""" """ import torch from kernels import get_kernel _flash_attn_func = get_kernel("kernels-community/vllm-flash-attn3").flash_attn_func @torch.library.custom_op("flash::flash_attn_func", mutates_args=()) def flash_attn_func(q: torch.Tensor, k: torch.Tensor, v: torch.Tensor) -> torch.Tensor: outputs, lse = _flash_attn_func(q, k, v) return outputs @flash_attn_func.register_fake def _(q, k, v, **kwargs): # two outputs: # 1. output: (batch, seq_len, num_heads, head_dim) # 2. softmax_lse: (batch, num_heads, seq_len) with dtype=torch.float32 meta_q = torch.empty_like(q).contiguous() return meta_q #, q.new_empty((q.size(0), q.size(2), q.size(1)), dtype=torch.float32) # Copied FusedFluxAttnProcessor2_0 but using flash v3 instead of SDPA class FlashFusedFluxAttnProcessor3_0: """Attention processor used typically in processing the SD3-like self-attention projections.""" def __call__( self, attn, hidden_states: torch.FloatTensor, encoder_hidden_states: torch.FloatTensor | None = None, attention_mask: torch.FloatTensor | None = None, image_rotary_emb: torch.Tensor | None = None, ) -> torch.FloatTensor: batch_size, _, _ = hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape # `sample` projections. qkv = attn.to_qkv(hidden_states) split_size = qkv.shape[-1] // 3 query, key, value = torch.split(qkv, split_size, dim=-1) inner_dim = key.shape[-1] head_dim = inner_dim // attn.heads query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2) if attn.norm_q is not None: query = attn.norm_q(query) if attn.norm_k is not None: key = attn.norm_k(key) # the attention in FluxSingleTransformerBlock does not use `encoder_hidden_states` # `context` projections. if encoder_hidden_states is not None: encoder_qkv = attn.to_added_qkv(encoder_hidden_states) split_size = encoder_qkv.shape[-1] // 3 ( encoder_hidden_states_query_proj, encoder_hidden_states_key_proj, encoder_hidden_states_value_proj, ) = torch.split(encoder_qkv, split_size, dim=-1) encoder_hidden_states_query_proj = encoder_hidden_states_query_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_key_proj = encoder_hidden_states_key_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) encoder_hidden_states_value_proj = encoder_hidden_states_value_proj.view( batch_size, -1, attn.heads, head_dim ).transpose(1, 2) if attn.norm_added_q is not None: encoder_hidden_states_query_proj = attn.norm_added_q(encoder_hidden_states_query_proj) if attn.norm_added_k is not None: encoder_hidden_states_key_proj = attn.norm_added_k(encoder_hidden_states_key_proj) # attention query = torch.cat([encoder_hidden_states_query_proj, query], dim=2) key = torch.cat([encoder_hidden_states_key_proj, key], dim=2) value = torch.cat([encoder_hidden_states_value_proj, value], dim=2) if image_rotary_emb is not None: from diffusers.models.embeddings import apply_rotary_emb query = apply_rotary_emb(query, image_rotary_emb) key = apply_rotary_emb(key, image_rotary_emb) # NB: transposes are necessary to match expected SDPA input shape hidden_states = flash_attn_func( query.transpose(1, 2), key.transpose(1, 2), value.transpose(1, 2))[0].transpose(1, 2) hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim) hidden_states = hidden_states.to(query.dtype) if encoder_hidden_states is not None: encoder_hidden_states, hidden_states = ( hidden_states[:, : encoder_hidden_states.shape[1]], hidden_states[:, encoder_hidden_states.shape[1] :], ) # linear proj hidden_states = attn.to_out[0](hidden_states) # dropout hidden_states = attn.to_out[1](hidden_states) encoder_hidden_states = attn.to_add_out(encoder_hidden_states) return hidden_states, encoder_hidden_states else: return hidden_states