File size: 2,833 Bytes
885b434
 
1dd5bbf
885b434
5a63293
cb34ab7
 
5a63293
 
885b434
4c9facd
 
 
 
 
 
 
 
 
 
 
 
 
885b434
b9bec37
 
1dd5bbf
b9bec37
885b434
1dd5bbf
 
 
 
 
 
 
 
 
 
 
 
 
885b434
 
5a63293
4c9facd
4ecebd0
 
1dd5bbf
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
885b434
 
1dd5bbf
4ecebd0
1dd5bbf
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
import gradio as gr
from transformers import AutoModelForSequenceClassification, AutoTokenizer, pipeline
import pandas as pd

MODEL_URL = "https://huggingface.co/dsfsi/PuoBERTa-News"
WEBSITE_URL = "https://www.kodiks.com/ai_solutions.html"

tokenizer = AutoTokenizer.from_pretrained("dsfsi/PuoBERTa-News")
model = AutoModelForSequenceClassification.from_pretrained("dsfsi/PuoBERTa-News")

categories = {
    "arts_culture_entertainment_and_media": "Botsweretshi, setso, boitapoloso le bobegakgang",
    "crime_law_and_justice": "Bosenyi, molao le bosiamisi",
    "disaster_accident_and_emergency_incident": "Masetlapelo, kotsi le tiragalo ya maemo a tshoganyetso",
    "economy_business_and_finance": "Ikonomi, tsa kgwebo le tsa ditšhelete",
    "education": "Thuto",
    "environment": "Tikologo",
    "health": "Boitekanelo",
    "politics": "Dipolotiki",
    "religion_and_belief": "Bodumedi le tumelo",
    "society": "Setšhaba"
}

def prediction(news):
    clasifer = pipeline("sentiment-analysis", tokenizer=tokenizer, model=model, return_all_scores=True)
    preds = clasifer(news)
    preds_dict = {categories.get(pred['label'], pred['label']): pred['score'] for pred in preds[0]}
    return preds_dict

def file_prediction(file):
    if file.name.endswith('.csv'):
        df = pd.read_csv(file.name) 
        news_list = df.iloc[:, 0].tolist()  
    else:
        news_list = [file.read().decode('utf-8')]  # Load plain text
    
    results = []
    for news in news_list:
        results.append(prediction(news))
    
    return results

gradio_ui = gr.Interface(
    fn=prediction,
    title="Setswana News Classification",
    description=f"Enter Setswana news article to see the category of the news.\n For this classification, the {MODEL_URL} model was used.",
    inputs=gr.Textbox(lines=10, label="Paste some Setswana news here"),
    outputs=gr.Label(num_top_classes=5, label="News categories probabilities"),
    theme="default",
    css="""
    body {
        background-color: white !important;
        color: black !important;
    }
    .gradio-container {
        background-color: white !important;
        color: black !important;
    }
    .gr-button {
        background-color: #f0f0f0 !important;
        color: black !important;
    }
    """
)

gradio_file_ui = gr.Interface(
    fn=file_prediction,
    title="Upload File for Setswana News Classification",
    description=f"Upload a text or CSV file with Setswana news articles. The first column in the CSV should contain the news text.",
    inputs=gr.File(label="Upload text or CSV file"),
    outputs=gr.Dataframe(headers=["News Text", "Category Predictions"], label="Predictions from file"),
    theme="default"
)

gradio_combined_ui = gr.TabbedInterface([gradio_ui, gradio_file_ui], ["Text Input", "File Upload"])

gradio_combined_ui.launch()