Spaces:
Runtime error
Runtime error
File size: 7,542 Bytes
474d806 4d7183d 474d806 4d7183d 5b45741 4d7183d d5d0a9d 4d7183d 474d806 5b45741 474d806 d5d0a9d 5b45741 4d7183d b80d291 4d7183d 24e2294 4d7183d d5d0a9d 4d7183d b80d291 5b45741 4d7183d 5b45741 b80d291 4d7183d b80d291 d5d0a9d 474d806 d5d0a9d 474d806 5b45741 474d806 d5d0a9d 474d806 5b45741 d5d0a9d 474d806 24e2294 4d7183d d5d0a9d 4d7183d b80d291 4d7183d d5d0a9d 474d806 d5d0a9d 4d7183d 24e2294 241d2a5 4d7183d 0f8c9e4 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 |
import os
import gradio as gr
from datetime import datetime, timezone
from config import check_openai_api_key
from agent.research_agent import ResearchAgent
from agent.toolkits import english_polishing
from agent import prompts
from statics.style import *
check_openai_api_key()
report_history_buffer = ""
report_history_tasks = []
polish_history_buffer = ""
REPORT_HISTORY_FILE_PATH = "./statics/report_history_buffer.md"
def load_report_history():
global report_history_buffer
if os.path.exists(REPORT_HISTORY_FILE_PATH):
with open(REPORT_HISTORY_FILE_PATH, "r") as f:
report_history_buffer = f.read()
else:
open(REPORT_HISTORY_FILE_PATH, "w").close()
return report_history_buffer
def run_agent(task, agent_type, report_type, system_prompt, extra_prompt):
global report_history_tasks
report_history_tasks.append(task)
assistant = ResearchAgent(task, agent_type, system_prompt)
yield from assistant.write_report(report_type, extra_prompt)
with gr.Blocks(theme=gr.themes.Base(),
title="AI Research Assistant",
css=css) as demo:
gr.HTML(top_bar)
with gr.Tab(label="🔦Report"):
with gr.Column():
gr.HTML(report_html)
report = gr.Markdown(value=" Report will appear here...",
elem_classes="output")
with gr.Row():
agent_type = gr.Dropdown(label="# Agent Type",
value="Default Agent",
interactive=True,
allow_custom_value=False,
choices=["Default Agent",
"Business Analyst Agent",
"Finance Agent",
"Travel Agent",
"Academic Research Agent",
"Computer Security Analyst Agent",
"Clinical Medicine Agent",
"Basic Medicine Agent",
"Social Science Research Agent"])
report_type = gr.Dropdown(label="# Report Type",
value="Research Report",
interactive=True,
allow_custom_value=False,
choices=["Research Report",
"Resource Report",
"Outline Report"])
input_box = gr.Textbox(label="# What would you like to research next?", placeholder="Enter your question here")
with gr.Accordion("# Advanced Settings", open=False):
system_prompt = gr.TextArea(label="Agent Prompt",
value=prompts.generate_agent_role_prompt(agent_type.value),
interactive=True,
show_copy_button=True)
report_type_prompt = gr.TextArea(label="Report Prompt (not editable)",
value=prompts.generate_report_prompt(f'{input_box.value}', report_type.value),
interactive=False,
show_copy_button=True)
extra_prompt = gr.TextArea(label="Extra Prompt", interactive=True, show_copy_button=True)
def on_select_agent(evt: gr.SelectData):
return f"{prompts.generate_agent_role_prompt(evt.value)}"
def on_select_input_box(input, report_type):
return f"{prompts.generate_report_prompt(f'{input}', report_type)}"
def on_select_report_type(evt: gr.SelectData, input_box):
return f"{prompts.generate_report_prompt(f'{input_box}', evt.value)}"
agent_type.select(on_select_agent, None, system_prompt)
input_box.input(on_select_input_box, inputs=[input_box, report_type], outputs=report_type_prompt)
report_type.select(on_select_report_type, inputs=[input_box], outputs=report_type_prompt)
submit_btn = gr.Button("Generate Report", elem_id="primary-btn")
gr.Examples(["Should I invest in the Large Language Model industry in 2023?",
"Is it advisable to make investments in the electric car industry during the year 2023?",
"What constitutes the optimal approach for investing in the Bitcoin industry during the year 2023?",
"What are the most recent advancements in the domain of superconductors as of 2023?"],
inputs=input_box)
with gr.Accordion(label="# Report History", elem_id="history", open=False):
report_history = gr.Markdown(value=load_report_history)
def store_report(content):
global report_history_tasks, report_history_buffer
report_task = report_history_tasks[-1][:min(100, len(report_history_tasks[-1]))]
time_stamp = datetime.now(timezone.utc).strftime("%Y-%m-%d %H:%M:%S %p")
new_report = f'<details> \
<summary>UTC {time_stamp}: \
<i>{report_task}</i></summary> \
<div id="history_box">{content}</div> \
</details>'
report_history_buffer += new_report
with open("./statics/report_history_buffer.md", "a+") as f:
f.write(new_report)
return report_history_buffer
submit_btn.click(run_agent, inputs=[input_box, agent_type, report_type, system_prompt, extra_prompt], outputs=report)\
.then(store_report, inputs=[report], outputs=report_history)
with gr.Tab("✒️English Polishing"):
gr.HTML(english_polishing_html)
polished_result = gr.Markdown(" Polished result will appear here...", elem_classes="output")
sentences = gr.Textbox(label="# What would you like to polish?", placeholder="Enter your sentence here")
with gr.Row():
polish_btn = gr.Button("Polish", elem_id="primary-btn")
with gr.Accordion(label="# Polishing History", elem_id="history", open=False):
polish_history = gr.Markdown()
def store_polished_result(origin, result):
global polish_history_buffer
polish_history_buffer += f'<details> \
<summary><i>{origin}</i></summary> \
<div id="history_box">{result}</div> \
</details>'
return polish_history_buffer
polish_btn.click(english_polishing, inputs=[sentences], outputs=polished_result) \
.then(store_polished_result, inputs=[sentences, polished_result], outputs=polish_history)
with gr.Tab("📑Literature Review"):
gr.HTML(literature_review_html)
demo.queue().launch() |