Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -4,6 +4,8 @@ import matplotlib
|
|
4 |
import numpy as np
|
5 |
import os
|
6 |
from PIL import Image
|
|
|
|
|
7 |
import spaces
|
8 |
import torch
|
9 |
import tempfile
|
@@ -43,7 +45,31 @@ encoder = 'vitl'
|
|
43 |
model_name = encoder2name[encoder]
|
44 |
model = DepthAnythingV2(**model_configs[encoder])
|
45 |
filepath = hf_hub_download(repo_id="depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf", filename="model.safetensors", repo_type="model")
|
46 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
model.load_state_dict(state_dict)
|
48 |
model = model.to(DEVICE).eval()
|
49 |
|
|
|
4 |
import numpy as np
|
5 |
import os
|
6 |
from PIL import Image
|
7 |
+
import mmap
|
8 |
+
import json
|
9 |
import spaces
|
10 |
import torch
|
11 |
import tempfile
|
|
|
45 |
model_name = encoder2name[encoder]
|
46 |
model = DepthAnythingV2(**model_configs[encoder])
|
47 |
filepath = hf_hub_download(repo_id="depth-anything/Depth-Anything-V2-Metric-Indoor-Large-hf", filename="model.safetensors", repo_type="model")
|
48 |
+
|
49 |
+
def create_tensor(storage, info, offset):
|
50 |
+
DTYPES = {"F32": torch.float32}
|
51 |
+
dtype = DTYPES[info["dtype"]]
|
52 |
+
shape = info["shape"]
|
53 |
+
start, stop = info["data_offsets"]
|
54 |
+
return torch.asarray(storage[start + offset : stop + offset], dtype=torch.uint8).view(dtype=dtype).reshape(shape)
|
55 |
+
|
56 |
+
def load_file(filename):
|
57 |
+
with open(filename, mode="r", encoding="utf8") as file_obj:
|
58 |
+
with mmap.mmap(file_obj.fileno(), length=0, access=mmap.ACCESS_READ) as m:
|
59 |
+
header = m.read(8)
|
60 |
+
n = int.from_bytes(header, "little")
|
61 |
+
metadata_bytes = m.read(n)
|
62 |
+
metadata = json.loads(metadata_bytes)
|
63 |
+
|
64 |
+
size = os.stat(filename).st_size
|
65 |
+
storage = torch.ByteStorage.from_file(filename, shared=False, size=size).untyped()
|
66 |
+
offset = n + 8
|
67 |
+
return {name: create_tensor(storage, info, offset) for name, info in metadata.items() if name != "__metadata__"}
|
68 |
+
|
69 |
+
|
70 |
+
#state_dict = torch.load(filepath, map_location="cpu", weights_only=True)
|
71 |
+
state_dict = load_file(filepath)
|
72 |
+
|
73 |
model.load_state_dict(state_dict)
|
74 |
model = model.to(DEVICE).eval()
|
75 |
|