Spaces:
Running
Running
| import os | |
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| import random | |
| import gradio as gr | |
| from transformers import ( | |
| BartForConditionalGeneration, | |
| AutoModelForCausalLM, | |
| BertModel, | |
| Wav2Vec2Model, | |
| CLIPModel, | |
| AutoTokenizer | |
| ) | |
| class MultiModalModel(nn.Module): | |
| def __init__(self): | |
| super(MultiModalModel, self).__init__() | |
| # 初始化子模型 | |
| self.text_generator = BartForConditionalGeneration.from_pretrained('facebook/bart-base') | |
| self.code_generator = AutoModelForCausalLM.from_pretrained('gpt2') | |
| self.nlp_encoder = BertModel.from_pretrained('bert-base-uncased') | |
| self.speech_encoder = Wav2Vec2Model.from_pretrained('facebook/wav2vec2-base-960h') | |
| self.vision_encoder = CLIPModel.from_pretrained('openai/clip-vit-base-patch32') | |
| # 初始化分词器和处理器 | |
| self.text_tokenizer = AutoTokenizer.from_pretrained('facebook/bart-base') | |
| self.code_tokenizer = AutoTokenizer.from_pretrained('gpt2') | |
| self.nlp_tokenizer = AutoTokenizer.from_pretrained('bert-base-uncased') | |
| self.speech_processor = AutoTokenizer.from_pretrained('facebook/wav2vec2-base-960h') | |
| self.vision_processor = AutoTokenizer.from_pretrained('openai/clip-vit-base-patch32') | |
| def forward(self, task, inputs): | |
| if task == 'text_generation': | |
| attention_mask = inputs.get('attention_mask') | |
| outputs = self.text_generator.generate( | |
| inputs['input_ids'], | |
| max_new_tokens=100, | |
| pad_token_id=self.text_tokenizer.eos_token_id, | |
| attention_mask=attention_mask, | |
| top_p=0.9, | |
| top_k=50, | |
| temperature=0.8, | |
| do_sample=True | |
| ) | |
| return self.text_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| elif task == 'code_generation': | |
| attention_mask = inputs.get('attention_mask') | |
| outputs = self.code_generator.generate( | |
| inputs['input_ids'], | |
| max_new_tokens=50, | |
| pad_token_id=self.code_tokenizer.eos_token_id, | |
| attention_mask=attention_mask, | |
| top_p=0.95, | |
| top_k=50, | |
| temperature=1.2, | |
| do_sample=True | |
| ) | |
| return self.code_tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| # 添加其他任务的逻辑... | |
| # 定义 Gradio 接口的推理函数 | |
| def gradio_inference(task, input_text): | |
| if task == "text_generation": | |
| tokenizer = model.text_tokenizer | |
| elif task == "code_generation": | |
| tokenizer = model.code_tokenizer | |
| # 根据任务选择合适的分词器 | |
| inputs = tokenizer(input_text, return_tensors='pt') | |
| inputs['attention_mask'] = torch.ones_like(inputs['input_ids']) | |
| with torch.no_grad(): | |
| result = model(task, inputs) | |
| return result | |
| # 初始化模型 | |
| model = MultiModalModel() | |
| # 创建 Gradio 接口 | |
| interface = gr.Interface( | |
| fn=gradio_inference, | |
| inputs=[gr.Dropdown(choices=["text_generation", "code_generation"], label="任务类型"), gr.Textbox(lines=2, placeholder="输入文本...")], | |
| outputs="text", | |
| title="多模态模型推理", | |
| description="选择任务类型并输入文本以进行推理" | |
| ) | |
| # 启动 Gradio 应用 | |
| interface.launch() | |