Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import numpy as np
|
| 3 |
+
import pandas as pd
|
| 4 |
+
from momentfm import MOMENTPipeline
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
from io import StringIO
|
| 7 |
+
|
| 8 |
+
# Initialize the MOMENT model
|
| 9 |
+
model = MOMENTPipeline.from_pretrained(
|
| 10 |
+
"AutonLab/MOMENT-1-large",
|
| 11 |
+
model_kwargs={"task_name": "reconstruction"},
|
| 12 |
+
)
|
| 13 |
+
model.init()
|
| 14 |
+
|
| 15 |
+
def detect_anomalies(data_input, threshold=0.05):
|
| 16 |
+
"""
|
| 17 |
+
Process time-series data and detect anomalies using MOMENT model
|
| 18 |
+
"""
|
| 19 |
+
try:
|
| 20 |
+
# Handle different input types
|
| 21 |
+
if isinstance(data_input, str):
|
| 22 |
+
# Try to read as CSV
|
| 23 |
+
try:
|
| 24 |
+
df = pd.read_csv(StringIO(data_input))
|
| 25 |
+
except:
|
| 26 |
+
# Try to read as JSON
|
| 27 |
+
try:
|
| 28 |
+
df = pd.read_json(StringIO(data_input))
|
| 29 |
+
except:
|
| 30 |
+
return "Error: Could not parse input data. Please provide valid CSV or JSON."
|
| 31 |
+
elif isinstance(data_input, dict):
|
| 32 |
+
df = pd.DataFrame(data_input)
|
| 33 |
+
else:
|
| 34 |
+
return "Error: Unsupported input format"
|
| 35 |
+
|
| 36 |
+
# Check for required columns
|
| 37 |
+
if 'timestamp' not in df.columns or 'value' not in df.columns:
|
| 38 |
+
return "Error: Data must contain 'timestamp' and 'value' columns"
|
| 39 |
+
|
| 40 |
+
# Convert timestamp to datetime if needed
|
| 41 |
+
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
| 42 |
+
df = df.sort_values('timestamp')
|
| 43 |
+
|
| 44 |
+
# Prepare data for MOMENT model
|
| 45 |
+
time_series = df['value'].values.astype(float)
|
| 46 |
+
|
| 47 |
+
# Get reconstruction from the model
|
| 48 |
+
reconstruction = model.reconstruct(time_series)
|
| 49 |
+
|
| 50 |
+
# Calculate reconstruction error
|
| 51 |
+
error = np.abs(time_series - reconstruction)
|
| 52 |
+
|
| 53 |
+
# Detect anomalies based on threshold
|
| 54 |
+
df['anomaly_score'] = error
|
| 55 |
+
df['is_anomaly'] = error > threshold * np.max(error)
|
| 56 |
+
|
| 57 |
+
# Create plot
|
| 58 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 59 |
+
ax.plot(df['timestamp'], df['value'], label='Original', color='blue')
|
| 60 |
+
ax.scatter(
|
| 61 |
+
df[df['is_anomaly']]['timestamp'],
|
| 62 |
+
df[df['is_anomaly']]['value'],
|
| 63 |
+
color='red',
|
| 64 |
+
label='Anomaly'
|
| 65 |
+
)
|
| 66 |
+
ax.set_title('Time Series with Anomalies Detected')
|
| 67 |
+
ax.set_xlabel('Timestamp')
|
| 68 |
+
ax.set_ylabel('Value')
|
| 69 |
+
ax.legend()
|
| 70 |
+
ax.grid(True)
|
| 71 |
+
|
| 72 |
+
# Prepare results
|
| 73 |
+
anomalies = df[df['is_anomaly']]
|
| 74 |
+
stats = {
|
| 75 |
+
"total_points": len(df),
|
| 76 |
+
"anomalies_detected": len(anomalies),
|
| 77 |
+
"anomaly_percentage": f"{100 * len(anomalies)/len(df):.2f}%",
|
| 78 |
+
"max_anomaly_score": np.max(error),
|
| 79 |
+
"threshold_used": threshold
|
| 80 |
+
}
|
| 81 |
+
|
| 82 |
+
return fig, stats, df.to_dict(orient='records')
|
| 83 |
+
|
| 84 |
+
except Exception as e:
|
| 85 |
+
return f"Error processing data: {str(e)}"
|
| 86 |
+
|
| 87 |
+
# Create Gradio interface
|
| 88 |
+
with gr.Blocks(title="Equipment Anomaly Detection") as demo:
|
| 89 |
+
gr.Markdown("# 🛠️ Equipment Sensor Anomaly Detection")
|
| 90 |
+
gr.Markdown("""
|
| 91 |
+
**Detect anomalies in equipment sensor data using the MOMENT-1-large model**
|
| 92 |
+
- Upload CSV/JSON data with 'timestamp' and 'value' columns
|
| 93 |
+
- Adjust the sensitivity threshold as needed
|
| 94 |
+
- Get visual and statistical results
|
| 95 |
+
""")
|
| 96 |
+
|
| 97 |
+
with gr.Row():
|
| 98 |
+
with gr.Column():
|
| 99 |
+
input_data = gr.Textbox(
|
| 100 |
+
label="Paste your time-series data (CSV/JSON)",
|
| 101 |
+
placeholder="timestamp,value\n2023-01-01,1.2\n2023-01-02,1.5...",
|
| 102 |
+
lines=5
|
| 103 |
+
)
|
| 104 |
+
file_upload = gr.File(label="Or upload a file")
|
| 105 |
+
threshold = gr.Slider(
|
| 106 |
+
minimum=0.01,
|
| 107 |
+
maximum=0.2,
|
| 108 |
+
value=0.05,
|
| 109 |
+
step=0.01,
|
| 110 |
+
label="Anomaly Detection Sensitivity (lower = more sensitive)"
|
| 111 |
+
)
|
| 112 |
+
submit_btn = gr.Button("Detect Anomalies", variant="primary")
|
| 113 |
+
|
| 114 |
+
with gr.Column():
|
| 115 |
+
plot_output = gr.Plot(label="Anomaly Detection Results")
|
| 116 |
+
stats_output = gr.JSON(label="Detection Statistics")
|
| 117 |
+
data_output = gr.JSON(label="Processed Data with Anomaly Scores")
|
| 118 |
+
|
| 119 |
+
# Handle file upload
|
| 120 |
+
def process_file(file):
|
| 121 |
+
if file:
|
| 122 |
+
with open(file.name, 'r') as f:
|
| 123 |
+
return f.read()
|
| 124 |
+
return ""
|
| 125 |
+
|
| 126 |
+
file_upload.change(process_file, inputs=file_upload, outputs=input_data)
|
| 127 |
+
|
| 128 |
+
submit_btn.click(
|
| 129 |
+
detect_anomalies,
|
| 130 |
+
inputs=[input_data, threshold],
|
| 131 |
+
outputs=[plot_output, stats_output, data_output]
|
| 132 |
+
)
|
| 133 |
+
|
| 134 |
+
if __name__ == "__main__":
|
| 135 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|