import os import gradio as gr from gradio import ChatMessage from typing import Iterator import google.generativeai as genai import time # Import time module for potential debugging/delay print("import library complete") print("add API key") # get Gemini API Key from the environ variable GEMINI_API_KEY = os.getenv("GEMINI_API_KEY") genai.configure(api_key=GEMINI_API_KEY) print("add API key complete ") print("add model") used_model = "gemini-2.5-pro-exp-03-25" # we will be using the Gemini 2.0 Flash model with Thinking capabilities model = genai.GenerativeModel("gemini-2.0-flash-thinking-exp-01-21") print(f"add model {used_model} complete\n") def format_chat_history(messages: list) -> list: print("\nstart format history") """ Formats the chat history into a structure Gemini can understand """ formatted_history = [] for message in messages: #print(f"t1 {message}") # Skip thinking messages (messages with metadata) #if not (message.get("role") == "assistant" and "metadata" in message): # print(f"t2 {message}") # formatted_history.append({ # "role": "user" if message.get("role") == "user" else "assistant", # "parts": [message.get("content", "")] # }) #print(f"t2 {message}") if message.get("role") == "user" : formatted_history.append({ "role": "user", "parts": [message.get("content", "")] }) elif message.get("role") == "assistant" : formatted_history.append({ "role": "model", "parts": [message.get("content", "")] }) #print(f"t3 {formatted_history}") print("return formatted history") return formatted_history def stream_gemini_response(user_message: str, messages: list) -> Iterator[list]: print("start model response stream") """ Streams thoughts and response with conversation history support for text input only. """ if not user_message.strip(): # Robust check: if text message is empty or whitespace messages.append(ChatMessage(role="assistant", content="Please provide a non-empty text message. Empty input is not allowed.")) # More specific message yield messages print("Empty text message") return try: print(f"\n=== New Request (Text) ===") print(f"User message: {user_message}") # Format chat history for Gemini chat_history = format_chat_history(messages) #print(f"hist {chat_history}") # Initialize Gemini chat print("Chat parameter") chat = model.start_chat(history=chat_history) print("Start response") response = chat.send_message(user_message, stream=True) # Initialize buffers and flags thought_buffer = "" response_buffer = "" #thinking_complete = False # Add initial thinking message #messages.append( # ChatMessage( # role="assistant", # content="", # metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"} # ) #) messages.append( ChatMessage( role="assistant", content=response_buffer ) ) #print(f"mes {messages} \n\nhis {chat_history}") thinking_complete = True for chunk in response: print("chunk start") parts = chunk.candidates[0].content.parts current_chunk = parts[0].text print(f"\n=========\nparts len: {len(parts)}\n\nparts: {parts}\n\ncurrent chunk: {current_chunk}\n=========\n") if len(parts) == 2 and not thinking_complete: # Complete thought and start response thought_buffer += current_chunk print(f"\n=== Complete Thought ===\n{thought_buffer}") messages[-1] = ChatMessage( role="assistant", content=thought_buffer, metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"} ) yield messages # Start response response_buffer = parts[1].text print(f"\n=== Starting Response ===\n{response_buffer}") messages.append( ChatMessage( role="assistant", content=response_buffer ) ) thinking_complete = True elif thinking_complete: # Stream response response_buffer += current_chunk print(f"\n=== Response Chunk ===\n{current_chunk}") messages[-1] = ChatMessage( role="assistant", content=response_buffer ) else: # Stream thinking thought_buffer += current_chunk print(f"\n=== Thinking Chunk ===\n{current_chunk}") messages[-1] = ChatMessage( role="assistant", content=thought_buffer, metadata={"title": "⚙️ Thinking: *The thoughts produced by the model are experimental"} ) #time.sleep(0.05) #Optional: Uncomment this line to add a slight delay for debugging/visualization of streaming. Remove for final version print("Response end") yield messages print(f"\n=== Final Response ===\n{response_buffer}") except Exception as e: print(f"\n=== Error ===\n{str(e)}") messages.append( ChatMessage( role="assistant", content=f"I apologize, but I encountered an error: {str(e)}" ) ) yield messages def user_message(msg: str, history: list) -> tuple[str, list]: """Adds user message to chat history""" history.append(ChatMessage(role="user", content=msg)) return "", history # Create the Gradio interface with gr.Blocks(theme=gr.themes.Soft(primary_hue="teal", secondary_hue="slate", neutral_hue="neutral")) as demo: # Using Soft theme with adjusted hues for a refined look gr.Markdown("# Chat with " + used_model) gr.HTML(""" """) chatbot = gr.Chatbot( type="messages", label=used_model + " Chatbot (Streaming Output)", #Label now indicates streaming render_markdown=True, scale=1, editable="all", avatar_images=(None,"https://lh3.googleusercontent.com/oxz0sUBF0iYoN4VvhqWTmux-cxfD1rxuYkuFEfm1SFaseXEsjjE4Je_C_V3UQPuJ87sImQK3HfQ3RXiaRnQetjaZbjJJUkiPL5jFJ1WRl5FKJZYibUA=w214-h214-n-nu") ) with gr.Row(equal_height=True): input_box = gr.Textbox( lines=1, label="Chat Message", placeholder="Type your message here...", scale=4 ) with gr.Column(scale=1): submit_button = gr.Button("Submit", scale=1) clear_button = gr.Button("Clear Chat", scale=1) with gr.Row(equal_height=True): test_button = gr.Button("test", scale=1) test1_button = gr.Button("test1", scale=1) test2_button = gr.Button("test2", scale=1) test3_button = gr.Button("test3", scale=1) # Add example prompts - removed file upload examples. Kept text focused examples. example_prompts = [ ["Write a short poem about the sunset."], ["Explain the theory of relativity in simple terms."], ["If a train leaves Chicago at 6am traveling at 60mph, and another train leaves New York at 8am traveling at 80mph, at what time will they meet?"], ["Summarize the plot of Hamlet."], ["Write a haiku about a cat."] ] gr.Examples( examples=example_prompts, inputs=input_box, label="Examples: Try these prompts to see Gemini's thinking!", examples_per_page=5 # Adjust as needed ) # Created by gemini-2.5-pro-exp-03-25 #def process_message(msg): # """Обрабатывает сообщение пользователя: сохраняет, отображает и генерирует ответ.""" # msg_store_val, _, _ = lambda msg: (msg, msg, "")(msg) # Store message and clear input (inline lambda) # input_box_val, chatbot_val = user_message(msg_store_val, chatbot) # Add user message to chat # chatbot_val_final = stream_gemini_response(msg_store_val, chatbot_val) # Generate and stream response # return msg_store_val, input_box_val, chatbot_val_final # #input_box.submit( # process_message, # inputs=[input_box], # outputs=[msg_store, input_box, chatbot], # Исправлены outputs, чтобы включать chatbot # queue=False #) #submit_button.click( # process_message, # inputs=[input_box], # outputs=[msg_store, input_box, chatbot], # Исправлены outputs, чтобы включать chatbot # queue=False #) # Set up event handlers msg_store = gr.State("") # Store for preserving user message input_box.submit( lambda msg: (msg, msg, ""), # Store message and clear input inputs=[input_box], outputs=[msg_store, input_box, input_box], queue=False ).then( user_message, # Add user message to chat inputs=[msg_store, chatbot], outputs=[input_box, chatbot], queue=False ).then( stream_gemini_response, # Generate and stream response inputs=[msg_store, chatbot], outputs=chatbot ) submit_button.click( lambda msg: (msg, msg, ""), # Store message and clear input inputs=[input_box], outputs=[msg_store, input_box, input_box], queue=False ).then( user_message, # Add user message to chat inputs=[msg_store, chatbot], outputs=[input_box, chatbot], queue=False ).then( stream_gemini_response, # Generate and stream response inputs=[msg_store, chatbot], outputs=chatbot ) clear_button.click( lambda: ([], "", ""), outputs=[chatbot, input_box, msg_store], queue=False ) gr.Markdown( # Description moved to the bottom - updated for text-only """


--- ### About this Chatbot **Try out the example prompts below to see Gemini in action!** **Key Features:** * Powered by Google's **Gemini 2.0 Flash** model. * Supports **conversation history** for multi-turn chats. * Uses **streaming** for a more interactive experience. **Instructions:** 1. Type your message in the input box below or select an example. 2. Press Enter or click Submit to send. 3. Observe the chatbot's "Thinking" process followed by the final response. 4. Use the "Clear Chat" button to start a new conversation. """ ) # Launch the interface if __name__ == "__main__": demo.launch(debug=True)