Spaces:
Running
on
Zero
Running
on
Zero
File size: 17,706 Bytes
113884e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 |
import argparse
import logging
import math
import os
import gc
import copy
from omegaconf import OmegaConf
import torch
import torch.utils.checkpoint
import diffusers
import transformers
from tqdm.auto import tqdm
from accelerate import Accelerator
from accelerate.logging import get_logger
from models.unet.unet_3d_condition import UNet3DConditionModel
from diffusers.models import AutoencoderKL
from diffusers import DDIMScheduler, TextToVideoSDPipeline
from transformers import CLIPTextModel, CLIPTokenizer
from utils.ddim_utils import inverse_video
from utils.gpu_utils import handle_memory_attention, unet_and_text_g_c
from utils.func_utils import *
import imageio
import numpy as np
from dataset import *
from loss import *
from noise_init import *
from attn_ctrl import register_attention_control
import shutil
logger = get_logger(__name__, log_level="INFO")
def log_validation(accelerator, config, batch, global_step, text_prompt, unet, text_encoder, vae, output_dir):
with accelerator.autocast():
unet.eval()
text_encoder.eval()
unet_and_text_g_c(unet, text_encoder, False, False)
# handle spatial lora
if config.loss.type =='DebiasedHybrid':
loras = extract_lora_child_module(unet, target_replace_module=["Transformer2DModel"])
for lora_i in loras:
lora_i.scale = 0
pipeline = TextToVideoSDPipeline.from_pretrained(
config.model.pretrained_model_path,
text_encoder=text_encoder,
vae=vae,
unet=unet
)
prompt_list = text_prompt if len(config.val.prompt) <= 0 else config.val.prompt
for seed in config.val.seeds:
noisy_latent = batch['inversion_noise']
shape = noisy_latent.shape
noise = torch.randn(
shape,
device=noisy_latent.device,
generator=torch.Generator(noisy_latent.device).manual_seed(seed)
).to(noisy_latent.dtype)
# handle different noise initialization strategy
init_func_name = f'{config.noise_init.type}'
# Assuming config.dataset is a DictConfig object
init_params_dict = OmegaConf.to_container(config.noise_init, resolve=True)
# Remove the 'type' key
init_params_dict.pop('type', None) # 'None' ensures no error if 'type' key doesn't exist
init_func_to_call = globals().get(init_func_name)
init_noise = init_func_to_call(noisy_latent, noise, **init_params_dict)
for prompt in prompt_list:
file_name = f"{prompt.replace(' ', '_')}_seed_{seed}.mp4"
file_path = f"{output_dir}/samples_{global_step}/"
if not os.path.exists(file_path):
os.makedirs(file_path)
with torch.no_grad():
video_frames = pipeline(
prompt=prompt,
negative_prompt=config.val.negative_prompt,
width=config.val.width,
height=config.val.height,
num_frames=config.val.num_frames,
num_inference_steps=config.val.num_inference_steps,
guidance_scale=config.val.guidance_scale,
latents=init_noise,
).frames[0]
export_to_video(video_frames, os.path.join(file_path, file_name), config.dataset.fps)
logger.info(f"Saved a new sample to {os.path.join(file_path, file_name)}")
del pipeline
torch.cuda.empty_cache()
def create_logging(logging, logger, accelerator):
logging.basicConfig(
format="%(asctime)s - %(levelname)s - %(name)s - %(message)s",
datefmt="%m/%d/%Y %H:%M:%S",
level=logging.INFO,
)
logger.info(accelerator.state, main_process_only=False)
def accelerate_set_verbose(accelerator):
if accelerator.is_local_main_process:
transformers.utils.logging.set_verbosity_warning()
diffusers.utils.logging.set_verbosity_info()
else:
transformers.utils.logging.set_verbosity_error()
diffusers.utils.logging.set_verbosity_error()
def export_to_video(video_frames, output_video_path, fps):
video_writer = imageio.get_writer(output_video_path, fps=fps)
for img in video_frames:
video_writer.append_data(np.array(img))
video_writer.close()
return output_video_path
def create_output_folders(output_dir, config):
out_dir = os.path.join(output_dir)
os.makedirs(out_dir, exist_ok=True)
OmegaConf.save(config, os.path.join(out_dir, 'config.yaml'))
shutil.copyfile(config.dataset.single_video_path, os.path.join(out_dir,'source.mp4'))
return out_dir
def load_primary_models(pretrained_model_path):
noise_scheduler = DDIMScheduler.from_pretrained(pretrained_model_path, subfolder="scheduler")
tokenizer = CLIPTokenizer.from_pretrained(pretrained_model_path, subfolder="tokenizer")
text_encoder = CLIPTextModel.from_pretrained(pretrained_model_path, subfolder="text_encoder")
vae = AutoencoderKL.from_pretrained(pretrained_model_path, subfolder="vae")
unet = UNet3DConditionModel.from_pretrained(pretrained_model_path, subfolder="unet")
return noise_scheduler, tokenizer, text_encoder, vae, unet
def freeze_models(models_to_freeze):
for model in models_to_freeze:
if model is not None: model.requires_grad_(False)
def is_mixed_precision(accelerator):
weight_dtype = torch.float32
if accelerator.mixed_precision == "fp16":
weight_dtype = torch.float16
elif accelerator.mixed_precision == "bf16":
weight_dtype = torch.bfloat16
return weight_dtype
def cast_to_gpu_and_type(model_list, accelerator, weight_dtype):
for model in model_list:
if model is not None: model.to(accelerator.device, dtype=weight_dtype)
def handle_cache_latents(
should_cache,
output_dir,
train_dataloader,
train_batch_size,
vae,
unet,
pretrained_model_path,
cached_latent_dir=None,
):
# Cache latents by storing them in VRAM.
# Speeds up training and saves memory by not encoding during the train loop.
if not should_cache: return None
vae.to('cuda', dtype=torch.float16)
vae.enable_slicing()
pipe = TextToVideoSDPipeline.from_pretrained(
pretrained_model_path,
vae=vae,
unet=copy.deepcopy(unet).to('cuda', dtype=torch.float16)
)
pipe.text_encoder.to('cuda', dtype=torch.float16)
cached_latent_dir = (
os.path.abspath(cached_latent_dir) if cached_latent_dir is not None else None
)
if cached_latent_dir is None:
cache_save_dir = f"{output_dir}/cached_latents"
os.makedirs(cache_save_dir, exist_ok=True)
for i, batch in enumerate(tqdm(train_dataloader, desc="Caching Latents.")):
save_name = f"cached_{i}"
full_out_path = f"{cache_save_dir}/{save_name}.pt"
pixel_values = batch['pixel_values'].to('cuda', dtype=torch.float16)
batch['latents'] = tensor_to_vae_latent(pixel_values, vae)
batch['inversion_noise'] = inverse_video(pipe, batch['latents'], 50)
for k, v in batch.items(): batch[k] = v[0]
torch.save(batch, full_out_path)
del pixel_values
del batch
# We do this to avoid fragmentation from casting latents between devices.
torch.cuda.empty_cache()
else:
cache_save_dir = cached_latent_dir
return torch.utils.data.DataLoader(
CachedDataset(cache_dir=cache_save_dir),
batch_size=train_batch_size,
shuffle=True,
num_workers=0
)
def should_sample(global_step, validation_steps, validation_data):
return (global_step == 1 or global_step % validation_steps == 0) and validation_data.sample_preview
def save_pipe(
path,
global_step,
accelerator,
unet,
text_encoder,
vae,
output_dir,
is_checkpoint=False,
save_pretrained_model=False,
**extra_params
):
if is_checkpoint:
save_path = os.path.join(output_dir, f"checkpoint-{global_step}")
os.makedirs(save_path, exist_ok=True)
else:
save_path = output_dir
# Save the dtypes so we can continue training at the same precision.
u_dtype, t_dtype, v_dtype = unet.dtype, text_encoder.dtype, vae.dtype
# Copy the model without creating a reference to it. This allows keeping the state of our lora training if enabled.
unet_out = copy.deepcopy(accelerator.unwrap_model(unet.cpu(), keep_fp32_wrapper=False))
text_encoder_out = copy.deepcopy(accelerator.unwrap_model(text_encoder.cpu(), keep_fp32_wrapper=False))
pipeline = TextToVideoSDPipeline.from_pretrained(
path,
unet=unet_out,
text_encoder=text_encoder_out,
vae=vae,
).to(torch_dtype=torch.float32)
lora_managers_spatial = extra_params.get('lora_managers_spatial', [None])
lora_manager_spatial = lora_managers_spatial[-1]
if lora_manager_spatial is not None:
lora_manager_spatial.save_lora_weights(model=copy.deepcopy(pipeline), save_path=save_path+'/spatial', step=global_step)
save_motion_embeddings(unet_out, os.path.join(save_path, 'motion_embed.pt'))
if save_pretrained_model:
pipeline.save_pretrained(save_path)
if is_checkpoint:
unet, text_encoder = accelerator.prepare(unet, text_encoder)
models_to_cast_back = [(unet, u_dtype), (text_encoder, t_dtype), (vae, v_dtype)]
[x[0].to(accelerator.device, dtype=x[1]) for x in models_to_cast_back]
logger.info(f"Saved model at {save_path} on step {global_step}")
del pipeline
del unet_out
del text_encoder_out
torch.cuda.empty_cache()
gc.collect()
def main(config):
# Initialize the Accelerator
accelerator = Accelerator(
gradient_accumulation_steps=config.train.gradient_accumulation_steps,
mixed_precision=config.train.mixed_precision,
log_with=config.train.logger_type,
project_dir=config.train.output_dir
)
video_path = config.dataset.single_video_path
cap = cv2.VideoCapture(video_path)
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
fps = 8
frame_count = int(cap.get(cv2.CAP_PROP_FRAME_COUNT))
config.dataset.width = width
config.dataset.height = height
config.dataset.fps = fps
config.dataset.n_sample_frames = frame_count
config.dataset.single_video_path = video_path
config.val.width = width
config.val.height = height
config.val.num_frames = frame_count
# Create output directories and set up logging
if accelerator.is_main_process:
output_dir = create_output_folders(config.train.output_dir, config)
create_logging(logging, logger, accelerator)
accelerate_set_verbose(accelerator)
# Load primary models
noise_scheduler, tokenizer, text_encoder, vae, unet = load_primary_models(config.model.pretrained_model_path)
# Load videoCrafter2 unet for better video quality, if needed
if config.model.unet == 'videoCrafter2':
unet = UNet3DConditionModel.from_pretrained("/hpc2hdd/home/lwang592/ziyang/cache/videocrafterv2",subfolder='unet')
elif config.model.unet == 'zeroscope_v2_576w':
# by default, we use zeroscope_v2_576w, thus this unet is already loaded
pass
else:
raise ValueError("Invalid UNet model")
freeze_models([vae, text_encoder])
handle_memory_attention(unet)
train_dataloader, train_dataset = prepare_data(config, tokenizer)
# Handle latents caching
cached_data_loader = handle_cache_latents(
config.train.cache_latents,
output_dir,
train_dataloader,
config.train.train_batch_size,
vae,
unet,
config.model.pretrained_model_path,
config.train.cached_latent_dir,
)
if cached_data_loader is not None:
train_dataloader = cached_data_loader
# Prepare parameters and optimization
params, extra_params = prepare_params(unet, config, train_dataset)
optimizers, lr_schedulers = prepare_optimizers(params, config, **extra_params)
# Prepare models and data for training
unet, optimizers, train_dataloader, lr_schedulers, text_encoder = accelerator.prepare(
unet, optimizers, train_dataloader, lr_schedulers, text_encoder
)
# Additional model setups
unet_and_text_g_c(unet, text_encoder)
vae.enable_slicing()
# Setup for mixed precision training
weight_dtype = is_mixed_precision(accelerator)
cast_to_gpu_and_type([text_encoder, vae], accelerator, weight_dtype)
# Recalculate training steps and epochs
num_update_steps_per_epoch = math.ceil(len(train_dataloader) / config.train.gradient_accumulation_steps)
num_train_epochs = math.ceil(config.train.max_train_steps / num_update_steps_per_epoch)
# Initialize trackers and store configuration
if accelerator.is_main_process:
accelerator.init_trackers("motion-inversion")
# Train!
total_batch_size = config.train.train_batch_size * accelerator.num_processes * config.train.gradient_accumulation_steps
logger.info("***** Running training *****")
logger.info(f" Num examples = {len(train_dataset)}")
logger.info(f" Num Epochs = {num_train_epochs}")
logger.info(f" Instantaneous batch size per device = {config.train.train_batch_size}")
logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}")
logger.info(f" Gradient Accumulation steps = {config.train.gradient_accumulation_steps}")
logger.info(f" Total optimization steps = {config.train.max_train_steps}")
global_step = 0
first_epoch = 0
# Only show the progress bar once on each machine.
progress_bar = tqdm(range(global_step, config.train.max_train_steps), disable=not accelerator.is_local_main_process)
progress_bar.set_description("Steps")
# Register the attention control, for Motion Value Embedding(s)
register_attention_control(unet, config=config)
for epoch in range(first_epoch, num_train_epochs):
train_loss_temporal = 0.0
for step, batch in enumerate(train_dataloader):
# Skip steps until we reach the resumed step
if config.train.resume_from_checkpoint and epoch == first_epoch and step < config.train.resume_step:
if step % config.train.gradient_accumulation_steps == 0:
progress_bar.update(1)
continue
with accelerator.accumulate(unet), accelerator.accumulate(text_encoder):
for optimizer in optimizers:
optimizer.zero_grad(set_to_none=True)
with accelerator.autocast():
if global_step == 0:
unet.train()
loss_func_to_call = globals().get(f'{config.loss.type}')
loss_temporal, train_loss_temporal = loss_func_to_call(
train_loss_temporal,
accelerator,
optimizers,
lr_schedulers,
unet,
vae,
text_encoder,
noise_scheduler,
batch,
step,
config
)
# Checks if the accelerator has performed an optimization step behind the scenes
if accelerator.sync_gradients:
progress_bar.update(1)
global_step += 1
accelerator.log({"train_loss": train_loss_temporal}, step=global_step)
train_loss_temporal = 0.0
if global_step % config.train.checkpointing_steps == 0 and global_step > 0:
save_pipe(
config.model.pretrained_model_path,
global_step,
accelerator,
unet,
text_encoder,
vae,
output_dir,
is_checkpoint=True,
**extra_params
)
if loss_temporal is not None:
accelerator.log({"loss_temporal": loss_temporal.detach().item()}, step=step)
if global_step >= config.train.max_train_steps:
break
# Create the pipeline using the trained modules and save it.
accelerator.wait_for_everyone()
accelerator.end_training()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--config", type=str, default='configs/config.yaml')
parser.add_argument("--single_video_path", type=str)
parser.add_argument("--prompts", type=str, help="JSON string of prompts")
args = parser.parse_args()
# Load and merge configurations
config = OmegaConf.load(args.config)
# Update the config with the command-line arguments
if args.single_video_path:
config.dataset.single_video_path = args.single_video_path
# Set the output dir
config.train.output_dir = os.path.join(config.train.output_dir, os.path.basename(args.single_video_path).split('.')[0])
if args.prompts:
config.val.prompt = json.loads(args.prompts)
main(config)
|