Spaces:
Running
on
Zero
Running
on
Zero
File size: 11,843 Bytes
113884e c9ddddb 113884e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 |
import abc
LOW_RESOURCE = False
import torch
import cv2
import torch
import os
import numpy as np
from collections import defaultdict
from functools import partial
from typing import Any, Dict, Optional
def register_attention_control(unet, config=None):
def BasicTransformerBlock_forward(
self,
hidden_states: torch.FloatTensor,
attention_mask: Optional[torch.FloatTensor] = None,
encoder_hidden_states: Optional[torch.FloatTensor] = None,
encoder_attention_mask: Optional[torch.FloatTensor] = None,
timestep: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
class_labels: Optional[torch.LongTensor] = None,
added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
) -> torch.FloatTensor:
# Notice that normalization is always applied before the real computation in the following blocks.
# 0. Self-Attention
batch_size = hidden_states.shape[0]
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm1(hidden_states, timestep)
elif self.norm_type == "ada_norm_zero":
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
)
elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm1(hidden_states)
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif self.norm_type == "ada_norm_single":
shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
).chunk(6, dim=1)
norm_hidden_states = self.norm1(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
norm_hidden_states = norm_hidden_states.squeeze(1)
else:
raise ValueError("Incorrect norm used")
# save the origin_hidden_states w/o pos_embed, for the use of motion v embedding
origin_hidden_states = None
if self.pos_embed is not None or hasattr(self.attn1,'vSpatial'):
origin_hidden_states = norm_hidden_states.clone()
if cross_attention_kwargs is None:
cross_attention_kwargs = {}
cross_attention_kwargs["origin_hidden_states"] = origin_hidden_states
if self.pos_embed is not None:
norm_hidden_states = self.pos_embed(norm_hidden_states)
# 1. Retrieve lora scale.
lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0
# 2. Prepare GLIGEN inputs
cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
gligen_kwargs = cross_attention_kwargs.pop("gligen", None)
attn_output = self.attn1(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
attention_mask=attention_mask,
**cross_attention_kwargs,
)
if self.norm_type == "ada_norm_zero":
attn_output = gate_msa.unsqueeze(1) * attn_output
elif self.norm_type == "ada_norm_single":
attn_output = gate_msa * attn_output
hidden_states = attn_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
# 2.5 GLIGEN Control
if gligen_kwargs is not None:
hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])
# 3. Cross-Attention
if self.attn2 is not None:
if self.norm_type == "ada_norm":
norm_hidden_states = self.norm2(hidden_states, timestep)
elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
norm_hidden_states = self.norm2(hidden_states)
elif self.norm_type == "ada_norm_single":
# For PixArt norm2 isn't applied here:
# https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
norm_hidden_states = hidden_states
elif self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
else:
raise ValueError("Incorrect norm")
if self.pos_embed is not None and self.norm_type != "ada_norm_single":
# save the origin_hidden_states
origin_hidden_states = norm_hidden_states.clone()
norm_hidden_states = self.pos_embed(norm_hidden_states)
cross_attention_kwargs["origin_hidden_states"] = origin_hidden_states
attn_output = self.attn2(
norm_hidden_states,
encoder_hidden_states=encoder_hidden_states,
attention_mask=encoder_attention_mask,
**cross_attention_kwargs,
)
hidden_states = attn_output + hidden_states
# delete the origin_hidden_states
if cross_attention_kwargs is not None and "origin_hidden_states" in cross_attention_kwargs:
cross_attention_kwargs.pop("origin_hidden_states")
# 4. Feed-forward
# i2vgen doesn't have this norm 🤷♂️
if self.norm_type == "ada_norm_continuous":
norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
elif not self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm3(hidden_states)
if self.norm_type == "ada_norm_zero":
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]
if self.norm_type == "ada_norm_single":
norm_hidden_states = self.norm2(hidden_states)
norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp
if self._chunk_size is not None:
# "feed_forward_chunk_size" can be used to save memory
ff_output = _chunked_feed_forward(
self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
)
else:
ff_output = self.ff(norm_hidden_states, scale=lora_scale)
if self.norm_type == "ada_norm_zero":
ff_output = gate_mlp.unsqueeze(1) * ff_output
elif self.norm_type == "ada_norm_single":
ff_output = gate_mlp * ff_output
hidden_states = ff_output + hidden_states
if hidden_states.ndim == 4:
hidden_states = hidden_states.squeeze(1)
return hidden_states
def temp_attn_forward(self, additional_info=None):
to_out = self.to_out
if type(to_out) is torch.nn.modules.container.ModuleList:
to_out = self.to_out[0]
else:
to_out = self.to_out
def forward(hidden_states, encoder_hidden_states=None, attention_mask=None,temb=None,origin_hidden_states=None):
residual = hidden_states
if self.spatial_norm is not None:
hidden_states = self.spatial_norm(hidden_states, temb)
input_ndim = hidden_states.ndim
if input_ndim == 4:
batch_size, channel, height, width = hidden_states.shape
hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)
batch_size, sequence_length, _ = (
hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
)
attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)
if self.group_norm is not None:
hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)
if encoder_hidden_states is None:
encoder_hidden_states = hidden_states
elif self.norm_cross:
encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)
query = self.to_q(hidden_states)
key = self.to_k(encoder_hidden_states)
# strategies to manipulate the motion value embedding
if additional_info is not None:
# empirically, in the inference stage of camera motion
# discarding the motion value embedding improves the text similarity of the generated video
if additional_info['removeMFromV']:
value = self.to_v(origin_hidden_states)
elif hasattr(self,'vSpatial'):
# during inference, the debiasing operation helps to generate more diverse videos
# refer to the 'Figure.3 Right' in the paper for more details
if additional_info['vSpatial_frameSubtraction']:
value = self.to_v(self.vSpatial.forward_frameSubtraction(origin_hidden_states))
# during training, do not apply debias operation for motion learning
else:
value = self.to_v(self.vSpatial(origin_hidden_states))
else:
value = self.to_v(origin_hidden_states)
else:
value = self.to_v(encoder_hidden_states)
query = self.head_to_batch_dim(query)
key = self.head_to_batch_dim(key)
value = self.head_to_batch_dim(value)
attention_probs = self.get_attention_scores(query, key, attention_mask)
hidden_states = torch.bmm(attention_probs, value)
hidden_states = self.batch_to_head_dim(hidden_states)
# linear proj
hidden_states = to_out(hidden_states)
if input_ndim == 4:
hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)
if self.residual_connection:
hidden_states = hidden_states + residual
hidden_states = hidden_states / self.rescale_output_factor
return hidden_states
return forward
def register_recr(net_, count, name, config=None):
if net_.__class__.__name__ == 'BasicTransformerBlock':
BasicTransformerBlock_forward_ = partial(BasicTransformerBlock_forward, net_)
net_.forward = BasicTransformerBlock_forward_
if net_.__class__.__name__ == 'Attention':
block_name = name.split('.attn')[0]
if config is not None and block_name in set([l.split('.attn')[0].split('.pos_embed')[0] for l in config.model.embedding_layers]):
additional_info = {}
additional_info['layer_name'] = name
additional_info['removeMFromV'] = config.strategy.get('removeMFromV', False)
additional_info['vSpatial_frameSubtraction'] = config.strategy.get('vSpatial_frameSubtraction', False)
net_.forward = temp_attn_forward(net_, additional_info)
# print('register Motion V embedding at ', block_name)
return count + 1
else:
return count
elif hasattr(net_, 'children'):
for net_name, net__ in dict(net_.named_children()).items():
count = register_recr(net__, count, name = name + '.' + net_name, config=config)
return count
sub_nets = unet.named_children()
for net in sub_nets:
register_recr(net[1], 0,name = net[0], config=config)
|