_checkpoint(temp_attn, mode='temp'), | |
| hidden_states, num_frames, use_reentrant=False)['sample'] | |
| # Resnets | |
| if idx == 2: return g_c(custom_checkpoint(resnet, mode='resnet'), | |
| hidden_states, temb, use_reentrant=False) | |
| # Temporal Convolutions | |
| if idx == 3: return g_c(custom_checkpoint(temp_conv, mode='temp'), | |
| hidden_states, num_frames, use_reentrant=False | |
| ) | |
| # Here we call the function depending on the order in which they are called. | |
| # For some layers, the orders are different, so we access the appropriate one by index. | |
| if not inverse_temp: | |
| for idx in [0,1,2,3]: hidden_states = ordered_g_c(idx) | |
| else: | |
| for idx in [2,3,0,1]: hidden_states = ordered_g_c(idx) | |
| return hidden_states | |
| def up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames): | |
| hidden_states = g_c(custom_checkpoint(resnet, mode='resnet'), hidden_states, temb, use_reentrant=False) | |
| hidden_states = g_c(custom_checkpoint(temp_conv, mode='temp'), | |
| hidden_states, num_frames, use_reentrant=False | |
| ) | |
| return hidden_states | |
| def get_down_block( | |
| down_block_type, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| temb_channels, | |
| add_downsample, | |
| resnet_eps, | |
| resnet_act_fn, | |
| attn_num_head_channels, | |
| resnet_groups=None, | |
| cross_attention_dim=None, | |
| downsample_padding=None, | |
| dual_cross_attention=False, | |
| use_linear_projection=True, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| resnet_time_scale_shift="default", | |
| ): | |
| if down_block_type == "DownBlock3D": | |
| return DownBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| elif down_block_type == "CrossAttnDownBlock3D": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnDownBlock3D") | |
| return CrossAttnDownBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| add_downsample=add_downsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| downsample_padding=downsample_padding, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attn_num_head_channels, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| raise ValueError(f"{down_block_type} does not exist.") | |
| def get_up_block( | |
| up_block_type, | |
| num_layers, | |
| in_channels, | |
| out_channels, | |
| prev_output_channel, | |
| temb_channels, | |
| add_upsample, | |
| resnet_eps, | |
| resnet_act_fn, | |
| attn_num_head_channels, | |
| resnet_groups=None, | |
| cross_attention_dim=None, | |
| dual_cross_attention=False, | |
| use_linear_projection=True, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| resnet_time_scale_shift="default", | |
| ): | |
| if up_block_type == "UpBlock3D": | |
| return UpBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| elif up_block_type == "CrossAttnUpBlock3D": | |
| if cross_attention_dim is None: | |
| raise ValueError("cross_attention_dim must be specified for CrossAttnUpBlock3D") | |
| return CrossAttnUpBlock3D( | |
| num_layers=num_layers, | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| prev_output_channel=prev_output_channel, | |
| temb_channels=temb_channels, | |
| add_upsample=add_upsample, | |
| resnet_eps=resnet_eps, | |
| resnet_act_fn=resnet_act_fn, | |
| resnet_groups=resnet_groups, | |
| cross_attention_dim=cross_attention_dim, | |
| attn_num_head_channels=attn_num_head_channels, | |
| dual_cross_attention=dual_cross_attention, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| resnet_time_scale_shift=resnet_time_scale_shift, | |
| ) | |
| raise ValueError(f"{up_block_type} does not exist.") | |
| class UNetMidBlock3DCrossAttn(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| output_scale_factor=1.0, | |
| cross_attention_dim=1280, | |
| dual_cross_attention=False, | |
| use_linear_projection=True, | |
| upcast_attention=False, | |
| ): | |
| super().__init__() | |
| self.gradient_checkpointing = False | |
| self.has_cross_attention = True | |
| self.attn_num_head_channels = attn_num_head_channels | |
| resnet_groups = resnet_groups if resnet_groups is not None else min(in_channels // 4, 32) | |
| # there is always at least one resnet | |
| resnets = [ | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ] | |
| temp_convs = [ | |
| TemporalConvLayer( | |
| in_channels, | |
| in_channels, | |
| dropout=0.1 | |
| ) | |
| ] | |
| attentions = [] | |
| temp_attentions = [] | |
| for _ in range(num_layers): | |
| attentions.append( | |
| Transformer2DModel( | |
| in_channels // attn_num_head_channels, | |
| attn_num_head_channels, | |
| in_channels=in_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| upcast_attention=upcast_attention, | |
| ) | |
| ) | |
| temp_attentions.append( | |
| TransformerTemporalModel( | |
| in_channels // attn_num_head_channels, | |
| attn_num_head_channels, | |
| in_channels=in_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=in_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| temp_convs.append( | |
| TemporalConvLayer( | |
| in_channels, | |
| in_channels, | |
| dropout=0.1 | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.temp_convs = nn.ModuleList(temp_convs) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.temp_attentions = nn.ModuleList(temp_attentions) | |
| def forward( | |
| self, | |
| hidden_states, | |
| temb=None, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| num_frames=1, | |
| cross_attention_kwargs=None, | |
| ): | |
| if self.gradient_checkpointing: | |
| hidden_states = up_down_g_c( | |
| self.resnets[0], | |
| self.temp_convs[0], | |
| hidden_states, | |
| temb, | |
| num_frames | |
| ) | |
| else: | |
| hidden_states = self.resnets[0](hidden_states, temb) | |
| hidden_states = self.temp_convs[0](hidden_states, num_frames=num_frames) | |
| for attn, temp_attn, resnet, temp_conv in zip( | |
| self.attentions, self.temp_attentions, self.resnets[1:], self.temp_convs[1:] | |
| ): | |
| if self.gradient_checkpointing: | |
| hidden_states = cross_attn_g_c( | |
| attn, | |
| temp_attn, | |
| resnet, | |
| temp_conv, | |
| hidden_states, | |
| encoder_hidden_states, | |
| cross_attention_kwargs, | |
| temb, | |
| num_frames | |
| ) | |
| else: | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| if num_frames > 1: | |
| hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample | |
| hidden_states = resnet(hidden_states, temb) | |
| if num_frames > 1: | |
| hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
| return hidden_states | |
| class CrossAttnDownBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| cross_attention_dim=1280, | |
| output_scale_factor=1.0, | |
| downsample_padding=1, | |
| add_downsample=True, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| attentions = [] | |
| temp_attentions = [] | |
| temp_convs = [] | |
| self.gradient_checkpointing = False | |
| self.has_cross_attention = True | |
| self.attn_num_head_channels = attn_num_head_channels | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| temp_convs.append( | |
| TemporalConvLayer( | |
| out_channels, | |
| out_channels, | |
| dropout=0.1 | |
| ) | |
| ) | |
| attentions.append( | |
| Transformer2DModel( | |
| out_channels // attn_num_head_channels, | |
| attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| ) | |
| ) | |
| temp_attentions.append( | |
| TransformerTemporalModel( | |
| out_channels // attn_num_head_channels, | |
| attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.temp_convs = nn.ModuleList(temp_convs) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.temp_attentions = nn.ModuleList(temp_attentions) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample2D( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| def forward( | |
| self, | |
| hidden_states, | |
| temb=None, | |
| encoder_hidden_states=None, | |
| attention_mask=None, | |
| num_frames=1, | |
| cross_attention_kwargs=None, | |
| ): | |
| # TODO(Patrick, William) - attention mask is not used | |
| output_states = () | |
| for resnet, temp_conv, attn, temp_attn in zip( | |
| self.resnets, self.temp_convs, self.attentions, self.temp_attentions | |
| ): | |
| if self.gradient_checkpointing: | |
| hidden_states = cross_attn_g_c( | |
| attn, | |
| temp_attn, | |
| resnet, | |
| temp_conv, | |
| hidden_states, | |
| encoder_hidden_states, | |
| cross_attention_kwargs, | |
| temb, | |
| num_frames, | |
| inverse_temp=True | |
| ) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if num_frames > 1: | |
| hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| if num_frames > 1: | |
| hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample | |
| output_states += (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states += (hidden_states,) | |
| return hidden_states, output_states | |
| class DownBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor=1.0, | |
| add_downsample=True, | |
| downsample_padding=1, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| temp_convs = [] | |
| self.gradient_checkpointing = False | |
| for i in range(num_layers): | |
| in_channels = in_channels if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=in_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| temp_convs.append( | |
| TemporalConvLayer( | |
| out_channels, | |
| out_channels, | |
| dropout=0.1 | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.temp_convs = nn.ModuleList(temp_convs) | |
| if add_downsample: | |
| self.downsamplers = nn.ModuleList( | |
| [ | |
| Downsample2D( | |
| out_channels, use_conv=True, out_channels=out_channels, padding=downsample_padding, name="op" | |
| ) | |
| ] | |
| ) | |
| else: | |
| self.downsamplers = None | |
| def forward(self, hidden_states, temb=None, num_frames=1): | |
| output_states = () | |
| for resnet, temp_conv in zip(self.resnets, self.temp_convs): | |
| if self.gradient_checkpointing: | |
| hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if num_frames > 1: | |
| hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
| output_states += (hidden_states,) | |
| if self.downsamplers is not None: | |
| for downsampler in self.downsamplers: | |
| hidden_states = downsampler(hidden_states) | |
| output_states += (hidden_states,) | |
| return hidden_states, output_states | |
| class CrossAttnUpBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| out_channels: int, | |
| prev_output_channel: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| attn_num_head_channels=1, | |
| cross_attention_dim=1280, | |
| output_scale_factor=1.0, | |
| add_upsample=True, | |
| dual_cross_attention=False, | |
| use_linear_projection=False, | |
| only_cross_attention=False, | |
| upcast_attention=False, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| temp_convs = [] | |
| attentions = [] | |
| temp_attentions = [] | |
| self.gradient_checkpointing = False | |
| self.has_cross_attention = True | |
| self.attn_num_head_channels = attn_num_head_channels | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| temp_convs.append( | |
| TemporalConvLayer( | |
| out_channels, | |
| out_channels, | |
| dropout=0.1 | |
| ) | |
| ) | |
| attentions.append( | |
| Transformer2DModel( | |
| out_channels // attn_num_head_channels, | |
| attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| use_linear_projection=use_linear_projection, | |
| only_cross_attention=only_cross_attention, | |
| upcast_attention=upcast_attention, | |
| ) | |
| ) | |
| temp_attentions.append( | |
| TransformerTemporalModel( | |
| out_channels // attn_num_head_channels, | |
| attn_num_head_channels, | |
| in_channels=out_channels, | |
| num_layers=1, | |
| cross_attention_dim=cross_attention_dim, | |
| norm_num_groups=resnet_groups, | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.temp_convs = nn.ModuleList(temp_convs) | |
| self.attentions = nn.ModuleList(attentions) | |
| self.temp_attentions = nn.ModuleList(temp_attentions) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| def forward( | |
| self, | |
| hidden_states, | |
| res_hidden_states_tuple, | |
| temb=None, | |
| encoder_hidden_states=None, | |
| upsample_size=None, | |
| attention_mask=None, | |
| num_frames=1, | |
| cross_attention_kwargs=None, | |
| ): | |
| # TODO(Patrick, William) - attention mask is not used | |
| for resnet, temp_conv, attn, temp_attn in zip( | |
| self.resnets, self.temp_convs, self.attentions, self.temp_attentions | |
| ): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.gradient_checkpointing: | |
| hidden_states = cross_attn_g_c( | |
| attn, | |
| temp_attn, | |
| resnet, | |
| temp_conv, | |
| hidden_states, | |
| encoder_hidden_states, | |
| cross_attention_kwargs, | |
| temb, | |
| num_frames, | |
| inverse_temp=True | |
| ) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if num_frames > 1: | |
| hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
| hidden_states = attn( | |
| hidden_states, | |
| encoder_hidden_states=encoder_hidden_states, | |
| cross_attention_kwargs=cross_attention_kwargs, | |
| ).sample | |
| if num_frames > 1: | |
| hidden_states = temp_attn(hidden_states, num_frames=num_frames).sample | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |
| class UpBlock3D(nn.Module): | |
| def __init__( | |
| self, | |
| in_channels: int, | |
| prev_output_channel: int, | |
| out_channels: int, | |
| temb_channels: int, | |
| dropout: float = 0.0, | |
| num_layers: int = 1, | |
| resnet_eps: float = 1e-6, | |
| resnet_time_scale_shift: str = "default", | |
| resnet_act_fn: str = "swish", | |
| resnet_groups: int = 32, | |
| resnet_pre_norm: bool = True, | |
| output_scale_factor=1.0, | |
| add_upsample=True, | |
| ): | |
| super().__init__() | |
| resnets = [] | |
| temp_convs = [] | |
| self.gradient_checkpointing = False | |
| for i in range(num_layers): | |
| res_skip_channels = in_channels if (i == num_layers - 1) else out_channels | |
| resnet_in_channels = prev_output_channel if i == 0 else out_channels | |
| resnets.append( | |
| ResnetBlock2D( | |
| in_channels=resnet_in_channels + res_skip_channels, | |
| out_channels=out_channels, | |
| temb_channels=temb_channels, | |
| eps=resnet_eps, | |
| groups=resnet_groups, | |
| dropout=dropout, | |
| time_embedding_norm=resnet_time_scale_shift, | |
| non_linearity=resnet_act_fn, | |
| output_scale_factor=output_scale_factor, | |
| pre_norm=resnet_pre_norm, | |
| ) | |
| ) | |
| temp_convs.append( | |
| TemporalConvLayer( | |
| out_channels, | |
| out_channels, | |
| dropout=0.1 | |
| ) | |
| ) | |
| self.resnets = nn.ModuleList(resnets) | |
| self.temp_convs = nn.ModuleList(temp_convs) | |
| if add_upsample: | |
| self.upsamplers = nn.ModuleList([Upsample2D(out_channels, use_conv=True, out_channels=out_channels)]) | |
| else: | |
| self.upsamplers = None | |
| def forward(self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, num_frames=1): | |
| for resnet, temp_conv in zip(self.resnets, self.temp_convs): | |
| # pop res hidden states | |
| res_hidden_states = res_hidden_states_tuple[-1] | |
| res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
| hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
| if self.gradient_checkpointing: | |
| hidden_states = up_down_g_c(resnet, temp_conv, hidden_states, temb, num_frames) | |
| else: | |
| hidden_states = resnet(hidden_states, temb) | |
| if num_frames > 1: | |
| hidden_states = temp_conv(hidden_states, num_frames=num_frames) | |
| if self.upsamplers is not None: | |
| for upsampler in self.upsamplers: | |
| hidden_states = upsampler(hidden_states, upsample_size) | |
| return hidden_states | |