Spaces:
Sleeping
Sleeping
import gradio as gr | |
from transformers import AutoTokenizer, AutoModelForSeq2SeqLM | |
from peft import PeftModel, PeftConfig | |
config = PeftConfig.from_pretrained("zeyadusf/FlanT5Summarization-samsum") | |
base_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-large") | |
model = PeftModel.from_pretrained(base_model, "zeyadusf/FlanT5Summarization-samsum") | |
tokenizer = AutoTokenizer.from_pretrained("zeyadusf/FlanT5Summarization-samsum") | |
# Define the summarization function | |
def summarize(text): | |
inputs = tokenizer(text, return_tensors="pt", truncation=True) | |
# Access the base model's generate method | |
summary_ids = model.base_model.generate(inputs.input_ids, max_length=512, min_length=64, length_penalty=2.0, num_beams=4, early_stopping=True) | |
return tokenizer.decode(summary_ids[0], skip_special_tokens=True) | |
# Define the Gradio interface | |
iface = gr.Interface( | |
fn=summarize, | |
inputs=gr.Textbox(lines=2, placeholder="Enter your text here..."), | |
outputs="text", | |
title="Summarization by Flan-T5-Large with PEFT", | |
description='Finetune Flan-t5 training on samsum dataset ' | |
) | |
iface.launch() | |