File size: 11,843 Bytes
113884e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c9ddddb
113884e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
import abc

LOW_RESOURCE = False
import torch 
import cv2 
import torch
import os
import numpy as np
from collections import defaultdict
from functools import partial
from typing import Any, Dict, Optional

def register_attention_control(unet, config=None):

    def BasicTransformerBlock_forward(
        self,
        hidden_states: torch.FloatTensor,
        attention_mask: Optional[torch.FloatTensor] = None,
        encoder_hidden_states: Optional[torch.FloatTensor] = None,
        encoder_attention_mask: Optional[torch.FloatTensor] = None,
        timestep: Optional[torch.LongTensor] = None,
        cross_attention_kwargs: Dict[str, Any] = None,
        class_labels: Optional[torch.LongTensor] = None,
        added_cond_kwargs: Optional[Dict[str, torch.Tensor]] = None,
    ) -> torch.FloatTensor:
        # Notice that normalization is always applied before the real computation in the following blocks.
        # 0. Self-Attention
        batch_size = hidden_states.shape[0]

        if self.norm_type == "ada_norm":
            norm_hidden_states = self.norm1(hidden_states, timestep)
        elif self.norm_type == "ada_norm_zero":
            norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1(
                hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype
            )
        elif self.norm_type in ["layer_norm", "layer_norm_i2vgen"]:
            norm_hidden_states = self.norm1(hidden_states)
        elif self.norm_type == "ada_norm_continuous":
            norm_hidden_states = self.norm1(hidden_states, added_cond_kwargs["pooled_text_emb"])
        elif self.norm_type == "ada_norm_single":
            shift_msa, scale_msa, gate_msa, shift_mlp, scale_mlp, gate_mlp = (
                self.scale_shift_table[None] + timestep.reshape(batch_size, 6, -1)
            ).chunk(6, dim=1)
            norm_hidden_states = self.norm1(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_msa) + shift_msa
            norm_hidden_states = norm_hidden_states.squeeze(1)
        else:
            raise ValueError("Incorrect norm used")

        # save the origin_hidden_states w/o pos_embed, for the use of motion v embedding
        origin_hidden_states = None
        if self.pos_embed is not None or hasattr(self.attn1,'vSpatial'):
            origin_hidden_states = norm_hidden_states.clone()
            if cross_attention_kwargs is None:
                cross_attention_kwargs = {}
            cross_attention_kwargs["origin_hidden_states"] = origin_hidden_states

        if self.pos_embed is not None:
            norm_hidden_states = self.pos_embed(norm_hidden_states)

            
        # 1. Retrieve lora scale.
        lora_scale = cross_attention_kwargs.get("scale", 1.0) if cross_attention_kwargs is not None else 1.0

        # 2. Prepare GLIGEN inputs
        cross_attention_kwargs = cross_attention_kwargs.copy() if cross_attention_kwargs is not None else {}
        gligen_kwargs = cross_attention_kwargs.pop("gligen", None)

        attn_output = self.attn1(
            norm_hidden_states,
            encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None,
            attention_mask=attention_mask,
            **cross_attention_kwargs,
        )
        if self.norm_type == "ada_norm_zero":
            attn_output = gate_msa.unsqueeze(1) * attn_output
        elif self.norm_type == "ada_norm_single":
            attn_output = gate_msa * attn_output

        hidden_states = attn_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        # 2.5 GLIGEN Control
        if gligen_kwargs is not None:
            hidden_states = self.fuser(hidden_states, gligen_kwargs["objs"])

        # 3. Cross-Attention
        if self.attn2 is not None:
            if self.norm_type == "ada_norm":
                norm_hidden_states = self.norm2(hidden_states, timestep)
            elif self.norm_type in ["ada_norm_zero", "layer_norm", "layer_norm_i2vgen"]:
                norm_hidden_states = self.norm2(hidden_states)
            elif self.norm_type == "ada_norm_single":
                # For PixArt norm2 isn't applied here:
                # https://github.com/PixArt-alpha/PixArt-alpha/blob/0f55e922376d8b797edd44d25d0e7464b260dcab/diffusion/model/nets/PixArtMS.py#L70C1-L76C103
                norm_hidden_states = hidden_states
            elif self.norm_type == "ada_norm_continuous":
                norm_hidden_states = self.norm2(hidden_states, added_cond_kwargs["pooled_text_emb"])
            else:
                raise ValueError("Incorrect norm")

            if self.pos_embed is not None and self.norm_type != "ada_norm_single":
                # save the origin_hidden_states
                origin_hidden_states = norm_hidden_states.clone()
                norm_hidden_states = self.pos_embed(norm_hidden_states)
                cross_attention_kwargs["origin_hidden_states"] = origin_hidden_states

            attn_output = self.attn2(
                norm_hidden_states,
                encoder_hidden_states=encoder_hidden_states,
                attention_mask=encoder_attention_mask,
                **cross_attention_kwargs,
            )
            hidden_states = attn_output + hidden_states
            # delete the origin_hidden_states
            if cross_attention_kwargs is not None and "origin_hidden_states" in cross_attention_kwargs:
                cross_attention_kwargs.pop("origin_hidden_states")

        # 4. Feed-forward
        # i2vgen doesn't have this norm 🤷‍♂️
        if self.norm_type == "ada_norm_continuous":
            norm_hidden_states = self.norm3(hidden_states, added_cond_kwargs["pooled_text_emb"])
        elif not self.norm_type == "ada_norm_single":
            norm_hidden_states = self.norm3(hidden_states)

        if self.norm_type == "ada_norm_zero":
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None]

        if self.norm_type == "ada_norm_single":
            norm_hidden_states = self.norm2(hidden_states)
            norm_hidden_states = norm_hidden_states * (1 + scale_mlp) + shift_mlp

        if self._chunk_size is not None:
            # "feed_forward_chunk_size" can be used to save memory
            ff_output = _chunked_feed_forward(
                self.ff, norm_hidden_states, self._chunk_dim, self._chunk_size, lora_scale=lora_scale
            )
        else:
            ff_output = self.ff(norm_hidden_states, scale=lora_scale)

        if self.norm_type == "ada_norm_zero":
            ff_output = gate_mlp.unsqueeze(1) * ff_output
        elif self.norm_type == "ada_norm_single":
            ff_output = gate_mlp * ff_output

        hidden_states = ff_output + hidden_states
        if hidden_states.ndim == 4:
            hidden_states = hidden_states.squeeze(1)

        return hidden_states


    def temp_attn_forward(self, additional_info=None):
        to_out = self.to_out
        if type(to_out) is torch.nn.modules.container.ModuleList:
            to_out = self.to_out[0]
        else:
            to_out = self.to_out

        def forward(hidden_states, encoder_hidden_states=None, attention_mask=None,temb=None,origin_hidden_states=None):
            
            residual = hidden_states

            if self.spatial_norm is not None:
                hidden_states = self.spatial_norm(hidden_states, temb)

            input_ndim = hidden_states.ndim

            if input_ndim == 4:
                batch_size, channel, height, width = hidden_states.shape
                hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

            batch_size, sequence_length, _ = (
                hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
            )

            attention_mask = self.prepare_attention_mask(attention_mask, sequence_length, batch_size)

            if self.group_norm is not None:
                hidden_states = self.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

            if encoder_hidden_states is None:
                encoder_hidden_states = hidden_states
            elif self.norm_cross:
                encoder_hidden_states = self.norm_encoder_hidden_states(encoder_hidden_states)

            query = self.to_q(hidden_states)
            key = self.to_k(encoder_hidden_states)
            
            # strategies to manipulate the motion value embedding
            if additional_info is not None:
                # empirically, in the inference stage of camera motion
                # discarding the motion value embedding improves the text similarity of the generated video
                if additional_info['removeMFromV']:
                    value = self.to_v(origin_hidden_states)
                elif hasattr(self,'vSpatial'):
                    # during inference, the debiasing operation helps to generate more diverse videos
                    # refer to the 'Figure.3 Right' in the paper for more details
                    if additional_info['vSpatial_frameSubtraction']:
                        value = self.to_v(self.vSpatial.forward_frameSubtraction(origin_hidden_states))
                    # during training, do not apply debias operation for motion learning
                    else:
                        value = self.to_v(self.vSpatial(origin_hidden_states))
                else:
                    value = self.to_v(origin_hidden_states)
            else:
                value = self.to_v(encoder_hidden_states)


            query = self.head_to_batch_dim(query)
            key = self.head_to_batch_dim(key)
            value = self.head_to_batch_dim(value)

            attention_probs = self.get_attention_scores(query, key, attention_mask)

            hidden_states = torch.bmm(attention_probs, value)
            hidden_states = self.batch_to_head_dim(hidden_states)

            # linear proj
            hidden_states = to_out(hidden_states)

            if input_ndim == 4:
                hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

            if self.residual_connection:
                hidden_states = hidden_states + residual

            hidden_states = hidden_states / self.rescale_output_factor

            return hidden_states
        return forward

    def register_recr(net_, count, name, config=None):

        if net_.__class__.__name__ == 'BasicTransformerBlock':
            BasicTransformerBlock_forward_ = partial(BasicTransformerBlock_forward, net_)
            net_.forward = BasicTransformerBlock_forward_

        if net_.__class__.__name__ == 'Attention':
            block_name = name.split('.attn')[0] 
            if config is not None and block_name in set([l.split('.attn')[0].split('.pos_embed')[0] for l in config.model.embedding_layers]):
                additional_info = {}
                additional_info['layer_name'] = name
                additional_info['removeMFromV'] = config.strategy.get('removeMFromV', False)
                additional_info['vSpatial_frameSubtraction'] = config.strategy.get('vSpatial_frameSubtraction', False)
                net_.forward = temp_attn_forward(net_, additional_info)
                # print('register Motion V embedding at ', block_name)
                return count + 1
            else:
                return count

        elif hasattr(net_, 'children'):
            for net_name, net__ in dict(net_.named_children()).items():
                count = register_recr(net__, count, name = name + '.' + net_name, config=config)
        return count

    sub_nets = unet.named_children()
    
    for net in sub_nets:
        register_recr(net[1], 0,name = net[0], config=config)